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Abstract—In this paper, we implement machine learning

methods to recover higher-dimensional signals from lower-

dimensional, noisy, and blurry measurements. In particular,

rather than utilizing optimization-based reconstruction methods,

we use fully-connected multilayer perceptron (MLP) architec-

tures and convolutional neural networks (CNN). In addition, we

consider two different loss functions based on mean squared

error and a Huber potential to train our models. Numerical

experiments on the Street View House Numbers dataset show that

while fully-connected MLPs are faster to train, reconstructions

using CNNs are much more accurate.

Index Terms—Machine learning, Autoencoders, Deblurring,

Denoising, Upsampling

I. INTRODUCTION

With the number of digital images being taken everyday,
image processing techniques used to improve the quality of
these signals become increasingly more important. Two of the
main sources of deterioration during image acquisition are
blurring and noise. Blurring occurs when information seeps
among neighboring pixels in an image. This phenomenon can
be the result of mechanical failure in the imaging system,
such as an out of focus lens. It can also be the result of
the physical conditions when the image is recorded such as
image obfuscation by fog or the turbulent atmosphere present
in astronomical imaging applications [1].

In most imaging applications, the presence of noise is
modeled by additive white Gaussian noise and can be a
result of temperature or electrical fluctuations within the
imaging system [2]. This model assumes adequate lighting
conditions when the observations are recorded. However, in
applications such as medical imaging and night vision, the
number of photons recorded at the detector is relatively low.
Under this photon-limited regime, the measurements at the
photon-detector are corrupted by noise that is modeled more
appropriately using the Poisson distribution [3]. In addition
to being noisy, these observations are often undersampled
linear measurements, further complicating the recovery pro-
cess. Under the process of blurry photon-limited imaging, we
seek to reconstruct images from noisy, low-dimensional, and
blurry observations. In this paper we look towards various deep
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learning architectures as a technique to recover the images
associated with these degraded observations.

II. PROBLEM FORMULATION

In this section we explain the model that we use to describe
the low-resolution blurred noisy observations. Because we
are operating in the regime of photon-limited imaging, we
model the arrival of photons at the detector by the following
inhomogenous Poisson process:

y ⇠ Poisson(DGf⇤),

where y 2 Zm
+ is the observation vector whose entries consists

of photon counts, f⇤ 2 Rn
+ is the true signal, D 2 Rm⇥n

is a downsampling operator with m < n, and G 2 Rn⇥n

is a Gaussian blur operator. The two-dimensional blurring
operation takes a two-dimensional Gaussian distribution of the
form
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and creates a normalized pixel masked that is convolved with
the image of interest in order to perform the blur operation
[4]–[6]. Here, �

2 corresponds to the variance of the Gaus-
sian distribution. Our interest is in recovering the true high-
dimensional signal f⇤ from the lower dimensional observation
vector y. Traditional signal recovery methods rely on statistical
methods in order to maximize the probability of observing the
vector y. This can include using optimization techniques in
conjunction with the maximum likelihood principle as well as
Baysian-based approaches. The sparse nature of the true signal
of interest invites the use of a sparsity promoting penalty term
in the optimization process. This type of algorithm is iterative
and requires the tuning of parameters which affects the quality
of the reconstruction [7]–[11].

Related work. This work seeks an alternative to traditional op-
timization methods by solving the low-quality Poisson blurred
reconstruction problem using deep learning architecture as an
approximate mapping from the downsampled observations y
to the space of the true signal f⇤. While previous imple-
mentations of deep learning techniques have been used to
address Poisson denoising problems, downsampling problems,
and image deblurring [12]–[16] separately, the novelty of our



approach is that we implement architecture which solves all
three problems simultaneously.

III. PROPOSED APPROACH

In this section we describe the deep learning techniques
implemented to recover data from noisy, blurred, low-
dimensional observations. In particular, we present three dif-
ferent architectures labeled Methods I, II, and III. Each method
utilizes a different configuration of different types of layers.
Specifically, Method I relies on fully connected layers and is
modeled to closely resemble a stacked denoising autoencoder
[17]. Methods II and III rely on convolutional layers typically
found in convolutional neural networks (CNNs) [18]. In all
methods, the architectures are trained using back-propagation
and the resultant features from every layer are activated by the
rectified linear unite (ReLU) activation function. The types of
loss or cost functions used during training will be addressed
in Section IV. We now describe each method in further detail.

Method I (MLP-AE). The first architecture is composed
entirely of fully connected layers. As stated before, the feed-
forward network was modeled after a stacked denoising au-
toencoder (SDA). This type of architecture has been successful
in addressing applications where denoising is required [12],
[17], [19], [20]. The motivation for this technique is that
by compressing the signal into a latent space, the encoding
becomes more robust to noise. The proposed method distin-
guishes itself from a traditional SDA in that the dimensions of
the input do not match those of the recovered signal. Instead,
the first layer of the architecture performs an upsampling of the
observational input, implicitly learning the inverse projection
from the observation space. For a 16 ⇥ 16 input of one
channel, the input is reshaped into a vector of length 256. The
fully connected layer brings the dimension of the features to
1024. The architecture then begins to behave like a traditional
encoder by compressing the feature space back to a length of
256 and finally back up to 1024 which is reshaped to a 32⇥32
reconstruction of the original signal (see Fig. 1).

Fig. 1. Method I: Multilayer perceptron autoencoder-type (MLP-AE) network
composed of fully-connected layers.

Method II (CNN). The second method relies on the power
of convolutions and draws inspiration from the successful
application of CNNs to a variety of problems in inverse prob-
lems and compressed sensing [16], [21]–[23]. The network is
required to address the same initial upsampling problem as

the architecture in Method I. In order to accommodate the
discrepancy between the input size and the recovered signal
size, we use an initial fully connected layer to boost the
features from a vector of length 256 to 1028. The vector is
then reshaped into a tensor with dimensions of 32 ⇥ 32 ⇥ 1.
The convolutional layers begin after the reshaping and attempt
to maintain feature output sizes of 32 ⇥ 32 ⇥ N where
N 2 {64, 32, 1}. Each element N corresponds to the number
of channels in the feature map produced by the previous layer.
The final layer produces the reconstructed signal with a single
channel. The first two dimensions of the feature tensors are
maintained through the careful consideration of padding, filter
size and stride (see Fig. 2).

Fig. 2. Method II: Convolutional neural network (CNN).

Method III (CNN-AE). The final architecture draws on the
structures of Methods I and II. In a similar fashion to Method
II, we use an initial fully connected layer to upsample the
feature space and rely on convolutions for the remaining
layers. The convolutional layers are arranged to resemble an
autoencoder taking inspiration from the fully connected layers
of method I. The number of channels is initially increased
in the feature map after the first layer while maintaining the
dimensions of the height and width. The “encoder” portion of
the convolutional layers compress the feature maps by half in
all directions until a latent tensor of dimension 8⇥ 8⇥ 16 is
acheived. We then use 2-D transpose convolution operators in
order to increase the dimensions while reducing the number
of channels until we achieve dimensions of the original signal
(see Fig. 3).

IV. NUMERICAL EXPERIMENTS

The three architectures, Methods I (MLP-AE), Method II
(CNN), and Method III (CNN-AE), were all implemented
using Pytorch, the open source machine learning language
for python. Training and testing was performed using an
NVIDIA GTX 960 on a local PC with 16 GB of RAM. The
networks were trained using the stochastic gradient descent
(SGD) method.

Dataset. The dataset used to test and train the proposed
architectures is based on the Street View House Numbers
Dataset (SVHS) dataset [24]. This dataset consists of 95,000
32 ⇥ 32 images of street view house numbers from 0-9. The
data is then partitioned into 73,257 training examples, 26,032
testing examples, and 5,000 images used as a validation



Fig. 3. Method III: Convolutional-type autoencoder architecture (CNN-AE).

set. To create our dataset, we converted the original color
training and testing samples to gray scale, applied a Gaussian
filter to create the blur, downsampled through an average
2D pooling to reduce the size of the images, and finally
imposed Poisson noise on the downsampled blurry images.
The labels were discarded because the focus of this work
is not classification. The images were normalized so that
the pixel intensities ranged between 0 to 1. The training
set was created by pairing the clean images with their
corresponding noisy images. Using this structure the neural
network is expected to train on a set of noisy images with a
fixed 16⇥16 dimension and reconstruct the full 32⇥32 image.

Training. Training was performed via stochastic gradient
descent (SGD) with a learning rate of 0.01 and a batch size
of 32 images. Two different experiments were implemented
comparing the reconstructed images (p(xi)) of inputs xi with
their targets (yi). The first experiment uses the common choice
of the Mean Squared Error (MSE) as a loss function given by

MSE(x, y) =
1

|S|

|S|X

i=1

kp(xi)� yik22, (2)

where S is the dataset and |S| is its cardinality. The second
experiment makes use of a modified `1 loss known as the
Huber loss, or smooth `1 loss [25], which is given by

H(x, y) =
1

|S|

|S|X

i=1

nX

k=1

zik (3)

where

zik =

(
0.5((p(xi))k � yik)2, if |(p(xi))k � yik| < 1

|(p(xi)k � yik|� 0.5, otherwise.

The implementation of the loss in Pytorch is restricted to
a threshhold value of 1 and is less sensitive to outliers as
opposed to the MSE loss.

Results and Analysis. Initially we compare the difference in
loss functions across all methods. In either choice of function,
the losses resulting from the convolutional based architectures
(Methods II and III) were significantly lower than the method
using fully connected layers (Method I). Figs. 4(a) and 4(b)
illustrate the evolution of MSE and smooth `1 losses for
Methods II and III – the losses for Method I were significantly

higher and are thus not presented. Methods II and III were
both able to reduce the loss functions in a similar manner. We
also note that both methods had relatively similar behavior
between the training loss and the validation loss, exhibiting
that the networks were not over trained. In either choice of
loss function, Method II was able to achieve lower training and
validation losses much sooner and maintained than Method III.
Method II was also able to maintain an improved training loss
for the duration of training.

The results on the testing set seem to confirm those provided
in the validation set. When considering the approximately
26,000 images in the testing set, the convolutional neural
networks improve on the perceptron based architectures
(by approximately an order of magnitude). Performance is
evaluated using the MSE by comparing the reconstruction
with the ground truth image (see Fig. 5). The higher MSE
values associated with Method I can be attributed to the
“dead pixels” present in its output (see Fig. 6). These
pixels are consistently being set to zero by the network
across all reconstructions. Upon further inspection of the
weights being learned, we note that the outputs are actually
being set to negative values while the ReLU activation at
the end of the network transforms these values to zero.
Method II and Method III perform comparably in terms of
MSE. Qualitatively, Method III using the MSE as a loss
function seems to reconstruct slightly sharper details such
as the thin roof of the “9” (Image 3) in Fig. 6. Using the
smooth `1 loss function particularly in Method II seems
to produce blurred sections in the reconstructions as well
as lower pixel intensities than reconstructions from Method III.

V. CONCLUSIONS

In this paper we implement three different deep learning
architectures in order to solve the photon-limited deblurring
problem. The first method (MLP-AE) involves using fully
connected layers in an autoencoder type configuration. The
second method (CNN) uses convolutional layers in a classical
feed forward network. Finally, the third method (CNN-AE)
uses convolutional layers in an autoencoder type structure
which is analogous to the first method. Although all three
methods produce discernible reconstructions, the advantage
clearly goes to the use of convolutional layers. The output from
the MLP-AE contains many artifacts which can be attributed
to negative values being mapped to zero pixel intensities by the
ReLU activation function. We further extend the experiments



(a) MSE loss

(b) Smooth `1 loss
Fig. 4. Losses for Methods II and III. (a) MSE loss. (b) Smooth `1 loss. Both
loss functions for both methods behave similarly and achieve small values.

Fig. 5. Boxplots comparing the mean squared error (MSE) computed using
the SVHS dataset (26,032 images). The MSE is computed comparing the
reconstructions from Method I, Method II and Method III with the ground
truth image.

by using Mean Squared Error (MSE) or the smooth `1 loss as
cost functions during training. The experiments indicate that
using the `1 loss during training improves the reconstruction
in terms of MSE. Not being captured by the MSE as a
performance metric is the ability of the CNN-AE to reconstruct
certain details when the MSE is used as a loss function. For
future work we hope to extend these techniques to different
types of noise and image modalities.
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Fig. 6. Representative images of the low-dimensional, blurry, and noisy measurements (Row 1), reconstructions from Methods I, II, and III using the MSE
and smooth `1 loss functions (Rows 2-7), and ground truth from the dataset (Row 8).


