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ABSTRACT
Predicting pairwise relationships between nodes in graphs is a fun-

damental task in data mining with many real-world applications,

such as link prediction on social networks, relation prediction on

knowledge graphs, etc. A dominating methodology is to first use

advanced graph representation methods to learn generic node rep-

resentations and then build a pairwise prediction classifier with the

target nodes’ vectors concatenated as input. However, such meth-

ods suffer from low interpretability, as it is difficult to explain why

certain relationships are predicted only based on their prediction

scores. In this paper, we propose to model the pairwise interac-

tions between neighboring nodes (i.e., contexts) of target pairs. The

new formulation enables us to build more appropriate represen-

tations for node pairs and gain better model interpretability (by

highlighting meaningful interactions). To this end, we introduce

a unified framework with two general perspectives, node-centric

and pair-centric, about how to model context pair interactions. We

also propose a novel pair-centric context interaction model and a

new pre-trained embedding, which represents the pair semantics

and shows many attractive properties. We test our models on two

common pairwise prediction tasks: link prediction task and rela-

tion prediction task, and compare them with graph feature-based,

embedding-based, and Graph Neural Network (GNN)-based base-

lines. Our experimental results show the superior performance of

the pre-trained pair embeddings and that the pair-centric interac-

tion model outperforms all baselines by a large margin.
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1 INTRODUCTION
Pairwise prediction, which aims to predict relationships between

two nodes in a graph, is a fundamental problem in data mining and
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Figure 1: Intuition Illustration. To predict the potential rela-
tionships between target nodes 𝑢 and 𝑣 , we model the pair-
wise interactions between their context nodes (purple ones
within the circle) and aggregate important interaction infor-
mation (dashed lines) for the final prediction. The thickness
of a line reflects how important the interaction is.
machine learning, and has a wide range of practical applications.

For example, friend recommendation in social networks [40] recom-

mends potential friends to a user by predicting his/her links with

other users. Other examples include multi-relational link prediction

in knowledge graphs [41], weakly-supervised relation extraction

in entity co-occurrence graphs [28], etc.

Given a graph and a pair of target nodes (𝑢, 𝑣), many powerful

representation learning methods [10, 11, 16, 25, 29, 34, 35, 37, 39]

have been proposed to encode various graph information into node

vectors, ®𝝂𝑢 , ®𝝂𝑣 , and predict their relationships based on these vec-

tors. By preserving the graph structure and properties into a low-

dimensional latent vector space, these representation learningmeth-

ods have obtained state-of-the-art results in many pairwise predic-

tion tasks, such as link prediction [45], relation prediction [28], etc.

However, such methods suffer from low transparency and inter-

pretability and it is difficult for users to understand and trust the

prediction decisions. This is because, various graph information,

e.g., graph structure, context information, is all encoded into a latent

vector space implicitly, and the pairwise prediction is usually made

based on the similarity metrics of node vectors. For example, when

predicting whether two users are friends in social networks, users

may want to know how the decision is made and the model would

be less likely to be convincing to users if the provided explanation

is that two user vectors have high cosine similarity.

In this paper, we propose to explicitly model the interactions

between neighborhoods
1
of target nodes for the pairwise predic-

tion. Taking a toy example for illustrating our intuition, as shown

in Figure 1, the interaction links between target nodes could be

indicative for predicting that node 𝑢 is connected with 𝑣 (e.g., some

context nodes of node 𝑢 are very similar or hold special relations

with context nodes of node 𝑣). Learning such meaningful patterns

explicitly among context interaction links in graphs is expected

1
In this paper, we use context and neighborhood interchangeably.
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to shed some light on interpreting the model’s decision (by high-

lighting important interaction links for the prediction). In addition,

most of previous methods learn generic embeddings from the graph,

which might be suboptimal for pairwise relationship predictions. In

contrast, modeling context pair interactions enables us build pair-

specific representations to further improve the model performance.

One straightforward way to manipulate the contexts of target

nodes for the interaction is to compute heuristic features between

their contexts, such as common neighbors, Jaccard similarity [20].

Such features provide competitive performance in some pairwise

prediction tasks, such as link prediction, and intuitive explanations

for justifying the model prediction. However, they are also known

for the lack of generalizability [17]. For example, though common

neighbors feature works reasonably well in link prediction, Kovács

et al. [17] find that linked proteins do not necessarily share many

neighbors in the Protein-Protein Interaction (PPI) network.

Thus, in this paper, we propose to combine the representation

learning with context interaction and take the first step towards

explicitly exploring Context Pair Interaction for pairwise predic-

tion with a general deep learning framework, ConPI (“con-𝜋”). Our

framework essentially computes an interaction score for the pair

of contexts (i.e., pairwise interaction) jointly with the pairwise

prediction task, as shown in Figure 1. We provide two perspec-

tives of aggregating the pair interaction information, node-centric

and pair-centric. From the node-centric perspective (referred to

as ConPI-node model), the model learns interaction-aware node

representations for target nodes whose contexts dynamically influ-

ence each other. The final prediction is made based on the simple

combination of new node representations as traditional embed-

ding methods do [10]. On the other hand, from a relatively new

perspective of pair-centric (referred to as ConPI-pair), we novelly

propose to directly model pair representations for each interacting

pair and aggregate them together for the final prediction. Such a

new perspective further motivates us to propose a new type of

pair embedding (which represents the semantics of each context

pair) and inject it back into the ConPI-pair model for more efficient

learning. Finally, our ConPI framework offers a certain amount

of model interpretability that can generate instance-level explana-

tions, i.e., meaningful and important context links, which could be

easily understood by users and thus, obtain their trust better.

Our contributions are summarized as follows:

• We highlight the importance of context interactions for pairwise

predictions. To the best of our knowledge, we are the first to

systematically study how to model context pair interactions in

pairwise tasks. Our study aims to inspire more graph-based mod-

els to study the interaction mechanisms.

• We propose a general framework ConPI with two perspectives,

node-centric and pair-centric, and build a novel model for the

pair-centric view that aggregates context pair representations

directly for the final prediction. Our framework considers the

mutual influence between nodes via context interactions and

enhances the interpretability by highlighting important context

pairs that lead to the model decision.

• We also propose a new type of pair embedding on homogeneous

graph to capture semantics of any node pairs and inject it back

to ConPI-pair model to show its effectiveness.

• We conduct extensive experiments on two types of pairwise pre-

diction tasks, link prediction and relation prediction with totally 6

datasets. In comparison with strong baselines from different cate-

gories, our framework can achieve very competitive performance

and more importantly, much better interpretability.

2 RELATEDWORK
Pairwise Tasks on Graphs. Given a graph, there are generally

three types of features that can be leveraged effectively for pair-

wise predictions, heuristic features (e.g., common neighbors), latent

features (e.g., node embeddings) and explicit features (e.g., node

attributes). In this paper, as we mainly utilize the graph information

for the interaction, we do not focus on modeling explicit features

at this moment. For the heuristic features, they can be directly ex-

tracted from the graph, which is computationally efficient and could

be competitive baselines for some tasks, such as link prediction.

But they may lose the generalizability across different datasets [17].

On the other hand, latent features, i.e., low-dimensional embedding

vectors learned from the graph, can be optimized via various ap-

proaches, e.g., matrix factorization [4, 26], random walk [10, 25],

neural networks [34, 39]. However, modeling pairwise prediction in

the latent space may suffer several disadvantages as we mentioned

previously, such as lacking a certain amount of interpretability or

learning node representation independently from the target pair-

wise prediction task. Our framework ConPI deals with such issues

by explicitly modeling context pair interactions between nodes.

NeighborhoodAggregation.Our framework takes as input neigh-

borhoods from the graph and aggregates them for the pairwise pre-

diction, which is closely related to the line of recent researches in

neighborhood aggregation for graph learning. For example, Hamil-

ton et al. [11] propose to aggregate features of neighboring nodes by

different functions, e.g., Mean, LSTM, and Pooling. Veličković et al.

[37] leverage the multi-head self-attention mechanism to aggregate

neighborhood information for node representations. Sun et al. [33]

introduce gatedmulti-hop neighborhood aggregation to align nodes

from knowledge graphs. All the aforementioned methods inspire

us to thoroughly explore neighborhoods for pairwise predictions.

Instead of aggregating neighborhoods independently, we propose

that we need to consider the interactions between contexts for a bet-

ter aggregation. The ConPI-node method models the context pair

interactions with a similar mechanism as mutual attention module

that has been applied in many other tasks [19, 30, 36, 42] and our

contribution for ConPI-node here is to unify it into a framework

for systemically modeling the context pair interactions.

Graph Representation Learning. Representation learning on

graphs has been extensively studied and mostly focuses on nodes [5,

10, 25, 29, 39], i.e., projecting nodes to a low-dimensional vector

space while preserving the graph structure [29, 39] and proper-

ties [46]. The learned embeddings can be reused for a variety of

downstream tasks, such as the pairwise prediction tasks as men-

tioned above. More recently, while being far less mature compared

with node embeddings, learning edge semantics and representing

edges beyond nodes have received increasing attention [1, 3, 22,

31, 38, 48]. First of all, there are some recent works trying to learn

representations of connected edges in the graph [3, 48], which can-

not be generalized to unobserved pairs of nodes, e.g., the context



pairs in our interaction module. To learn embeddings for any pair

of nodes, Abu-El-Haija et al. [1] model the asymmetry property

between two nodes and define an edge function over node vec-

tors to produce a score for the pair rather than a pair vector. In

addition, edge embeddings [31, 38] are studied in heterogeneous

networks to learn task-relevant representations for specific pairs,

e.g., author-paper pairs in citation networks. In this paper, we aim

to pre-train a general-purpose pair embedding on homogeneous

graphs and incorporate it into our context pair interaction model

for more general pairwise prediction tasks. More relevantly, Joshi

et al. [14] propose to learn word pair embeddings from a large text

corpus to incorporate text patterns into the pair embeddings while

our ConPI-pair model (Section 4.3) focuses on learning node pair

embeddings from the graph structure.

3 PRELIMINARIES
In this section, we first introduce our problem definition and, then

describe how we can obtain contexts for our framework.

3.1 Task Definition
Notations.We denote an undirected graph as G = (V, E) where
V is the set of vertices and E is the the set of existing edges. For

any node 𝑥 ∈ V , we denote its neighbor
2
set as N(𝑥).

Problem Definition. In this paper, we consider the pairwise pre-

diction tasks on graphs with a generalized definition in which

the label to predict between nodes can by any pairwise supervi-

sions, e.g., link label, relation label. Specifically, given the graph

G and target pairs S consisting of a few positive training labels

S = {(𝑢𝑖 , 𝑣𝑖 )}𝑁𝑖=1, 𝑣,𝑢 ∈ V . We aim to leverage the training pairs to

make prediction for unseen pairs, 𝑃 (𝑦 | (𝑢 ′
𝑗
, 𝑣 ′
𝑗
)) where 𝑦 indicates

whether the pair holding the target label. We formally define the

pairwise prediction as follows:

Definition 3.1. (Pairwise Prediction). Given a graphG = (V, E)
and a set of target pairs S = {(𝑢𝑖 , 𝑣𝑖 )}𝑁𝑖=1, we aim to estimate the

possibility of a new node pair holding the target label, 𝑃 (𝑦 | (𝑢 ′
𝑗
, 𝑣 ′
𝑗
))

and make a binary prediction for the new pair
3
.

3.2 Context Acquisition.
As our framework explicitly utilizes contexts for the pairwise pre-

diction, we always assume the neighbor set of each node is given

for the rest of the paper. As the background, we give a brief in-

troduction about how we can acquire contexts in order to apply

our framework. For the simplest case, we can uniformly sample a

fix-number of neighbors [11, 37]. For example, for the neighbor set

N(𝑢), we sample from the set {𝑣 ∈ V, (𝑢, 𝑣) ∈ E}.
Moreover, in some graphs, the degree distribution has a long

tail in which for some nodes, we may not able to sample enough

contexts or even zero contexts (i.e., out-of-vocabulary issue). Under

such circumstances, we can leverage some context prediction meth-

ods to recover sufficient high-potential contexts for our following

context interaction framework [12, 42]. Instead of recovering the

context graph by GNNs [12], we need discrete contexts for our

2
We consider 1-hop neighbor in this paper.

3
Note that our task can be easily extended to multi-class setting.

framework. That is, we can estimate a context conditional prob-

ability 𝑝 (𝑐 |𝑢) representing the likelihood that context node 𝑐 is

connected with node 𝑢:

𝑝 (𝑐 |𝑢) = exp(𝝂𝑇𝑐 · Encoder(𝑢))∑ |V |
𝑖=1

exp(𝝂𝑇𝑐𝑖 · Encoder(𝑢))
(1)

where𝝂𝑐 is the context embedding for node 𝑐 and Encoder(·) is used
to encode the node features into a vector, for instance, we can adopt

Recurrent Neural Networks (RNNs) to encode the article content

from citation networks into a single vector. There are multiple

options to optimize such probability [24, 34]. For example, we can

employ the cross-entropy loss to minimize the distance between

the estimated probability with the empirical probability from the

original graph. We refer to Tang et al. [34] for more theoretical

details. After pre-training such a conditional probability on the

graph, given a node 𝑣 , we can select the top-𝐿𝑣 entities from 𝑝 (·|𝑣)
as 𝑣 ’s neighbors for the subsequent modeling.

4 CONPI FRAMEWORK
In this section, we introduce our ConPI framework for modeling

context pair interactions in pairwise tasks.We first give an overview

and then introduce ConPI-node and ConPI-pair models as well as

how to pre-train and utilize pair embeddings.

4.1 Framework Overview
Current state-of-the-art pairwise prediction models usually focus

on learning high-quality node representations with advanced node

embedding methods [10, 29, 39] or graph neural networks [11, 16,

37], which perform reasonably well across different tasks. How-

ever, there are two challenges that our framework tries to solve.

Firstly, though preserving rich graph information, the learned la-

tent representation is hard to be comprehended by humans, and

thus, has a lack of interpretability. Secondly, when learning node

representations, most models project each node to a latent vector

space independently by preserving as much graph information as

possible, but ignore the mutual influence between the pair when

applying the learned vectors for the pairwise prediction task.

To solve the challenges as mentioned above, our proposed frame-

work ConPI, as shown in Figure 2, presents two different per-

spectives for conducting context pair interactions for pairwise

prediction. For the node-centric context interaction (Figure 2 (a)),

interaction-aware node representations are firstly learned by aggre-

gating context information with the consideration of the pairwise

interaction. By doing so, node representations of target nodes will

mutually affect each other for a better pairwise prediction. More-

over, instead of learning node representations, wemodel the context

pairs directly for the pairwise prediction (Figure 2 (b)). Specifically,

for each context pair, we formulate a pair representation (either

training a pair encoder function taking as input the node representa-

tions or applying pre-trained pair embeddings) and then aggregate

them for the pairwise prediction. In next parts, we will introduce

model details and show how to obtain interpretable results for

pairwise prediction by our framework.

4.2 Node-centric Context Interaction
The goal of the node-centric context interaction model (ConPI-

node) is to first form an interaction-aware representation for each
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Figure 2: Framework Overview: (a) ConPI-node; (b) ConPI-pair.

target node and make the pairwise prediction based on the new rep-

resentations. Inspired by previous graph neighborhood aggregation

methods that aggregate contexts with a self-attention layer [37], we

propose to aggregate the context information for each node in such

a way that each context node is weighed based on its interaction

links with contexts on the other side. Thereby each node represen-

tations in the pairwise prediction task would influence each other

via the interaction links between their contexts.

Formally, as shown in Figure 2 (a), given two target nodes in a

graph, (𝑢, 𝑣) ∈ 𝑉 , we obtain their neighbor set,N(𝑢) = {𝑐1𝑢 , ..., 𝑐
𝐿𝑢
𝑢 }

andN(𝑣) = {𝑐1𝑣, ..., 𝑐
𝐿𝑣
𝑣 } as mentioned in Section 3.2.Without losing

the generalizability, we assign a feature vector to each context node

and we get two sets of vectors, 𝚿𝑢 = {𝝂𝑖𝑢 }
𝐿𝑢
𝑖=1
,𝚿𝑣 = {𝝂 𝑗𝑣 }𝐿𝑣𝑗=1 for

target nodes 𝑢, 𝑣 , as the input for ConPI-node model.

There are several neighborhood aggregation mechanisms that

have been tried for mapping a set of context vectors to a node

representation, e.g., Mean, LSTM, Pooling [11] or Multi-head Self-

attention [37]. However, none of them consider the factor of context

interactions with other nodes for the pairwise prediction when

aggregating the contexts. Thus, we leverage the attention-based

approach Santos et al. [30], Tu et al. [36] to weigh each context with

the consideration of its interactions with contexts on the other side

and aggregate the weighed contexts for target node 𝑢 as follows:

𝒉𝑢 =

𝐿𝑢∑
𝑖=1

𝛼𝑖𝑢 · 𝝂𝑖𝑢 (2)

𝛼𝑖𝑢 =
exp(𝑆

pool
(𝝂𝑖𝑢 ,𝚿𝑣))∑𝐿𝑢

𝑘=1
exp(𝑆

pool
(𝝂𝑘𝑢 ,𝚿𝑣))

(3)

𝑆
pool

(𝝂𝑖𝑢 ,𝚿𝑣) = Pool

({
[ (𝝂𝑖𝑢 ,𝝂

𝑗
𝑣 ),∀𝝂

𝑗
𝑣 ∈ 𝚿𝑣

})
(4)

[ (𝝂𝑖𝑢 ,𝝂
𝑗
𝑣 ) = 𝜎

(
𝝂𝑖𝑢
𝑇 ·W

pool
· 𝝂 𝑗𝑣

)
(5)

where W
pool

is the weight matrix for the pooling function. 𝑆
pool

is a pooling function (e.g., mean or max function) to measure the

interaction score between one context vector with a set of context

vectors in which the (pairwise) interaction between each pair of

contexts is measured by a non-linearity function [ (Eqn.5).

To this end, the representation, 𝒉𝑢 , for target node 𝑢 incorpo-

rates the interaction information from the other side, and with

a similar operation in the opposite direction, we can obtain the

interaction-aware representation for node 𝑣 as 𝒉𝑣 . Finally, the pair-
wise prediction can be made by applying a classifier on a binary

operator for 𝒉𝑢 ,𝒉𝑣 as what the previous works do [8, 10].

Interpretability. ConPI-node model generates explanations for

model decisions in a two-steps process as follows: after the predic-

tion is made, we first trace back to the most important contexts for

each target nodes by attention weights, 𝛼𝑖𝑢 , 𝑖 ∈ [1, 𝐿𝑢 ]. Then, for
each context node 𝑐𝑖𝑢 , we further trace back to its pair interaction

scores, [ (𝝂𝑖𝑢 ,𝝂
𝑗
𝑣 ), 𝑗 ∈ [1, 𝐿𝑣] to obtain the most influential interac-

tion pairs, {(𝑐𝑖𝑢 , 𝑐
𝑗
𝑣), [ (𝝂𝑖𝑢 ,𝝂

𝑗
𝑣 ) > 𝜖} as the explanations where 𝜖 is a

pre-defined threshold.

4.3 Pair-centric Context Interaction
In contrast to the node-centric context interaction, as shown in Fig-

ure 4 (b), we also propose a new approach of the pair-centric per-

spective for modeling the pairwise prediction in graphs by the

pair-centric context interaction. Instead of aggregating context fea-

tures for each target node individually, ConPI-pair model directly

works on context pairs for the final prediction. Our motivation is

that to infer the pairwise relationships between two nodes, we are

encouraged to model the pairwise context interactions by the na-

ture of the task. In other words, the relationships between contexts

could be more indicative for predicting the relationships for their

target nodes, as shown in Figure 1 in the Introduction. Next, we

introduce the details of our ConPI-pair model.

Same as ConPI-node model, we have two neighbor sets, 𝚿𝑢 and

𝚿𝑣 . As shown in Figure 2 (b), the essential idea of the ConPI-pair

model is to formulate a representation for each pair of context

nodes, and them aggregate all pair for the final prediction. For

simplicity, we encode the pair representation as a compositional

function for its given two node vectors, (𝝂𝑖 ,𝝂 𝑗 ) as:

𝑔𝑝 (𝝂𝑖 ,𝝂 𝑗 ) = 𝑓𝑝 ( [𝝂𝑖 ;𝝂 𝑗 ;𝝂𝑖 ⊕ 𝝂 𝑗 ]) (6)

where ⊕ is the element-wise product for two vectors, [; ] represents
vector concatenation. 𝑓𝑝 (·) is a fully-connected network that pro-

duces a low-dimensional vector for representing the pair. Such a

pair representation will help capture the relationship for a pair of



nodes during the pairwise prediction task. Next, we aggregate all

pairs with an attention-based mechanism for the final prediction:

𝒛 =

𝐿𝑢∑
𝑖

𝐿𝑣∑
𝑗

𝛽𝑖 𝑗 · 𝑔𝑝 (𝝂𝑖𝑢 ,𝝂
𝑗
𝑣 ) (7)

𝛽𝑖 𝑗 =
exp(𝑆𝑝 (𝝂𝑖𝑢 ,𝝂

𝑗
𝑣 ))∑𝐿𝑢

𝑚=1

∑𝐿𝑣
𝑛=1

exp(𝑆𝑝 (𝝂𝑚𝑢 ,𝝂𝑛𝑣 ))
(8)

where 𝑆𝑝 is a similarity function for each pair of context vectors (e.g.,

bilinear similarity). 𝒛 will be used for making the final prediction

with a classification layer.

Interpretability. The attention distribution, 𝛽𝑖 𝑗 , in Eqn.8 is the

normalized pairwise interaction scores and will be used to retrieve

the most important pairs for explanations after the prediction. And,

the explanation question that the ConPI-pair model can answer

is which important context interactions lead to current prediction.

Apparently, for interpretability, ConPI-pair selects context pairs in

a one-step process, which is more straightforward and easier to be

understood by users than ConPI-node model.

Though the model architecture for our ConPI-pair is relatively

simple, the perspective of modeling pairs for pairwise prediction

is new, and we also show the superior performance of ConPI-pair

model with comprehensive experiments later. As one of our main

contributions, shifting the perspective from node-centric to pair-

centric model provides us more promising directions to go for

modeling pairwise prediction tasks. Next, we show a new type of

pair embeddings, which can be naturally injected into ConPI-pair.

4.4 Pretraining and Injecting Pair Embedding
To expand the idea of modeling pair interactions directly for pair-

wise prediction tasks, we further propose to leverage the graph

structure to pre-train embeddings of node pairs, and inject them

back to our ConPI-pair model with fewer parameters. Our intuition

is that the pre-trained pair embedding would incorporate more

prior knowledge for node pairs than combining their node vectors

straightforwardly as in previous ConPI-pair model. In this part,

we introduce learning general-purpose embeddings for node pairs

based on the graph structure to facilitate context pair interactions.

Pair Representation Learning. Following the distributional hy-
pothesis [25], we encourage the pair embeddings of two nodes to

be similar if they are likely to co-occur with similar context nodes.

Given a pair of node (𝑢, 𝑣) and a context node 𝑐 , we first embed

them to vectors, 𝝂𝑢 ,𝝂𝑣,𝝂𝑐 via two embedding matrix, 𝑬𝑝 for𝑢, 𝑣 , 𝑬𝑐
for 𝑐 . Note that the node pairs are not necessarily to be connected in

the graph, and it would be𝑂 ( |V|2) complexity to build embeddings

for all pairs, which is computationally expensive. Thus, we define

a deep compositional function taking the input as representations

for nodes, (𝑢, 𝑣) to generate a fixed-length vector for the pair:

P(𝝂𝑢 ,𝝂𝑣) = 𝑓MLP (𝝂𝑢 ,𝝂𝑣,𝝂𝑢 ⊕ 𝝂𝑣) (9)

where 𝑓MLP is a fully-connected multi-layer neural networks with

the same input as Eqn.6. With such a compositional function, we are

able to generate embeddings for any pairs in the graph efficiently.

After encoding the node pair (𝑢, 𝑣) and its context nodes 𝑐 , we

can define the following conditional probability representing how

likely the context is observed around the pair [34] and optimize it

with a negative log-likelihood objective function:

𝑝 (𝑐 | (𝑢, 𝑣)) = exp(𝝂𝑇𝑐 · P(𝝂𝑢 ,𝝂𝑣))∑
𝑐′∈V exp(𝝂𝑐′𝑇 · P(𝝂𝑢 ,𝝂𝑣))

(10)

Minimizing the negative log-likelihood for 𝑝 (𝑐 | (𝑢, 𝑣)) would be

computationally costly, which leads to the adoption of popular

negative sampling technique [21] for efficient training. The goal of

negative sampling is to encourage the similarity between the pair

and context if they appear together (co-occur) in the graph, and

the dissimilarity between the pair and randomly sampled contexts.

That is, for a valid pair-context sample, we fix the pair (𝑢, 𝑣) and
randomly sample contexts 𝑐𝑁 as the distractor.

However, pair embeddings are different from node embeddings

in which a pair consists of two nodes that are both changeable. In

other words, we are able to fix the left pair-node 𝑢 and context

𝑐 , sample the right pair-node 𝑣𝑁 , and vice versa. By doing so, we

can expose the pair embedding to noisier environments to make it

more robust. Therefore, we introduce the objective function of the

negative sampling for training our pair embeddings as follows:

Lpair = log𝜎 (𝝂𝑇𝑐 · P(𝝂𝑢 ,𝝂𝑣)) +
𝐾𝑐∑
𝑖=1

log𝜎 (−𝝂𝑁𝑐𝑖
𝑇 · P(𝝂𝑢 ,𝝂𝑣))

+
𝐾𝑢∑
𝑗=1

log𝜎 (−𝝂𝑇𝑐 · P(𝝂𝑁𝑢 𝑗
,𝝂𝑣)) +

𝐾𝑣∑
𝑘=1

log𝜎 (−𝝂𝑇𝑐 · P(𝝂𝑢 ,𝝂𝑁𝑣𝑘 ))

(11)

where 𝐾𝑐 , 𝐾𝑢 , 𝐾𝑣 are the number of random samples for contexts,

left pair-nodes, right pair-nodes, and 𝜎 here is the sigmoid function.

Our objective function is similar to the multivariate objective

function in pair2vec [14], but differs in that we optimize node pair

embeddings with graph structure and represent contexts as nodes,

while they try to encode a short span of words as the context to

learn word pair embeddings from a text corpus.

Pair Representation Injection. Once the node pair embeddings

are learned, we are ready to inject them back into our ConPI-pair

model for the pairwise prediction task. We keep the injection as

simple and generalizable as possible to show the effectiveness of

our pair embeddings. We simply replace the pair encoder function

𝑔𝑝 (𝝂𝑖 ,𝝂 𝑗 ) in Eqn.6 by pre-trained pair embedding vectors P(𝝂𝑖 ,𝝂 𝑗 )
in Eqn.9 and keep the rest parts as the same in ConPI-pair model.

With such a simple injection, we do not need the fully-connected

network in the pair encoder (Eqn.6), and thus, reduce the number of

parameters compared with ConPI-pair model. Note that although

we can produce a pair embedding for the pair of target nodes and

use it for the final prediction, directly making a prediction based on

the pair embedding does not involve the context interaction, which

is not the focus of this paper.

4.5 Model Optimization
Pairwise Prediction Task. In this paper, we consider a setting of

binary pairwise prediction to test our framework for simplicity and

define a binary cross entropy loss as follows:

L𝑝𝑟𝑒𝑑 = −∑𝑀
𝑖=1 (𝑦𝑖 · log(𝑝 (𝑟 |𝑢𝑖 , 𝑣𝑖 ))

+ (1 − 𝑦𝑖 ) · log(1 − 𝑝 (𝑟 |𝑢𝑖 , 𝑣𝑖 )))
(12)

where 𝑀 is the total number of samples, 𝑦𝑖 is the ground-truth

label indicating whether 𝑢𝑖 , 𝑣𝑖 holds a certain relation. 𝑝 (𝑟 |𝑢𝑖 , 𝑣𝑖 )
is a binary classifier with the sigmoid function with the input as



interaction-aware node representations in ConPI-node or aggre-

gated pair representations in ConPI-pair.

Complexity Analysis. Our pairwise context interaction takes

O(𝐿2) computations (𝐿 is the maximal size of contexts), which

could be costly when 𝐿 is very large. In our preliminary experi-

ments, we observe that the performance does not further improve

when we set 𝐿 at a reasonably large number (e.g., 100). Thus, we

uniformly sample a limited-size set of contexts for each node to

perform efficient interactions. For future work, we could select

the contexts more smartly, e.g., adopting some graph sparsifica-

tion techniques [47], to further decrease the complexity without

significantly sacrificing the performance.

Training Pair Embeddings. To optimize the objective function

(Eqn.11) for pair embeddings with negative sampling, we need to

obtain positive samples and randomly sample negatives ones. Our

training algorithm adopts the random walks to provide contexts for

pairs of nodes. Specifically, given a sequence of nodes generated

by random walks [10, 25], we define a pair window to sample node

pairs and then, for each pair, we define a context window to the left

and right of the pair as well as all nodes in the middle of it to sample

positive contexts. We randomly sample contexts, left pair-nodes,

right pair-nodes for training the Eqn.11.

5 EXPERIMENTS
In this section, to show the generalizability of our framework, we

testConPI on two types of pairwise prediction tasks , link prediction

and (weakly-supervised) relation prediction.

5.1 Link Prediction Task
The link prediction task is a well-studied task in graph domain,

which is to predict whether two nodes in a graph have a link.

It has many meaningful applications in various kinds of graphs,

e.g., predicting friendship links in social networks [20], predicting

author identification in citation networks [22], etc.

5.1.1 Datasets. We collect a number of commonly-used publicly-

available real-world graphs for link prediction shown in Table 1.

• PPI: A Protein-Protein Interaction (PPI) graph for Home Sapiens

that is used in Grover and Leskovec [10]. Edges represent the

interaction relationships between proteins.

• Pubmed: A citation network for papers from PubMed used in

Kipf and Welling [15]. Edges represent the citation relationship

between publications.

• BlogCatalog: A social network for bloggers from the BlogCat-

alog website that is used on Grover and Leskovec [10]. Edges

represent friendship links between bloggers.

• DrugBank DDI: A Drug-Drug Interaction graph crawled from

DrugBank that is used in Yue et al. [44]. Edges represent the

interaction relationships between drugs.

5.1.2 Experimental Setup. To evaluate all methods fairly, we

follow the experiment strategy that is commonly used by previous

methods [8, 10, 45]. We first randomly split all links of the original

graph into training, validation, and testing sets with the require-

ment of keeping the graph in training set connected. The training

graph is used for extracting features, training embeddings, and ob-

taining context sets. For prediction tasks, we also randomly sample

the equal number of non-existent links as negative samples. We

split all edges to train/validation/test sets with a ratio of 70/15/15.

Table 1: Statistics of datasets for link prediction task.

Dataset # Nodes # Edges Avg. # Degrees

PPI 3,890 38,739 19.9172

Pubmed 19,717 44,327 4.4963

BlogCatalog 10,312 333,983 64.7756

DrugBank DDI 2,191 242,027 220.9283

5.1.3 Compared Methods. We compare our models with the

following three types of baselines for the link prediction tasks.

Graph feature-based methods. We test the traditional graph

feature-based methods for link prediction tasks [2, 20, 45], which

calculate some heuristics based on the neighborhood of nodes in

the graph. We consider: Common Neighbors that calculates the num-

ber of shared neighborhoods, Jaccard Coefficient that measures the

Jaccard similarity between two neighbor sets, and Adamic Adar for
the number of shared links between two nodes.

Embedding-basedmethods.We consider several state-of-the-art

embedding-based methods, which take the training graph as input

and produce an embedding for every node in the graph: Laplacian
eigenmaps [4] is a matrix factorization method that factorizes the

graph Laplacian matrix to the lowest eigenvectors as embeddings;

DeepWalk [25] is a random walk-based method that learns node em-

beddings with the skip-gram algorithm on random walks generated

from the graph. LINE [34] utilizes the first and second order proxim-

ity to optimize node embeddings with edge sampling. node2vec [10]
learns the embedding by performing biased random walks on the

training graph by minimizing the skip-gram objective.

Graph Neural Networks-based methods.We compare against

a popular GNN-based method, GAE [15], which uses graph auto-

encoders model with graph convolutional network encoder to learn

efficient node embeddings from the adjacent matrix.

In the testing phase, for all embedding and GNN based base-

lines, we follow the procedure in previous work [10, 45] to learn a

classifier based on positive training samples and an equal number

of negative training samples, and test the classifier on the testing

set. We train a binary logistic regression model on the Hadamard

product of node embeddings, using the scikit-learn library [23].

Variants of our ConPI framework. ConPI-node model makes

the prediction based on the interaction-aware node representations

of target nodes. ConPI-pair model makes the prediction based on

the aggregated pair representations with an attention-basedmodule.

ConPI-pair-emb is one variant of ConPI-pair model that simply

replaces the pair encoder function with pre-trained pair embedding

and has fewer parameters than ConPI-pair.

Note that in this paper, we focus on modeling context interaction

based on graph structure, and thus, we mainly consider baseline

methods that leverage graph structure for a fair comparison, e.g.,

we do not feed node attribute features in the GAE model.

Combination with more advanced GNN methods. We com-

pareConPImainly with various embedding-based methods to show

its effectiveness by adopting node embeddings (e.g., LINE) as fea-

ture vectors. In fact, our framework can be built on top of any

graph representation methods, including those more complex GNN

methods, such as GCN[16], GAT[37], HGCN[7]. Specifically, we can

replace current feature vectors by these advanced GNN methods

as more powerful feature encoders for our ConPI framework. We



Table 2: Results on Link Prediction Task

Method

PPI Pubmed BlogCatalog DrugBank DDI

AUC AP F1 AUC AP F1 AUC AP F1 AUC AP F1

Common Neighbors 0.8290 0.8250 - 0.6317 0.6313 - 0.9396 0.9357 - 0.9440 0.9451 -

Jaccard Coefficient 0.8099 0.7835 - 0.6316 0.6292 - 0.7748 0.7130 - 0.9299 0.9043 -

Adamic Adar 0.8325 0.8391 - 0.6318 0.6317 - 0.9444 0.9456 - 0.9459 0.9478 -

Laplacian [4] 0.5355 0.5742 0.3269 0.6976 0.7657 0.5616 0.7157 0.7711 0.6938 0.6828 0.7862 0.6590

DeepWalk [25] 0.7919 0.8079 0.4630 0.9131 0.9323 0.6643 0.8051 0.8007 0.6909 0.9235 0.9117 0.8377

LINE [34] 0.8153 0.8364 0.7205 0.8107 0.8318 0.6996 0.9153 0.9143 0.8382 0.9222 0.9169 0.8449

node2vec [10] 0.7513 0.7625 0.4116 0.9230 0.9343 0.6572 0.6400 0.5873 0.5527 0.8949 0.8884 0.8030

GAE [15] 0.7056 0.6029 0.7203 0.7904 0.8250 0.7162 0.7547 0.6496 0.6968 0.7516 0.7170 0.7500

ConPI-node 0.7970 0.7748 0.7332 0.8550 0.8140 0.7439 0.9419 0.9307 0.8745 0.9395 0.9334 0.8641

ConPI-pair-emb 0.8450 0.8291 0.7009 0.8736 0.8987 0.7542 0.9388 0.9177 0.8449 0.9663 0.9644 0.9003

ConPI-pair 0.9004 0.8986 0.8208 0.9375 0.9362 0.8437 0.9684 0.9658 0.9117 0.9842 0.9823 0.9364

do not include them as baselines in this paper as they suffer from

the same low interpretability problem as other baselines and it is

suffice for us to demonstrate ConPI’s interpretability using simpler

embedding methods. We leave the exploration of combining our

framework with more complex GNN methods to future work.

5.1.4 Experimental Results andAnalysis. Themain results for

comparing all methods in link prediction task are shown in Table 2.

For graph feature-based baselines, we report Area Under ROC curve

(AUC) and Average Precision (AP) scores on their ranking of pos-

itive and negative samples in the testing set. For the rest of all

classification methods, we report AUC, AP, and F1 scores in the

testing set for their performance comparison.

We first compare with graph feature-based methods. Similar

with our ConPI framework, those heuristic features also explicitly

utilize neighborhood information but based on deterministic rules.

As shown in Table 2, such heuristic features obtain very competitive

performance for the link prediction task (e.g., Common Neighbors

feature gets 0.9396 AUC score in BlogCatalog, 0.9440 AUC score

in DrugBank DDI graph.), which shows the necessity of explic-

itly modeling neighborhood nodes for link prediction. However,

heuristic feature baselines do not perform consistently in those

four datasets indicating their bad generalizability. We observe that

our ConPI-pair model outperforms them in a large margin. This is

because ConPI incorporates the semantic representation of context

pairs and models their interactions with more parameters.

Then, we compare with the embedding and GNN based methods.

The ConPI-node model outperforms all baselines in BlogCatalog,

and most of the baselines in other datasets, which indicates that

making the pairwise prediction based on two node embeddings

learned independently cannot fully capture the pairwise informa-

tion. Furthermore, we can observe that our ConPI-pair model con-

sistently outperforms all these methods in a relatively large margin,

which is the core contribution in this paper. These results confirm

our hypothesis that directly modeling pairwise interactions fits

more the nature of pairwise prediction task.

Finally, we also compare variants in the ConPI framework. All

models that directly model pair representations outperform the

node model that learns (interaction-aware) node representation by

a large margin. Note that ConPI-pair-emb model with injecting pre-

trained pair embeddings has the same number of parameters with

ConPI-node, and it beats the ConPI-node model in most datasets.

This shows the effectiveness of our pre-trained pair embeddings,

which encourages us to further explore the pair representations

in the future. All in all, these results indicate that for pairwise

prediction tasks, it is necessary to model the pairwise interaction

and directly design pair representations for the prediction.

5.2 Relation Prediction Task
Relation prediction is another well-known pairwise prediction task

that aims to predict relation labels between entities, and can be

leveraged to facilitate many downstream applications dealing with

graphs, e.g., knowledge base completion [41], hypernymy detec-

tion [32], synonyms discovery [27]. In contrast to link prediction

task, this task considers the setting where the labels are not con-

nected links from the graph, and the graph is mainly used to offer

the distributionally semantic information for the task. Same as the

previous setting in the link prediction task, we do not consider

other task-specific information (e.g., text patterns), but only take

as input the graph structure for evaluating all methods fairly.

5.2.1 Datasets. We considermedical relation prediction tasks that

infers relations between medical terms based on a medical term-

term co-occurrence graph. We employ a publicly available dataset

from Finlayson et al. [9] in which medical terms are extracted

from 20 million clinical notes, and the edges are weighted by the

co-occurrence counts based on the frequency that two terms co-

occur in a temporal bin. We select the 1-day per-bin graph that has

the most number of terms/nodes (see more details of the original

graph in Finlayson et al. [9]). For preprocessing, we convert the co-

occurrence counts into PPMI value, subsample the graph to remove

meaningless terms [21], and filter edges with a PPMI value less

than 2. Finally, we obtain a large medical term-term co-occurrence

graph with 48,651 nodes and 1,659,249 edges.

5.2.2 Experimental Setup. For relations, we select Clinically
Associated With (Caw) and IsA relations that are two of the most

common relations in the dataset. The first one indicates a clinically

salient relationship between medical terms, while the second one

represents a hierarchical relationship meaning that the first term

has a more specific meaning than the second one. To obtain the

labels on a large scale, we follow the procedure ofweakly supervision
for relation extraction to automatically retrieve supervisions from

knowledge bases (KBs) [27, 28]. Specifically, we first collect positive

samples between concepts in the KB where each concept has a



Table 3: Results on Relation Prediction Task

Method

Caw IsA

AUC F1 AUC F1

Common Neighbors 0.5631 - 0.7084 -

Jaccard Coefficient 0.5632 - 0.7109 -

Adamic Adar 0.5634 - 0.7097 -

Laplacian [4] 0.5547 0.5163 0.5452 0.4896

DeepWalk [25] 0.7309 0.6512 0.8303 0.7292

word2vec [21] 0.6842 0.5855 0.8083 0.6845

LINE [34] 0.7426 0.6746 0.8209 0.7336

node2vec [10] 0.7458 0.6653 0.8443 0.7477

ConPI-node 0.7852 0.7072 0.8434 0.7556

ConPI-pair-emb 0.8177 0.7401 0.8807 0.7917

ConPI-pair 0.8807 0.8085 0.8945 0.8173

number of string mentions (terms) as C𝐴 = {𝑡𝑖 }𝑚𝑖=1, C𝐵 = {𝑡 𝑗 }𝑛𝑗=1.
Then we obtain the positive labels between terms as {(𝑡𝑖 , 𝑡 𝑗 ), 𝑡𝑖 ∈
C𝐴, 𝑡 𝑗 ∈ C𝐵}. The term-to-concept mapping is provided by the

dataset [9], and we use UMLS (UnifiedMedical Language System) as

the KB. Finally, we have 132,716 positive samples for Caw relation,

85,283 positive samples for IsA relation, and we sample an equal

number of negative samples by randomly pairing one argument

of the positive pair with a random term for the classification task.

Then we split each dataset into train/validation/test sets with a ratio

of 70/15/15. We use the full co-occurrence graph as the input for

all methods, which is utilized for training all embedding methods

and for extracting the graph features.

5.2.3 Compared Methods. We keep most of baseline methods

the same as the link prediction task. We remove the GAE method

as it cannot process a huge graph like our co-occurrence graph

with the out-of-memory (OOM) issue. We also compare another

representative embedding method in NLP domain, word2vec [21] by
conducting SVD over the shifted PPMI co-occurrence matrix [18].

5.2.4 Results and Analysis. The results of relation prediction

task are shown in Table 3. We observe similar performance compar-

ison as what we have observed in link prediction task. Additionally,

compared with IsA relation, the Caw is relatively difficult to clas-

sify as it requires the understanding of the complex semantic of

clinical association. Even though our ConPI framework beats all

baseline methods, and ConPI-pair model obtains the best perfor-

mance among all methods. Also, in IsA relation, we observe that

the ConPI-pair-emb model gets very competitive performance with

ConPI model with fewer parameters.

5.3 Interpretability Analysis
There are some recently-proposed interpretability techniques on

graphs, such as GraphLIME [13] and GNNExplainer [43], which can

provide different types of explanations. Most of them try to analyze

well-trained graph models post-hoc and instead, our model makes

the prediction directly based on the explanations. To demonstrate

ConPI’s interpretability for pairwise predictions, we conduct case

study by visualizing the interactions scores, i.e., attention weights,

calculated between context pairs.

We conduct the case study on themedical term-term co-occurrence

graph and choose an easily-understood relation, IsA to interpret.
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gastritis alcohol use

Figure 3: Interpretability Visualization for our ConPI-pair
model (best view with colors). Contexts (left) of “burning
epigastric pain” interact with contexts (right) of “pain epi-
gastric” to make the pairwise prediction. The line color in-
dicates interaction score (the redder, the larger).

As described in Section 4, the model decision is made based on in-

teraction scores for context pairs and we recover such information

to explore whether these scores can faithfully explain the model

decision. Due to the limitation of the space, we show a testing-set

example of our best model, ConPI-pair, for a correct prediction of

“burning epigastric pain” is a type of “pain epigastric” in Figure 3.

The figure visualizes the interactions between two sets of contexts

for target nodes. The nodes on left (right) side are contexts for

“burning epigastric pain” (“pain epigastric”). The color of the line
indicates the strength of interaction (the redder, the stronger).

There are two major findings from Figure 3. Firstly, by observing

the nodes, we can see that ourConPI-pair model nicely downweighs

contexts that are irrelevant for the pairwise prediction, such as

“problem”, “medical history”, etc. Secondly, by observing the pairs,

the model successfully highlights three pairs, “gastritis”, “upper

endoscopy”, “epigastric pain” with “gastrointestinal”, which are

strongly relevant with the pairwise prediction and can be treated

as explanations. We also see that some interaction scores are not

perfect yet, for example, pairs with a meaningless node, “attendig”,

get relatively high scores. To further enhance the interpretability of

our model, we may adopt some post-hoc explainable techniques to

further prune some untrustworthy explanations andwe leave this to

future work. Nevertheless, based on the case study, we can clearly

see that our ConPI model can provide informative and faithful

explanations for the pairwise prediction, and such interpretability

would be helpful to convince users to better trust themodel decision,

especially on those high-stake domains (e.g., medicine, finance, etc).

6 CONCLUSION AND FUTUREWORK
In this paper, we study modeling context pair interactions for pair-

wise prediction tasks on graphs to capture the pairwise relation-

ships between nodes better, and provide a certain amount of inter-

pretability by selecting influential interaction links. We propose

a general framework ConPI with node-centric and pair-centric

perspectives and further propose a new pair-centric context inter-

action model, ConPI-pair, to first formulate a pair representation

and then attentively aggregate all pairs for the final prediction.

To capture the node pairwise relationships in embedding space,

we also propose a new type of pair embeddings in homogeneous

graphs and show how to inject them back to the ConPI-pair model.



We demonstrate the effectiveness of our framework in two pairwise

prediction tasks across a variety of real-world datasets as well as

the model interpretability by the case study.

There are many promising directions to explore for explicitly

modeling context interactions. First, more sophisticated interaction

mechanisms can be developed by considering high-order relation-

ships among contexts. Secondly, combining such interaction mech-

anisms with existing embedding learning methods would also be an

inspiring direction. Last but not lease, the power of pair embedding

can be further extended into a wide range of applications and the

interplay between it with node embedding would be interesting.
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