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INTRODUCTION 
This paper presents an automated controller 
tuning strategy for precision servo positioning 
systems suffering from large inertial load ratio 
induced vibrations. Typical industrial ulta-
precision feed drive systems are designed 
based on direct driven linear motor systems and 
controlled by PID controllers tuned based on 
nominal inertia. When large loads are attached 
on the feed drive, robustness of the PID 
controller may not suffice, and feedback control 
loop may suffer from unwanted vibrations [1]. 
This vibratory behavior originates mainly from 
shrinking stability margins of the servo control 
system and potentially causes instability [2]. 
Moreover, varying load inertia hinders accuracy 
of feedforward (FF) compensators, which are 
typically designed based on the inverse of the 
nominal system [3]. This paper considers 
dynamics of ultra-precision feed drive systems 
and presents an auto-tuning algorithm to 
stabilize feedback controllers considering 
attached load inertia. The auto-tuning strategy is 
based on on-machine measured frequency 
response function (FRF). The PID controller is 
augmented with a simple feedback filter whose 
parameters are automatically tuned to attain 
desired phase and gain margins. In addition, a 
trajectory pre-filter is designed and iteratively 
tuned to further improve the tracking 
performance. Effectiveness of the proposed 
strategy is verified on an actual ultra-precision 
machine tool (Nanotech 650FG-v2 freeform 
generator) shown in Fig. 1.a. 
Overall block diagram of the proposed strategy 
is given in Fig. 2. Proposed control system 
consists of three key components: (1) a PID 
controller K(z) to meet cross-over frequency and 
phase margin requirements, (2) a low pass filter 
H(z) to suppress higher order dynamics and 
ensure stability, and finally (3) a Trajectory Pre-

Filter P(z) to modify the reference trajectory in 
order to increase tracking bandwidth. 
MODELING OF PRECISION SERVO 
MECHANISMS WITH LARGE LOAD INERTIA 
In typical industrial applications, servo-drives are 
modeled as a rigid body with a moment of inertia 
of JD [kgm2]. With a load/workpiece attached, the 
overall model of the system becomes: 
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where G is the rigid body transfer function (TF). 
θ and τ are the measured angular displacement 
and motor torque input. JL is the inertia of the 
load (workpiece), and b is the equivalent viscous 
friction coefficient. 

 
FIGURE 1: Experimental setup (a) and FRFs(b). 
 



 
FIGURE 2: Block diagram of the proposed control scheme. 

This model captures the system dynamics for 
typical applications. However, if the load inertia 
JL increases excessively, i.e. JL>>JD, higher 
order dynamics invalidates the modeling 
accuracy of G, and measured and modeled 
FRFs differ significantly (see Fig. 1.b). Thus, 
closed loop controllers designed by using G may 
not provide robust stability. In order to retain 
stability of the servo-loop, a PID controller is 
designed based on G, and the controller is 
augmented by a low-pass filter designed 
considering the measured FRF of the servo 
positioning system GFRF. Design of these two 
components are described in the following. 
CLOSED LOOP CONTROLLER DESIGN 
The closed loop PID controller is designed in 
order to ensure that the loop transmission TF, 
L=KG, has the desired cross-over frequency and 
phase margin, where K is defined in discrete 
frequency-domain as: 
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with KP, KI and KP being the PID controller gains, 
and z is the discrete frequency (z-Transform) 
variable. The acceptable value of the cross-over 
frequency is determined by examining the 
discrepancy between modeled (G) and 
measured (GFRF) FRFs. First, the smallest 
frequency at which GFRF deviates from G more 
than +3[dB] is determined. This frequency is 
denoted as ωlim. Next, to ensure robust 
avoidance of modeling mismatches, cross-over 
frequency (ωc) is selected as: ωc=0.2ωlim. On the 
experimental setup shown in Fig 1.a, this 
corresponds to ωlim=115[Hz] and ωc=23[Hz]. This 
guarantees that the controller only acts on the 
portion of the system with significantly high 
modeling accuracy. The phase-margin is 
selected as 65[deg], which is typical for 
industrial applications. The PID gains are 
determined to meet the cross-over frequency 
and phase margin requirements as described in 
the following. 

First, the integral gain is calculated as KI=0.1ωc 
to ensure that the phase lag introduced by 
numerical integration does not influence the loop 
phase in the vicinity of ωc. Next, KP and KD gains 
are determined to meet the cross-over 
frequency (ωc) and phase margin (PM) 
requirements given by: 

 
( )

( )
= − = +

= + = +

Re Re Re Im Im

Im Re Im Im Re

cos 180

sin 180

o

o

L K G K G PM

L K G K G PM
  (3) 

where LRe=Re{L(ejωcTs)} and LIm=Im{L(ejωcTs)}. 
Notice that Eq. (3) poses a simple linear system 
of equations, and KP and KD can be obtained as: 
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where Ts is the sampling period. The designed 
PID controller is implemented utilizing the Delta-
Tau servo-driver on board with the ultra-
precision machine tool. Modeled (L) and 
measured (LFRF) loop transmission FRFs are 
shown in Fig. 3. 
As seen, desired crossover frequency and 
phase margin are achieved. At high frequencies, 
i.e. ω>ωlim, LFRF deviates from L significantly, and 
instability occurs at ~1.2[kHz] with a -8.64[dB] 
gain margin. In order to mitigate this model-
measurement deviation and retain closed loop 
stability, an optimal low pass filter design 
strategy is proposed in the following section. 



 
FIGURE 3: Loop transmission FRFs with PID 
controller. Note that PID controller by itself 
cannot prevent high frequency instability. 

OPTIMAL LOW PASS FILTER DESIGN 
This section describes the low pass filter design 
procedure in order to eliminate closed loop 
stability issues caused by modelling 
inaccuracies. Low pass filter H (see Fig. 2) is 
designed in continuous Laplace (s) domain as:  

 ( ) =
+ +2

2 1 0

1H s
c s c s c

  (5) 

where c0…c2 are the design parameters. The 
low pass filter is then converted into discrete (z) 
domain for implementation. The purpose of H is 
to ensure that loop transmission magnitude do 
not increase after the desired crossover 
frequency is achieved. This objective is 
expressed as an optimization problem as: 
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where α is the maximum allowable loop 
transmission magnitude for frequencies higher 
than ωlim. Notice that the magnitude operator, i.e. 
|.|, is used in both the objective function and the 
inequality constraints of Eq. (6). This nonlinearity 
causes the optimization problem to be 
nonconvex, and thus the solution suffers from 
local minima, numerical inefficiency and 
inaccuracy. To circumvent this, Eq. (6) is 
modified to pose a convex optimization problem. 
This is done by substituting the magnitude 
operator by the two norm, ||.||2, acting on the real 
and imaginary parts of the TFs. Additionally, H is 

substituted by H-1 to ensure that the decision 
variables c0…c2 appear linearly in the 
optimization objective and constraints. The 
modified optimization problem is written as: 
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Notice that Eq. (7) minimizes real and imaginary 
parts of (L(z)H(s)-L(z))/H(s), instead of the 
magnitude of L(z)H(s)-L(z) as in Eq. (6). Since H 
has small magnitude at high frequencies 
(imposed by inequality constraints), division by 
H does not change the objective function 
significantly. Conversion of the inequality 
constraints from Eq. (6) to Eq. (7) follows from: 
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Eq. (8) is derived from the inequality constraint 
of Eq. (6). Taking the square root of both sides 
of Eq. (9) gives the inequality constraints in Eq. 
(7). Notice that in Eq. (7), real part of the 
inequality constraints is imposed to be negative, 
and the imaginary part is imposed to be positive. 
This enforces H(s) to have a phase angle within 
the interval [-90o, -180o] for ω>ωlim, and 
guarantees that the filter suppresses the 
magnitude of its input in this frequency region. 
Eq. (7) poses a linear least squares minimization 
problem with linear inequality constraints. It is 
convex and can be solved to global optimality 
efficiently. Finally, it is put in matrix-vector form 
to obtain the parameters of H, (c0…c2), as 
shown in Eq. (10) at the top of the next page. 
Notice that the inequality constraint x≥0 in Eq. 
(10) ensures stability of H(s), and the equality 
constraint c0=1 imposes unity gain at “zero” 



frequency, and therefore the low pass filter does 
not introduce additional gain to the loop.  
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Once H(s) is designed in continuous domain, it 
is discretized (H(z)) and implemented in the 
control loop as shown in Fig 2. Comparison of 
loop transmission performance with and without 
H is given by Fig 4. As seen, the low pass filter 
H suppresses higher order dynamics at high 
frequencies and retains closed loop stability 
without altering frequency domain design 
specifications (crossover frequency and phase 
margin). 

TRAJECTORY PRE-FILTER DESIGN 
The closed loop controller designed in the 
previous section provides a command tracking 
bandwidth (ωBW) close to the crossover 
frequency ωBW≅ωc. In high-speed industrial 
applications, reference trajectories contain 
rapidly varying acceleration/deceleration 

segments, and thus they may have frequency 
components in their spectra that are beyond ωc. 
As a result; inertial forces, low pass filter 
dynamics and high frequency modeling errors 
may cause large tracking errors due to 
insufficient tracking bandwidth. To increase the 
tracking bandwidth, a trajectory pre-filter P is 
proposed as shown in Fig. 2. 

 
FIGURE 4: Comparison of loop transmission 
FRFs with and without the optimally designed 
low pass filter. 
The filter structure is selected in order to achieve 
near-perfect tracking as: 
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where θR is the reference angular displacement 
command. K and H are known by design. 
However, mismatch between G and GFRF may 
lead to a sub-optimal implementation of P as 
given in Eq. (11). To ensure that P is designed 
optimally, its parameters are identified iteratively 
through on-site measured data as described in 
the following. 
First, P is optimized by assuming K and G 
dominate the closed loop dynamics. This 
assumption is valid for lower frequencies, since 
H starts influencing loop transmission TF for 
frequencies higher than ωlim. By assuming H=1, 
tracking error (e=θR-θ) dynamics in continuous 
frequency and time domains are written as: 
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where J=JD+JL. Notice that Eq. (12) contains 
critical parameters that are useful for identifying 
P such as J and b. Controller parameters KP, KD 



and KI are already known by design. However, J 
and b may not be accurately identified through 
frequency domain-based (FRF) identification. To 
circumvent this, J and b values are estimated 
through a simple back-and-forth trajectory 
tracking experiment. The position data recorded 
by this experiment is utilized to form the 
following optimization problem derived by Eq. 
(12): 
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where M is the number of samples for the 
trajectory following experiment, and ei is the 
numerically integrated error signal. Je and be are 
the estimated inertia and viscous friction 
coefficient. Notice that Eq. (13) is a convex 
optimization problem, and thus its globally 
optimal solution can be obtained efficiently. 
Once Eq. (13) is solved, the “rough” pre-filter P1 
(without including H) is implemented in discrete 
domain as: 
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By implementing this trajectory pre-filter, 
tracking performance can be increased greatly. 
Fig. 5 shows an example trajectory following 
experiment with a total displacement of 2 [deg]. 
Maximum velocity and acceleration of the 
reference trajectory are selected as 5 [deg/sec] 
and 50 [deg/sec2]. As seen, tracking error peaks 
reach up to 4 [mdeg] without the pre-filter. With 
the pre-filtered trajectory, maximum tracking 
error peak is reduced to ~570 [µdeg]. 
Although the error reduction shown in Fig. 5 is 
significant, there are still some residual error 
peaks when P1 is used. These errors are 
attributed to the phase lag introduced by the low 
pass filter and power electronics circuitry as well 
as high frequency dynamics of the mechanical 
system. In order to eliminate these remaining 
errors, the pre-filter structure is augmented by 

second order finite impulse response filter (FIR) 
dynamics as: 
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The new set of parameters for P (n0…n2) are 
identified through machine-in-the-loop 
optimization, by minimizing the trajectory 
tracking errors as:   
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where e is the vector of tracking error data 
obtained by the tracking experiment shown in 
Fig. 5. 
 

 
FIGURE 5: Trajectory tracking performance with 
and without “rough” pre-filter. 
Eq. (16) is a convex optimization problem, and 
thus utilizing the gradient ∇JCost and Hessian 
∇2JCost of its cost function enables us to rapidly 
and safely guide the parameter search to global 
optimum. Note that, e is already available from 
the trajectory following experiment, and its 
gradient ∇e is obtained as: 
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Notice that the actual angular displacement (θ ) 
appears in Eq. (17), which is obtained 
experimentally. Therefore, the error gradient ∇e 
can be calculated in a complete data-driven 
fashion, without requiring any system model. 
The calculated gradient is then used to guide the 
machine-in-the-loop parameter search using 
Newton’s second order iteration scheme as: 
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where η is the learning rate. It can be shown 
that  0≤η≤1 guarantees monotonic convergence 
to global optimum [4], and η is selected as 1.  
Fig. 6.a shows trajectory tracking performance 
of the system with the augmented pre-filter P. 
Trapezoidal velocity reference given by Fig. 5 is 
used in machine-in-the-loop experiments as 
well. Fig. 6.b shows convergence performance 
of the machine-in-the-loop optimization scheme. 
Iteration “0” corresponds to the case without any 
pre-filter. Iteration “1” shows the performance 
with the initial design of the pre-filter P1 given by 
Eq. (14). Iterations “2” and “3” show two 
consecutive iterations where the pre-filter P 
given by Eq. (15) is used, and filter parameters 
are updated based on Eq. (18) at each iteration. 
As seen, convergence is achieved in only two 
iterations and the maximum tracking error peak 
is reduced to ~215 [µdeg]. 
 
 
 

CONCLUSIONS 
In this paper, we presented an auto-tuning 
strategy for ultra-precision servo-drives suffering 
from largely varying load mass inertia. First, a 
PID controller is tuned based on the 
experimentally obtained frequency response 
function of the servo-drive. A safe cross-over 
frequency for PID tuning is automatically 
determined based on the modeling accuracy of 
the open loop system. Stability issues caused by 
higher order modes induced by large load inertia 
is prevented by an optimally designed low pass 
filter. Trajectory tracking bandwidth is expanded 
by a trajectory pre-filter. Pre-filter parameters 
are obtained through data-driven machine-in-
the-loop iterations. 
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