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INTRODUCTION

This paper presents an automated controller
tuning strategy for precision servo positioning
systems suffering from large inertial load ratio
induced vibrations. Typical industrial ulta-
precision feed drive systems are designed
based on direct driven linear motor systems and
controlled by PID controllers tuned based on
nominal inertia. When large loads are attached
on the feed drive, robustness of the PID
controller may not suffice, and feedback control
loop may suffer from unwanted vibrations [1].
This vibratory behavior originates mainly from
shrinking stability margins of the servo control
system and potentially causes instability [2].
Moreover, varying load inertia hinders accuracy
of feedforward (FF) compensators, which are
typically designed based on the inverse of the
nominal system [3]. This paper considers
dynamics of ultra-precision feed drive systems
and presents an auto-tuning algorithm to
stabilize feedback controllers considering
attached load inertia. The auto-tuning strategy is
based on on-machine measured frequency
response function (FRF). The PID controller is
augmented with a simple feedback filter whose
parameters are automatically tuned to attain
desired phase and gain margins. In addition, a
trajectory pre-filter is designed and iteratively
tuned to further improve the tracking
performance. Effectiveness of the proposed
strategy is verified on an actual ultra-precision
machine tool (Nanotech 650FG-v2 freeform
generator) shown in Fig. 1.a.

Overall block diagram of the proposed strategy
is given in Fig. 2. Proposed control system
consists of three key components: (1) a PID
controller K(z) to meet cross-over frequency and
phase margin requirements, (2) a low pass filter
H(z) to suppress higher order dynamics and
ensure stability, and finally (3) a Trajectory Pre-

Filter P(z) to modify the reference trajectory in
order to increase tracking bandwidth.

MODELING OF PRECISION SERVO
MECHANISMS WITH LARGE LOAD INERTIA

In typical industrial applications, servo-drives are
modeled as a rigid body with a moment of inertia
of Jp [kgm?]. With a load/workpiece attached, the
overall model of the system becomes:
TR T 1)
T (Jp+J,)s* +bs
where G is the rigid body transfer function (TF).
6 and r are the measured angular displacement
and motor torque input. J. is the inertia of the
load (workpiece), and b is the equivalent viscous
friction coefficient.

a) Experimental setup with large load inertia

b) Open Loop FRFs of C-Axis
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FIGURE 1: Experimental setup (a) and FRFs(b).
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FIGURE 2: Block diagram of the proposed control scheme.

This model captures the system dynamics for
typical applications. However, if the load inertia
Ju increases excessively, i.e. J >>Jp, higher
order dynamics invalidates the modeling
accuracy of G, and measured and modeled
FRFs differ significantly (see Fig. 1.b). Thus,
closed loop controllers designed by using G may
not provide robust stability. In order to retain
stability of the servo-loop, a PID controller is
designed based on G, and the controller is
augmented by a low-pass filter designed
considering the measured FRF of the servo
positioning system Grrr. Design of these two
components are described in the following.

CLOSED LOOP CONTROLLER DESIGN

The closed loop PID controller is designed in
order to ensure that the loop transmission TF,
L=KG, has the desired cross-over frequency and
phase margin, where K is defined in discrete
frequency-domain as:
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with Kp, K; and Kp being the PID controller gains,
and z is the discrete frequency (z-Transform)
variable. The acceptable value of the cross-over
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frequency is determined by examining the
discrepancy between modeled (G) and
measured (Grrr) FRFs. First, the smallest

frequency at which Grrr deviates from G more
than +3[dB] is determined. This frequency is
denoted as wim- Next, to ensure robust
avoidance of modeling mismatches, cross-over
frequency () is selected as: @:=0.2wim. On the
experimental setup shown in Fig 1.a, this
corresponds to ain=115[Hz] and e-=23[Hz]. This
guarantees that the controller only acts on the
portion of the system with significantly high
modeling accuracy. The phase-margin is
selected as 65[deg], which is typical for
industrial applications. The PID gains are
determined to meet the cross-over frequency
and phase margin requirements as described in
the following.

First, the integral gain is calculated as K;=0.71
to ensure that the phase lag introduced by
numerical integration does not influence the loop
phase in the vicinity of ax. Next, Kr and Kp gains
are determined to meet the cross-over
frequency (w:) and phase margin (PM)
requirements given by:

Lee = KaoGre — K Gy = cOS(180° + PM)
Ly = KeeGi + KinGr, =sin(180° + PM)

where Lre=Re{L(e/*°™s)} and L,=Im{L(e/*°Ts)}.
Notice that Eq. (3) poses a simple linear system
of equations, and Kp and Kp can be obtained as:
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where T; is the sampling period. The designed
PID controller is implemented utilizing the Delta-
Tau servo-driver on board with the ultra-
precision machine tool. Modeled (L) and
measured (Lrrr) loop transmission FRFs are
shown in Fig. 3.

As seen, desired crossover frequency and
phase margin are achieved. At high frequencies,
i.e. w>wim, Lrrr deviates from L significantly, and
instability occurs at ~1.2[kHz] with a -8.64[dB]
gain margin. In order to mitigate this model-
measurement deviation and retain closed loop
stability, an optimal low pass filter design
strategy is proposed in the following section.
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FIGURE 3: Loop transmission FRFs with PID

controller. Note that PID controller by itself

cannot prevent high frequency instability.

OPTIMAL LOW PASS FILTER DESIGN

This section describes the low pass filter design
procedure in order to eliminate closed loop
stability  issues caused by modelling
inaccuracies. Low pass filter H (see Fig. 2) is
designed in continuous Laplace (s) domain as:
1

H(s) c,s° +¢s+¢, )
where cp...c2 are the design parameters. The
low pass filter is then converted into discrete (z)
domain for implementation. The purpose of H is
to ensure that loop transmission magnitude do
not increase after the desired crossover
frequency is achieved. This objective is
expressed as an optimization problem as:

L(e")H(jw)-L(e"™)
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H(s)
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H(s) is stable.

where « is the maximum allowable loop
transmission magnitude for frequencies higher
than aim. Notice that the magnitude operator, i.e.
.|, is used in both the objective function and the
inequality constraints of Eq. (6). This nonlinearity
causes the optimization problem to be
nonconvex, and thus the solution suffers from
local minima, numerical inefficiency and
inaccuracy. To circumvent this, Eq. (6) is
modified to pose a convex optimization problem.
This is done by substituting the magnitude
operator by the two norm, ||.||2, acting on the real
and imaginary parts of the TFs. Additionally, H is

substituted by H-’ to ensure that the decision
variables co...c2 appear linearly in the
optimization objective and constraints. The
modified optimization problem is written as:
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Notice that Eq. (7) minimizes real and imaginary
parts of (L(z)H(s)-L(z))/H(s), instead of the
magnitude of L(z)H(s)-L(z) as in Eq. (6). Since H
has small magnitude at high frequencies
(imposed by inequality constraints), division by
H does not change the objective function
significantly. Conversion of the inequality
constraints from Eq. (6) to Eq. (7) follows from:

‘LFRF (ejwrs )H(ja))‘ <a— ‘H’1 (ja))‘ > %‘LFRF (efwTs)
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Eq. (8) is derived from the inequality constraint
of Eq. (6). Taking the square root of both sides
of Eq. (9) gives the inequality constraints in Eq.
(7). Notice that in Eqg. (7), real part of the
inequality constraints is imposed to be negative,
and the imaginary part is imposed to be positive.
This enforces H(s) to have a phase angle within
the interval [-90°, -180°] for @>wim, and
guarantees that the filter suppresses the
magnitude of its input in this frequency region.
Eq. (7) poses a linear least squares minimization
problem with linear inequality constraints. It is
convex and can be solved to global optimality
efficiently. Finally, it is put in matrix-vector form
to obtain the parameters of H, (co...c2), as
shown in Eq. (10) at the top of the next page.
Notice that the inequality constraint x=0 in Eq.
(10) ensures stability of H(s), and the equality
constraint cp=1 imposes unity gain at “zero”



frequency, and therefore the low pass filter does
not introduce additional gain to the loop.
min [Ax - b
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where:x=[c, ¢, G|

_—a)fRe{.L(ej‘““TS)} —o, Im{%(e"‘“‘TS)} ?_

-}, Re{l'_(e""’NTs )} ~@,Im {I;(e""’NTS )} 1

"ot refe(e] o
_—a)f,lm{L'(e”“NTs)} wNRe{L.(emNTs)} 6_
- .
Re{L(.e’“” )} 2, 0 1]
b Re{L(emeTs)} .. —a)ﬁ O 1
Im{L(e’“"TS)} 7 0 i 0
_|m{L(;f(uNrs)}_ L 0 -y O]
_—‘Re {LFRF (e/%st )}‘_
d- _Re{LFRF(eijTS)} (10)
) —Im{LFRF(e""*ist)}
| ~[m {LFRF (7" )}

Once H(s) is designed in continuous domain, it
is discretized (H(z)) and implemented in the
control loop as shown in Fig 2. Comparison of
loop transmission performance with and without
H is given by Fig 4. As seen, the low pass filter
H suppresses higher order dynamics at high
frequencies and retains closed loop stability
without altering frequency domain design
specifications (crossover frequency and phase
margin).

TRAJECTORY PRE-FILTER DESIGN

The closed loop controller designed in the
previous section provides a command tracking
bandwidth (wsw) close to the crossover
frequency @ew=a.. In high-speed industrial
applications, reference trajectories contain
rapidly varying acceleration/deceleration

segments, and thus they may have frequency
components in their spectra that are beyond «.
As a result; inertial forces, low pass filter
dynamics and high frequency modeling errors
may cause large tracking errors due to
insufficient tracking bandwidth. To increase the
tracking bandwidth, a trajectory pre-filter P is
proposed as shown in Fig. 2.
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FIGURE 4: Comparison of loop transmission

FRFs with and without the optimally designed

low pass filter.

The filter structure is selected in order to achieve
near-perfect tracking as:

i=(1+ )ﬂ;1—>P=L (11)
0, 1+ KHG KHG

where 06z is the reference angular displacement
command. K and H are known by design.
However, mismatch between G and Grrr may
lead to a sub-optimal implementation of P as
given in Eq. (11). To ensure that P is designed
optimally, its parameters are identified iteratively
through on-site measured data as described in
the following.

First, P is optimized by assuming K and G
dominate the closed loop dynamics. This
assumption is valid for lower frequencies, since
H starts influencing loop transmission TF for
frequencies higher than wim. By assuming H=1,
tracking error (e=6z-6) dynamics in continuous
frequency and time domains are written as:

e _ Js® + bs®
O JS*+(K, +b)s* +K,s + KK,

t
é =4, —%((KD +b)é+KPe+KPK,Iedr—b9R]
0

where J=Jp+J;. Notice that Eq. (12) contains
critical parameters that are useful for identifying
P such as J and b. Controller parameters Kp, Kp

(12)



and K; are already known by design. However, J
and b may not be accurately identified through
frequency domain-based (FRF) identification. To
circumvent this, J and b values are estimated
through a simple back-and-forth trajectory
tracking experiment. The position data recorded
by this experiment is utilized to form the
following optimization problem derived by Eq.
(12):

min|®A — |}, subject to: J, >0 and b, >0
Jo ., bg
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® = e(TS) e(Ts) & (Ts) _HR.(TS) (13)
|6(MT,) é(MT,) e, (MTS) 0, (MTS)
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where M is the number of samples for the
trajectory following experiment, and e; is the
numerically integrated error signal. Je and b. are
the estimated inertia and viscous friction
coefficient. Notice that Eq. (13) is a convex
optimization problem, and thus its globally
optimal solution can be obtained efficiently.
Once Eq. (13) is solved, the “rough” pre-filter P4
(without including H) is implemented in discrete

domain as:
2
Je[z—1] +be[z—1j
T.z T.z

T.z z-1
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By implementing this trajectory pre-filter,
tracking performance can be increased greatly.
Fig. 5 shows an example trajectory following
experiment with a total displacement of 2 [deq].
Maximum velocity and acceleration of the
reference trajectory are selected as 5 [deg/sec]
and 50 [deg/sec?]. As seen, tracking error peaks
reach up to 4 [mdeg] without the pre-filter. With
the pre-filtered trajectory, maximum tracking
error peak is reduced to ~570 [udeq].

P - (14)

Although the error reduction shown in Fig. 5 is
significant, there are still some residual error
peaks when P; is used. These errors are
attributed to the phase lag introduced by the low
pass filter and power electronics circuitry as well
as high frequency dynamics of the mechanical
system. In order to eliminate these remaining
errors, the pre-filter structure is augmented by

second order finite impulse response filter (FIR)
dynamics as:

P=P (no +nz" + nzz’z) (15)

The new set of parameters for P (no...n2) are
identified through machine-in-the-loop
optimization, by minimizing the trajectory
tracking errors as:

. 1
min o =31l | (16)

N, My,

where e is the vector of tracking error data
obtained by the tracking experiment shown in
Fig. 5.
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FIGURE 5: Trajectory tracking performance with
and without “rough” pre-filter.

Eq. (16) is a convex optimization problem, and
thus utilizing the gradient VJcos: and Hessian
V2Jcost Of its cost function enables us to rapidly
and safely guide the parameter search to global
optimum. Note that, e is already available from
the trajectory following experiment, and its
gradient Ve is obtained as:

o [1-PGezKH 6,
1+ G KH
o0 ]

on,

de | [ G KH

Ve = = -VP 0. (17)
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Notice that the actual angular displacement (6)
appears in Eqg. (17), which is obtained
experimentally. Therefore, the error gradient Ve
can be calculated in a complete data-driven
fashion, without requiring any system model.
The calculated gradient is then used to guide the
machine-in-the-loop parameter search using
Newton’s second order iteration scheme as:
k+1 k

S
S

Ny

S

=|n, —n(VeTVe)A(eTVe) (18)
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2 2

where 7 is the learning rate. It can be shown
that 0<zy<1 guarantees monotonic convergence
to global optimum [4], and 7 is selected as 1.

Fig. 6.a shows trajectory tracking performance
of the system with the augmented pre-filter P.
Trapezoidal velocity reference given by Fig. 5 is
used in machine-in-the-loop experiments as
well. Fig. 6.b shows convergence performance
of the machine-in-the-loop optimization scheme.
Iteration “0” corresponds to the case without any
pre-filter. Iteration “1” shows the performance
with the initial design of the pre-filter P given by
Eq. (14). lterations “2” and “3” show two
consecutive iterations where the pre-filter P
given by Eq. (15) is used, and filter parameters
are updated based on Eq. (18) at each iteration.
As seen, convergence is achieved in only two
iterations and the maximum tracking error peak
is reduced to ~215 [udeq].
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CONCLUSIONS

In this paper, we presented an auto-tuning
strategy for ultra-precision servo-drives suffering
from largely varying load mass inertia. First, a
PID controller is tuned based on the
experimentally obtained frequency response
function of the servo-drive. A safe cross-over
frequency for PID tuning is automatically
determined based on the modeling accuracy of
the open loop system. Stability issues caused by
higher order modes induced by large load inertia
is prevented by an optimally designed low pass
filter. Trajectory tracking bandwidth is expanded
by a trajectory pre-filter. Pre-filter parameters
are obtained through data-driven machine-in-
the-loop iterations.
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