
WIP: End-to-End Analysis of Adversarial Attacks to
Automated Lane Centering Systems

Hengyi Liang∗, Ruochen Jiao∗, Takami Sato†, Junjie Shen†, Qi Alfred Chen†, Qi Zhu
Northwestern University † University of California, Irvine

Abstract—Machine learning techniques, particularly those
based on deep neural networks (DNNs), are widely adopted in the
development of advanced driver-assistance systems (ADAS) and
autonomous vehicles. While providing significant improvement
over traditional methods in average performance, the usage of
DNNs also presents great challenges to system safety, especially
given the uncertainty of the surrounding environment, the distur-
bance to system operations, and the current lack of methodologies
for predicting DNN behavior. In particular, adversarial attacks
to the sensing input may cause errors in systems’ perception of
the environment and lead to system failure. However, existing
works mainly focus on analyzing the impact of such attacks
on the sensing and perception results and designing mitigation
strategies accordingly. We argue that as system safety is ultimately
determined by the actions it takes, it is essential to take an
end-to-end approach and address adversarial attacks with the
consideration of the entire ADAS or autonomous driving pipeline,
from sensing and perception to planning, navigation and control.
In this paper, we present our initial findings in quantitatively
analyzing the impact of a type of adversarial attack (that
leverages road patch) on system planning and control, and discuss
some of the possible directions to systematically address such
attack with an end-to-end view.

I. INTRODUCTION

Recent years witnessed significant advancement of au-
tonomous driving techniques and advanced driver-assistance
systems (ADAS), with widely-adopted applications such as
Adaptive Cruise Control (ACC), Forward Collision-Avoidance
Assistance (FCA), and Automated Lane Centering (ALC).
Such systems typically consist of a pipeline of sensing, per-
ception, planning, and control modules. They rely on on-board
sensors to collect data at real time, use perception algorithms
to process the data and understand the environment, and then
make planning and control decisions for the vehicle. In these
systems, deep neural networks (DNNs) are used prevalently,
especially for perception tasks such as lane detection and
object detection, due to their high level of average accuracy.
Moreover, there have also been increasing application of DNNs
to other modules, such as prediction, planning, and control.

However, the safety and security of these learning-based
ADAS and autonomous systems can hardly be guaranteed or
even quantitatively analyzed, given the various uncertainties
in the system and its surrounding environment, such as the
inherent uncertainties from the dynamic environment, the dis-
turbances to system operations from environment interference,
transient errors, malicious attacks, and the current lack of
methodologies for predicting the DNN behavior [1], [2].
∗ These two authors contribute equally to the work.

In the literature, there has been a large body of works
demonstrating the vulnerability of DNNs to external distur-
bances and adversarial attacks [3]–[6]. In particular, some
recent works try to attack DNN-based ADAS and autonomous
systems by adding adversarial perturbations to the physical
environment in a stealthy way [7], [8]. The adversarial patterns
are carefully designed so that they can make the perception
module render wrong results while themselves can hardly be
noticed by human – one such example is the dirty road patch
attack shown in [8]. The wrong perception results caused by
these attacks will then affect the downstream planning, nav-
igation, and control decisions, and possibly cause dangerous
situations and accidents (e.g., causing victim vehicle to drive
off the road or collide with other objects).

Most prior defense works either focus on 1) making the
neural networks themselves more robust against adversarial
attacks [9], [10] or 2) trying to detect anomaly in the input
data [11], [12]. While it is clear that the impact of those
adversarial attacks on system safety has to be eventually
reflected through vehicle planning, navigation, and control,
there is currently a lack of systematic and quantitative methods
to analyze such impact throughout the end-to-end ADAS
and autonomous driving pipeline and to design mitigation
strategies accordingly. In this work, we focus on the safety and
robustness of the entire system and explore holistic end-to-end
methods for the analysis and mitigation of adversarial attacks
to driving assistance systems. We analyze how the perturbation
from sensor data propagates through the pipeline and affect the
final control actions (e.g., steering decisions). Our overall goals
in this area include the following:

1) Analyzing the impact of each module on system safety
and identifying proper interfaces between modules that
can be utilized to improve system safety and robustness.

2) Proposing a system-level framework to improve the safety
of DNN-based driving assistance systems, e.g., by quan-
tifying the perception uncertainty and adapting planning
and control accordingly.

3) Evaluating our proposed approach on a production-grade
simulation environment (e.g., OpenPilot [13] combined
with LGSVL [14]).

This work-in-progress paper mainly focuses on the first
goal. We analyze the ALC system as a representative ADAS
application, identify how the uncertainty/confidence changes
under various adversarial scenarios from the dirty road patch
attack, and discuss potential methods to improve system safety
and robustness.

II. SYSTEM MODEL

In this paper, we use the ALC system as a demonstrating
example. We believe that our analysis methodology could

Workshop on Automotive and Autonomous Vehicle Security (AutoSec) 2021
21 February 2021
ISBN 1-891562-68-1
https://dx.doi.org/10.14722/autosec.2021.23034
www.ndss-symposium.org

also be applied to other autonomous driving functionalities
(e.g., localization), where there are uncertainties from external
environment. The ALC is a popular Level 2 autonomous
driving system that is widely available for modern vehicles.
For example, many OEM vehicles such as Mercedes-Benz C-
class, Tesla and GM CT6 come with lane centering feature.
Moreover, there are also third party open-source autonomous
driving software stacks (e.g., OpenPilot, Baidu Apollo, Auto-
ware) that integrate ALC.

Figure 1 shows an ALC system structure that involves
three major modules: perception, planning and control. The
perception module takes sensor data as input and then detects
lane lines and predicts any other objects on the road (e.g., ve-
hicles, obstacles). The planning module mainly calculates the
desired trajectory based on the output of perception module.
The control module then calculates a desired steering angle
and speed that will be applied to the vehicle actuators. In the
following, we use the ALC system in OpenPilot as an example
and briefly introduce each module.

RNN state

Fully connected layers

Concatenated output: path, lanes,
confidence, leading vehicle

Desire Conv layers Predicted path
Lane points
Confidence

Steering angle
Speed

Environment

Perception
module

Image Planning
module

Control
module

Desired path

MPC

Weighted average of predicted
path and lanes

Fig. 1: The end-to-end pipeline of automated lane centering.

A. DNN-based Lane Detection Module

Traditional perception module uses edge detection algo-
rithms to detect lane lines from images captured by the front
camera [15]. In recent years, DNN-based lane detection models
have achieved the state-of-the-art accuracy and been widely
adopted in production-level ALC systems. Since lane lines do
not change significantly across consecutive frames, recurrent
neural networks (RNNs) ares typically used to make the
prediction more stable. The perception module in Figure 1
highlights the input-output relation of the OpenPilot lane
detection model. Particularly, a convolutional neural network
(CNN) is used to process current image data and then a
combination of the CNN output and the last RNN state is
fed to a fully connected network. OpenPilot lane detection
model leverages Multiple Hypotheses Prediction (MHP) [16]
to capture ambiguity in the prediction. The output of the lane
detection model contains 1) 192 predicted lane line points, in
the form of mean and standard variance, for each lane, 2) the
confidence value for each predicted lane line, 3) a predicted
driving path, and 4) information related to the leading vehicle.
After the lane detection inference, a post-process is followed to
fit the points into lane line curves. Specifically, in OpenPilot,
the weighted least square regression method is used.

B. Planning Module

The planning module generates the desired path for the
next period. For ALC, this means that the desired path should
be the center of the detected left lane and right lane and the
steering angle should keep the vehicle following the desired
path. As mentioned earlier, the perception module handles the
ambiguity of prediction by outputting confidence scores for the
left lane and the right lane. In the OpenPilot planning module,
this information is used to generate the final desired path as
a weighted sum of the predicted lanes and the predicted path.
Intuitively, if the prediction is less confident on the predicted
lanes, then the final desired path relies on the predicted
path; otherwise, if the prediction has high confidence on the
predicted left lane and right lane, the final desired path will be
close to the center of the predicted left lane and right lane.

C. Control Module

The main goal of the control module is to calculate the
vehicle maneuver for the next period and convert it into
a command that will be applied to vehicle actuators, e.g.,
steering, throttle, and brake command to the chassis. For
lateral control, after obtaining the desired path from the path
planner, a controller is used to calculate the corresponding
steering angle based on the desired path. In OpenPilot, model
predictive control (MPC) is used to calculate the steering
angle. The constraints include 1) simplified system dynamics,
2) vehicle heading constraints, and 3) maximum steering
angle constraints. In our simulation environment, due to the
constraint of the mechanical unit, we consider that the steering
rate is limited by a maximum value. The throttle is generated
by a PID controller by setting an appropriate reference speed.

III. THREAT MODEL

In this paper, we mainly consider attacks achieved through
physical domain. Specifically, we assume that attacker cannot
hack into the victim vehicle and should not be able to modify
the software of the victim vehicle directly. However, the
attacker has the ability to modify the physical environment
that can be captured by the sensors equipped on the victim
vehicle (e.g., cameras). The attacker’s goal is to carefully
change the appearance of certain object such that 1) the object
can hardly be noticed by human driver, 2) and it can cause
the ADAS or autonomous driving system to drive off the road.
There are many adversarial attacks against deep learning based
tasks such as image classification and object detection, but we
focus on attacks specially targeting deep learning based driving
assistance systems so as to analyze and evaluate the safety of
those systems. For example, the work in [7] can generate an
adversarial billboard to cause steering angle error; the work
in [8] is able to generate a gray scale dirty patch on road such
that vehicles passing through the patch will deviate (either left
or right). In the following experiments, we use the dirty road
patch attack as a case study, and we believe that our approach
may be extended for other types of physical world attacks.

In fact, the optimization-based physical attack in [8] is
the first attack that is systematically designed for the ALC
system. Specifically, the attackers first collect the input image
and predicted steering angle of the ALC on a certain road.
Using these images, the knowledge of the ALC system, and

2

the kinematic model of the vehicle, they can optimize an
adversarial patch to make the vehicle deviate from the original
trajectory to the greatest extent. In the experiment, it can lead
the vehicle out of the lane boundary within 1 second (which
means the lateral deviation is larger than 0.735m in highway)
with high success rate.

Fig. 2: Image of the adversarial patch captured by front camera.

IV. EXPERIMENTS AND OBSERVATIONS

As a preliminary case study, we perform the ALC attack
in a simulation environment. We bridge the product-level
simulator LGSVL with OpenPilot and put a carefully designed
patch on the road [8]. During each simulation step, we obtain
the image frame captured by the front camera (a demo frame
is shown in Figure 2) and the vehicle status through the API
provided by the LGSVL simulator. We then pass these data
to OpenPilot. OpenPilot ALC will calculate a desired steering
angle for the next simulation step. Then, the steering command
is sent back to LGSVL through the API.

To evaluate the effectiveness of the attack, we conduct
a series of experiments with different settings of the patch.
Figure 3 shows the trajectory of the ego vehicle when we put
the patch on different locations of the road. The maximum
lateral deviation is over 1 meter, which will cause the vehicle
to drive into the opposite lane. Although the ego vehicle finally
drives back to its original lane after it has passed through the
dirty patch area, this behavior is extremely dangerous. Then,
we gradually reduce the perturbation area of the patch. Here,
the perturbation area ratio (PAR) denotes the percentage of the
pixels on the patch that can be perturbed. For example, 30%
PAR means that only 30% of pixels can be perturbed while
the rest 70% pixels have the same color as the road. Figure 4
shows the trajectory of the ego vehicle under different level of
PAR. The ego vehicle drives off the road when PAR is 50%
or 30%. When PAR is 10%, the ego vehicle can stay in the
lane but the patch still can impact its stability.

0 100 200 300 400 500
Longitudinal direction

0.4
0.2
0.0
0.2
0.4
0.6
0.8
1.0
1.2

La
te

ra
l d

ire
ct

io
n

Patch position: 40 m
Patch position: 80 m
Patch position: 120 m
Benign Scenario

Fig. 3: The trajectory of the vehicle when the dirty patch is
placed on different locations of the road.

0 100 200 300 400 500
Longitudinal position

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

La
te

ra
l d

ev
ia

tio
n

PAR: 50%
PAR: 30%
PAR: 10%
Benign scenario
Starting driving on patch
Leaving patch

Fig. 4: The trajectory of the vehicle when the dirty patch is
designed with different values of the PAR.

0 100 200 300 400 500
Longitudinal position

0.0

0.2

0.4

0.6

0.8

1.0

Co
nf

id
en

ce
 sc

or
e

Attack: left lane confidence
Attack: right lane confidence
Benign: left lane confidence
Benign: right lane confidence
Starting driving on patch
Leaving patch

Fig. 5: The confidence of the perception module drops signif-
icantly when the ego vehicle is approaching the patch.

To study how the adversarial attack can lead the vehicle to
deviate, we inspect the interface between each module and try
to reason about how the impact of the adversarial attack can
propagate through each module.

Perception Confidence: We first check the result of the
perception module. In OpenPilot, the MHP model is trained
with binary cross entropy loss, which means the output can
indicate the confidence in whether there are lane lines [17].
Through our experiments with different settings of the patch,
we notice a general phenomenon: the confidence scores for
both left lane and right lane drop significantly when the vehicle
is approaching the patch, as shown in Figure 5, while the con-
fidence score will almost stay stable under benign situation or
ineffective attack. The dashed green line in Figure 5 indicates
the starting point of the patch. As we can see, the confidence
score drops even before the vehicle is on the patch (e.g.,
when the vehicle is at around 30 meters). However, when the
confidence score drops, the vehicle has not started to deviate.
This observation indicates that the impact of adversarial attack
comes earlier than when the driver can perceive.

Biased Desired Path: We then inspect the result of path
planner and try to figure out how the perception confidence
may affect the final desired trajectory. Figure 6 is the result
of one frame when the vehicle is approaching the patch.
The predicted left lane, predicted right lane and the predicted
path are the results generated by the perception module. As
we can see, these three curves lean to the left (i.e., the
positive direction of the y axis). If the vehicle just follows
the predicted path, it will definitely drive into the opposite
lane. By analyzing the code of the path planner, we find that
OpenPilot tries to leverage the confidence scores as weights.
The final desired path can be considered as a weighted sum of
the predicted left lane, predicted right lane, and the predicted
path. However, as we observe that the confidence score for
predicted lanes drops significantly, the final desired path will
largely depend on the predicted path, which is bent to wrong

3

0 25 50 75 100 125 150 175 200
Longitudinal direction

1.0

0.5

0.0

0.5

1.0

1.5

2.0

2.5

La
te

ra
l d

ire
ct

io
n

Predicted left lane
Predicted right lane
Predicted path
Desired path

Fig. 6: Desired trajectory generated by OpenPilot path planner
deviates towards left when the vehicle is approaching the patch.

direction. Since the desired path is biased, the MPC controller
cannot calculate a correct steering angle for the next step.

Potential Mitigation Methods: Based on the preliminary
experiments and observations, we find that the confidence
score can work as a triggering signal to indicate the presence of
adversarial attack or anomalous noises in this case. We believe
that an end-to-end approach is needed to mitigate the attacks,
and there are some potential directions:

1) We may try to quantify/estimate the uncertainty of the
DNN-based perception module, including both epistemic
uncertainty (caused by unbalanced distribution of the
training data) and aleatory uncertainty (caused by noises
of input data). Such estimated uncertainty can then be
used by the planning and control module to improve
system safety.

2) We may develop an adaptation strategy to holistically
adjust each module to mitigate the impact of adversarial
attacks.

3) In the perception module, we may use other sensors’ data
(e.g., from LiDAR and GPS) to compensate the result of
cameras, especially when the confidence is low.

4) We may leverage the temporal and spatial correlation
of consecutive inputs to detect the anomaly of current
sensor data or even re-use more reliable results from
recent data samples. Besides, the RNN can be modified
to make better use of the temporal correlation and assign
more weights on frames with high confidence and less
uncertainty.

V. CONCLUSION AND FUTURE WORK PLAN

We argue that it is essential to address adversarial attacks
on driving assistance systems from an end-to-end perspective,
by quantitatively analyzing the impact of those attacks across
the ADAS or autonomous driving pipeline and designing
mitigation strategies in a holistic manner. In our preliminary
work, we studied an ALC system, analyzed how different
modules interact under dirty road patch attacks, and identified
a sensitive signal that can be leveraged to detect those attacks.
We are currently working on better quantifying the uncertainty
of the perception module and using it to guide the adaption of
the planning and control module for improving system safety.
In future, we also plan to study other ADAS and autonomous
driving applications and try to generalize our approach.

ACKNOWLEDGMENT

We gratefully acknowledge the support from CNS-
1839511, CNS-1834701, IIS-1724341, CNS-1850533,

CNS-1929771, CNS-1932464, USDOT UTC Grant
69A3552047138, and ONR grant N00014-19-1-2496.

REFERENCES

[1] Q. Zhu, W. Li, H. Kim, Y. Xiang, K. Wardega, Z. Wang, Y. Wang,
H. Liang, C. Huang, J. Fan, and H. Choi, “Know the unknowns:
Addressing disturbances and uncertainties in autonomous systems :
Invited paper,” in ICCAD, 2020, pp. 1–9.

[2] Q. Zhu, C. Huang, R. Jiao, S. Lan, H. Liang, X. Liu, Y. Wang, Z. Wang,
and S. Xu, “Safety-assured design and adaptation of learning-enabled
autonomous systems,” ASP-DAC, 2021.

[3] A. Kurakin, I. Goodfellow, and S. Bengio, “Adversarial examples in the
physical world,” 2017.

[4] S.-M. Moosavi-Dezfooli, A. Fawzi, and P. Frossard, “Deepfool: A sim-
ple and accurate method to fool deep neural networks,” in Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), June 2016.

[5] N. Papernot, P. McDaniel, S. Jha, M. Fredrikson, Z. B. Celik, and
A. Swami, “The limitations of deep learning in adversarial settings,”
in 2016 IEEE European Symposium on Security and Privacy (EuroS
P), 2016, pp. 372–387.

[6] K. Eykholt, I. Evtimov, E. Fernandes, B. Li, A. Rahmati, C. Xiao,
A. Prakash, T. Kohno, and D. Song, “Robust physical-world attacks
on deep learning visual classification,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), June
2018.

[7] H. Zhou, W. Li, Z. Kong, J. Guo, Y. Zhang, B. Yu, L. Zhang, and C. Liu,
“Deepbillboard: Systematic physical-world testing of autonomous driv-
ing systems,” in Proceedings of the ACM/IEEE 42nd International
Conference on Software Engineering, ser. ICSE ’20. New York, NY,
USA: Association for Computing Machinery, 2020, p. 347–358.

[8] T. Sato, J. Shen, N. Wang, Y. J. Jia, X. Lin, and Q. A. Chen, “Hold tight
and never let go: Security of deep learning based automated lane cen-
tering under physical-world attack,” arXiv preprint arXiv:2009.06701,
2020.

[9] I. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and harnessing
adversarial examples,” 2015.

[10] N. Papernot, P. McDaniel, X. Wu, S. Jha, and A. Swami, “Distillation
as a defense to adversarial perturbations against deep neural networks,”
in 2016 IEEE Symposium on Security and Privacy (SP), 2016, pp. 582–
597.

[11] K. Lee, K. Lee, H. Lee, and J. Shin, “A simple unified framework
for detecting out-of-distribution samples and adversarial attacks,” in
Advances in Neural Information Processing Systems, S. Bengio, H. Wal-
lach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett, Eds.,
vol. 31. Curran Associates, Inc., 2018, pp. 7167–7177.

[12] Z. Zheng and P. Hong, “Robust detection of adversarial attacks by
modeling the intrinsic properties of deep neural networks,” in Advances
in Neural Information Processing Systems, S. Bengio, H. Wallach,
H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett, Eds.,
vol. 31. Curran Associates, Inc., 2018, pp. 7913–7922.

[13] “Openpilot,” https://comma.ai/.
[14] G. Rong, B. H. Shin, H. Tabatabaee, Q. Lu, S. Lemke, M. Možeiko,

E. Boise, G. Uhm, M. Gerow, S. Mehta, E. Agafonov, T. H. Kim,
E. Sterner, K. Ushiroda, M. Reyes, D. Zelenkovsky, and S. Kim, “Lgsvl
simulator: A high fidelity simulator for autonomous driving,” 2020.

[15] J. B. McDonald, “Application of the hough transform to lane detection
and following on high speed roads,” in in Motorway Driving Scenar-
ios”, in Proceeding of Irish Signals and Systems Conference, 2001.

[16] C. Rupprecht, I. Laina, R. DiPietro, M. Baust, F. Tombari, N. Navab,
and G. D. Hager, “Learning in an uncertain world: Representing
ambiguity through multiple hypotheses,” in Proceedings of the IEEE
International Conference on Computer Vision, 2017, pp. 3591–3600.

[17] D. Ramos, J. Franco-Pedroso, A. Lozano-Diez, and J. Gonzalez-
Rodriguez, “Deconstructing cross-entropy for probabilistic binary clas-
sifiers,” Entropy, vol. 20, no. 3, p. 208, 2018.

4

