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Abstract

We present a general method to compute a presentation for any cusped arithmetic hyperbolic lattice
Γ, applying a classical result of Macbeath to a suitable Γ-invariant horoball cover of the corresponding
symmetric space. As applications we compute presentations for the Picard modular groups PU(2, 1,Od) for
d = 1, 3, 7 and the quaternion hyperbolic lattice PU(2, 1,H) with entries in the Hurwitz integer ring H. The
implementation of the method for these groups is computer-assisted.

1 Introduction

Discrete subgroups and lattices in semisimple Lie groups form a rich and well-studied class of finitely gen-
erated groups acting on non-positively curved metric spaces. The case of real rank one, where the associated
symmetric space is negatively curved, is of special interest. There are essentially two main families of con-
structions of such lattices, arithmetic on one hand and geometric on the other. Arithmetic lattices are roughly
speaking obtained by taking matrices with entries lying in the integer ring of some number field; the general
definition is more complicated and we will not give it here, as the arithmetic lattices that we consider in this pa-
per are of this simplest type. By Margulis’ celebrated superrigidity and arithmeticity theorems, all (irreducible)
lattices in G are of this arithmetic type when G is a semisimple Lie group of real rank at least 2.

The other family involves geometric constructions such as polyhedra, reflections or other types of involutions
or other finite-order isometries. A prototype of this type of construction is given by Coxeter groups in the
constant curvature geometries En, Sn and Hn, which are generated by reflections across hyperplanes. These
groups are classical and were classified by Coxeter in the spaces En and Sn, whereas their hyperbolic counterparts
(studied by Vinberg and others) are still not completely understood. However by construction these groups
come equipped with data including a presentation (as an abtract Coxeter group) and a fundamental domain for
their action on the symmetric space.

Arithmetic lattices are given by a global description and their global structure is in some sense well under-
stood by work of Siegel, Borel, Tits, Prasad and others. However concrete information such as a presentation
and a fundamental domain are not readily accessible from the arithmetic construction. One can obtain geo-
metric information such as volume by Prasad’s celebrated volume formula ([Pr]) but computing the constants
appearing in this formula usually involves some non-trivial work (see for example [Be] and [Sto]).

Very few presentations of arithmetic lattices, and of lattices in general, are known. Presentations can
provide useful geometric and algebraic information about groups, such as explicit index of torsion-free subgroups
(effective Selberg lemma, as used for example in [Sto]), cohomology of the group Γ or quotient space X/Γ, see
for instance [Y] (for the Picard modular groups with d = 1, 3) and of course representations of Γ, for instance
if one is interested in deformations of Γ into a larger Lie group.

Presentations for SL(n,Z) with n > 3 were given by Steinberg ([Ste], following Magnus); the case of SL(2,Z)
is classical and possibly dates to Gauss; see also Siegel [Si]. In rank one, Swan gave in [Sw] presentations for
the Bianchi groups PGL(2,Od) (where Od denotes the ring of integers of Q[i

√
d] for d a positive square-free

integer), following Bianchi’s original construction in [Bi]. These act as isometries of (real) hyperbolic 3-space,
as they are lattices in PGL(2,C) ' Isom+(H3

R).
Presentations for the related Picard modular groups PU(2, 1,Od) were found only recently in the simplest

cases of d = 3 ([FP]) and d = 1 ([FFP]). One of the reasons for this is that the associated symmetric space,
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complex hyperbolic 2-space H2
C, is more complicated and in particular has non-constant (pinched) negative

curvature. A particular feature of such spaces, the absence of totally geodesic real hypersurfaces, makes con-
structions of fundamental domains difficult as there are no obvious walls to use to bound such domains. The
presentations obtained for d = 1, 3 were in fact obtained by constructing fundamental domains and using the
Poincaré polyhedron theorem. This approach seems to become too complicated when considering more com-
plicated groups, such as Picard modular groups with higher values of d, and no further such constructions
have appeared. Using a similar strategy, Zhao gave in [Zh] generating sets for the Picard modular groups with
d = 1, 2, 3, 7, 11 but he does not go as far as obtaining a presentation, finding a set whose translates covers the
space but without control over intersections and cycles. (We will in fact use a covering argument closely related
to the one he uses to cover a fundamental prism on the ideal boundary by isometric spheres, see Lemma 13).

In this paper we present a method for obtaining presentations for cusped hyperbolic lattices, i.e. non-
cocompact lattices in semisimple Lie groups of real rank one, based on a classical result of Macbeath (Theorem 1
below) which gives a presentation for a group Γ acting by homeomorphisms on a topological space X, given
an open subset V whose Γ-translates cover X. We apply this by finding a suitable horoball V based at a cusp
point of Γ whose Γ-translates cover X, then analyzing the triple intersections and associated cyles to obtain a
presentation for Γ. The main tools for this analysis come from the additional arithmetic structure that we get by
assuming that Γ is in fact an integral lattice in the sense that it is contained in GL(n+ 1,OE) for some number
field E (or finitely generated division algebra over Q). The crucial such tool that we use is the notion of level
between two E-rational boundary points in ∂∞X (see Definition 1) which gives a notion of distance between such
points using only algebraic data. More importantly for us, levels measure the relative sizes of horospheres based
at the correpsonding boundary points, which allows us to control whether or not such horospheres intersect at
a given height (see Lemma 4).

As applications of this method we compute presentations for the Picard modular groups PU(2, 1,Od) with
d = 3, 1, 7, given in the appendix and Propositions 2, 3 respectively. The cases d = 2, 11 can be treated with the
same method but are computationally more intensive; David Polletta has treated these in [Po]. We also compute
a presentation for the quaternion hyperbolic lattice which we call the Hurwitz modular group PU(2, 1,H), where
H is the ring of Hurwitz integers H = Z[i, j, k, 1+i+j+k

2 ] ⊂ H. This is a lattice in PU(2, 1,H) (also denoted
PSp(2, 1)), acting on the 8-dimensional symmetric space H2

H. As far as we know this is the first presentation
ever found for a higher-dimensional quaternion hyperbolic lattice. (In dimension 1, H1

H ' H4
R and such groups

have been studied e.g. in [DVV], see also [A], [W] and [Ph]). The implementation of our method for this group
turned out to be computationally much more intensive than anticipated, and in fact the resulting presentation
is too large for many purposes (see Section 5). It does however allow us to compute the abelianization of the
lattice, and to find a nice generating set, see Theorems 2 and 3.

Using a somewhat similar principle Cartwright and Steger found presentations for some cocompact arithmetic
lattices in PU(2, 1) in their classification of the so-called fake projective planes, see [CaS1] and [CaS2].

The paper is organized as follows. In Section 2 we discuss generalities about horoball coverings of hyperbolic
spaces, levels for cusp points of integral lattices, and outline how we apply Macbeath’s theorem in this context.
In Section 3 we discuss horosphere intersections in more detail, in particular the quantitative relation between
levels and heights of horospheres for integral lattices. In Sections 4 and 5 we apply this method to compute
presentations for the Picard and Hurwitz modular groups respectively.

We would like to thank Daniel Allcock for suggesting this method and for many helpful comments, Matthew
Stover for pointing out a mistake in an earlier version of the paper and Martin Deraux for helpful discussions.
We would also like to thank the referee for numerous comments and suggestions which greatly improved the
paper; in particular their suggestion to automate the computational steps was critical to obtaining certifiably
correct presentations for the final version of the paper.

2 Horoball coverings and lattice presentations

2.1 Adapted horoball coverings and covering complex

Let X be a negatively curved symmetric space, i.e. a hyperbolic space Hn
K, with K = R,C,H or O (and n > 2

if K = R, n = 2 if K = O). We refer the reader to [CG] for general properties of these spaces and their isometry
groups. In particular isometries of such spaces are roughly classified into the following 3 types: elliptic (having
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a fixed point in X), parabolic (having no fixed point in X and exactly one on ∂∞X) or loxodromic (having no
fixed point in X and exactly two on ∂∞X).

Let Γ be a lattice in Isom(X); the well-known Godement compactness criterion states that Γ contains
parabolic isometries if and only if it is non-cocompact, which we now assume. A cusp point of Γ is a point of
∂∞X fixed by a parabolic element of Γ; a cusp group of Γ is a subgroup of the form StabΓ(p) where p ∈ ∂∞X
is a cusp point of Γ.

Assume that we are given a Γ-invariant covering of X by (open) horoballs (see Definition 3), i.e. a collection
B of horoballs such that: {

γB ∈ B for all γ ∈ Γ and B ∈ B⋃
B∈B B = X

We will moreover assume that each horoball B ∈ B is based at a cusp point of Γ, and that each cusp point
of Γ is the basepoint of a unique horoball in B (giving a bijection between cusp points of Γ and horoballs in
B); we will call such a covering B a Γ-adapted horoball covering. Since the lattice Γ has only finitely many cusp
points modulo the action of Γ, it follows that such a horoball covering is a finite union of Γ-orbits of horoballs.

Given a Γ-adapted horoball covering B, the covering complex C(B) associated to B is the simplicial 2-complex
with vertex set B, with an edge connecting each pair of vertices B1 and B2 such that B1∩B2 6= ∅, and a triangle
for each triple of vertices B1, B2, B3 such that B1 ∩ B2 ∩ B3 6= ∅. This the 2-skeleton of a simplicial complex
sometimes called the nerve of the covering. By the above remark the quotient of the covering complex by the
action of Γ is a finite simplicial 2-complex.

We will use the following classical result of Macbeath ([M]):

Theorem 1 ([M]) Let Γ be a group acting by homeomorphisms on a topological space X. Let V be an open
subset of X whose Γ-translates cover X.
(1) If X is connected then the set E(V ) = {γ ∈ Γ | V ∩ γV 6= ∅} generates Γ.
(2) If moreover X is simply-connected and V path-connected, then Γ admits a presentation with generating set
E(V ) and relations γ · γ′ = γγ′ for all γ, γ′ ∈ E(V ) such that V ∩ γV ∩ γγ′V 6= ∅.

We kept the notation from [M]; to clarify the notation in part (2), let S = {eγ | γ ∈ E(V )} be a set labelled by
the generating set E(V ) from part (1). The claim is that Γ has presentation 〈S |R〉, where R consists of the
relations eγ · eγ′ = eγγ′ for all γ, γ′ ∈ E(V ) such that V ∩ γV ∩ γγ′V 6= ∅. Note that the latter condition implies
that γγ′ ∈ E(V ).

Now if as above Γ is a lattice in Isom(X) and B is a Γ-adapted horoball covering of X, we may as re-
marked above write B as a finite union of Γ-orbits of horoballs B1, ..., Bk (say, minimally). One can then apply
Macbeath’s theorem with V = B1 ∪ ... ∪ Bk, after possibly enlarging each horoball Bi in order for this union
to be (path-)connected. For simplicity of exposition, we henceforth asume that Γ has a single cusp, so that the
Γ-adapted horoball covering consists of a single Γ-orbit of horoballs (this is the case in all examples considered
in this paper). In that case the process of obtaining a presentation fom the covering complex is closely related
to a complex of groups structure on the quotient of the covering complex, the only difference being that we
need to take into account non-trivial edge and face stabilizers.

2.2 Levels and proximal cusp complex

Recall that if X is a hyperbolic space Hn
K (with K = R,C or H) then X admits the following projective model

which we briefly recall.
Consider Kn,1, the vector space Kn+1 endowed with a Hermitian form 〈· , ·〉 of signature (n, 1). (When

K = H we will use the convention that scalars act on vectors on the right, whereas matrices act on vectors
on the left.) Let V − =

{
Z ∈ Kn,1|〈Z,Z〉 < 0

}
, V 0 =

{
Z ∈ Kn,1|〈Z,Z〉 = 0

}
and let π : Kn+1 − {0} −→ KPn

denote projectivization. One then defines Hn
K to be π(V −) ⊂ KPn, endowed with the distance d (Bergman

metric) given by, for Z,W ∈ V −:

cosh2
(d(π(Z), π(W ))

2

)
=

|〈Z,W 〉|2

〈Z,Z〉〈W,W 〉
. (1)
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Note that the right-hand side is independent of the choice of lifts Z,W . Then Isom0(X) = PU(n, 1,K), the
(projectivization of) the matrix group preserving the Hermitian form (see [CG]). Note that PU(n, 1,K) is
usually denoted PO(n, 1) when K = R, PU(n, 1) when K = C and PSp(n, 1) when K = H. The boundary at
infinity ∂∞X is then identified with π(V 0) ⊂ KPn. We would like to measure distances between points of ∂∞X
using the Hermitian form as in (1); one way to do this is to use integral lifts of vectors with rational coordinates
as follows.

We now assume that Γ is an integral lattice in the sense that it is contained in U(H,OE) for some number
field E (or finite-degree division algebra over Q when K = H) with ring of integers OE , and Hermitian form
H = 〈· , ·〉 defined over E. We say that an integral vector P0 = (p1, ..., pn+1) ∈ On+1

E is primitive if it has no
integral submultiple in the following sense: if P0λ

−1 ∈ On+1
E for some λ ∈ OE then λ is a unit in OE .

If p is an E-rational point in KPn, i.e. the projective image of a vector P = (p1, ..., pn+1) ∈ En+1, a primitive
integral lift of p is any lift P0 of p to On+1

E which is a primitive integral vector.

Lemma 1 If OE is a principal ideal domain then primitive integral lifts are unique up to multiplication by a
unit.

Lemma 2 (a) Any column-vector of a matrix A ∈ U(H,OE) is a primitive integral vector. (b) If moreover E is
imaginary quadratic with OE a principal ideal domain and one of the standard basis vectors Bi is H-isotropic,
then for any H-isotropic primitive integral vector V and A ∈ U(H,OE), AV is a primitive integral vector.

Proof. (a) Let A ∈ U(H,OE) and V a column-vector of A. Then V is integral; assuming that it is not
primitive, there would exist a non-unit λ ∈ OE such that V λ−1 is also integral. But then the matrix A′ obtained
from A by replacing the column-vector V by V λ−1 would also be in GL(n+ 1,OE), with detA′ = detAλ−1, a
contradiction since the latter is not an integer, as detA is a unit and λ is not.
(b) Let V be an H-isotropic primitive integral vector and A ∈ U(H,OE). If OE is a principal ideal domain
then PU(H,OE) has a single cusp (see [Zi]), therefore there exists M ∈ U(H,OE) mapping Bi to AV λ for some
λ ∈ E. Then as in (a) λ must be a unit, hence AV is a column-vector of Mλ−1 ∈ U(H,OE) and we conclude
by (a). �

Definition 1 Given two E-rational points p, q ∈ ∂∞X, the level between p and q, denoted lev(p, q), is |〈P0, Q0〉|2
for any two primitive integral lifts P0, Q0 of p, q respectively. When we are given a preferred E-rational point
∞ ∈ ∂∞X, the depth of an E-rational point p ∈ ∂∞X is the level between p and ∞.

By Lemma 1 this is well-defined when OE is a principal ideal domain. The proximal cusp complex of level
n, denoted Cn(Γ), is the complex whose vertices are cusp points of Γ, with an edge connecting 2 vertices p, q
whenever lev(p, q) 6 n, and a triangle for each triple of distinct edges.

Levels give a convenient way to distinguish orbits of edges and triangles in the covering complex, by the
following observation which follows from Lemmas 1 and 2:

Lemma 3 If OE is a principal ideal domain, for any two E-rational points p, q ∈ ∂∞X and γ ∈ U(H,OE),
lev(γp, γq) = lev(p, q).

More importantly, levels allow us to find the optimal height u of a horosphere Hu = ∂Bu based at a preferred
E-rational point ∞ ∈ ∂∞X such that the orbit ΓBu covers X. This relies on the following result, which is part
of Corollary 1 in Section 3:

Lemma 4 There exists a decreasing function u : N −→ R such that, for any E-rational point p ∈ ∂∞X with
depth n, and any (integral) Ap ∈ Γ satisfying Ap(∞) = p, the set Hu∩Ap(Hu) is empty if and only if u > u(n).

In fact we will see in Corollary 1 that the function u is given by u(n) = 2√
n

.

Definition 2 The covering depth of Γ is the unique n ∈ N such that 2√
n+1

< ucov 6 2√
n

, where ucov denotes

the maximal height such that ΓBucov covers X.
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In practice, for the purpose of finding a presentation of Γ, we will not need to explicitly determine the
covering depth or ucov. It will suffice to bound the covering depth from above, and use the covering of X at the
corresponding height to apply Macbeath’s theorem.

2.3 Reduction modulo the vertex stabilizer Γ∞

We choose a preferred cusp point ∞ ∈ ∂∞X of Γ (in general we will take ∞ = π([1, 0, ..., 0]T ) in the Siegel
model, see section 3), and consider the cusp stabilizer Γ∞ = StabΓ(∞). Since Γ is a lattice, it is well known
that Γ∞ acts cocompactly on all horospheres based at ∞. Let n denote the covering depth of Γ and ucov the
corresponding covering height, so that the Γ-translates of the horoball Bu cover X, and let D∞ ⊂ Hu be a
compact fundamental domain for the action of Γ∞ on Hu ' ∂∞X \ {∞}. In practice we will choose D∞ to be
an affinely convex polytope in Heisenberg coordinates (see section 3).

Assume that we are given a finite presentation Γ∞ = 〈S∞|R∞〉. Then we may reduce the procedure in
Macbeath’s theorem to finitely many additional generators and relations as follows. Let {p1, ..., pk} denote the
E-rational points with depth at most n in D∞, and assume for simplicity that they are ordered in such a way
that the first r of them form a system of representatives under the action of Γ∞. Assume moreover that we
have found for each i = 1, ..., r an element Ai ∈ Γ such that Ai(∞) = pi (this is possible in principle since Γ is
assumed to have a single cusp).

Generators: The group Γ is generated by {S∞, A1, ..., Ar}. This follows easily from part (1) of Macbeath’s
theorem and Lemma 4, as any E-rational point of ∂∞X with depth at most n is in the Γ∞-orbit of one of
p1, ..., pr. Note that with the notation from the Theorem, we are using the open set V = Bu = B to cover X,
and E(B) = {γ ∈ Γ |B ∩ γB 6= ∅} = Γ∞{A1, ..., Ar}Γ∞ = {γ1

∞Aiγ
2
∞ | γ1

∞, γ
2
∞ ∈ Γ∞, i = 1, ..., r}. Indeed, by

Lemma 4, B ∩ γB 6= ∅ if and only if γ∞ is either ∞ or an E-rational point of depth at most n, which is a
Γ∞-translate of one of p1, ..., pr.

Relations: We now rephrase part (2) of Macbeath’s theorem in this context. Let γ, γ′ ∈ E(B) satisfy
B ∩ γB ∩ γγ′B 6= ∅, and first assume that γ∞ 6=∞ and γγ′∞ 6=∞. After conjugating by an element of Γ∞ we
may assume that γ = Aa, γ′ = γ1

∞Abγ
2
∞, γγ′ = γ3

∞Acγ
4
∞ for some a, b, c ∈ {1, ..., r} and γ1

∞, ..., γ
4
∞ ∈ Γ∞. The

corresponding relation γγ′ = γ · γ′ is then: Aaγ
1
∞Abγ

2
∞ = γ3

∞Acγ
4
∞. Taking the image of ∞ under both sides

of this relation gives: Aa(γ1
∞pb) = γ3

∞pc.
In practice this is how we will detect the relations, finding which points of depth at most n are sent to points

of depth at most n by the generators Aa. One then recovers the relation as follows. For each triple (a, b, c)
for which there exist γ1

∞, γ
3
∞ ∈ Γ∞ such that Aa(γ1

∞pb) = γ3
∞pc, we obtain a relation Ra,b,c by identifying the

element A−1
c (γ3

∞)−1Aaγ
1
∞Ab ∈ Γ∞ as a word in the generators S∞. The key point is that there are only finitely

many such triples (a, b, c) to be checked, by Lemma 6.
Now assume that one of γ∞, γγ′∞ is∞ but not both (as the relations in Γ∞ have already been considered).

The corresponding relation can be obtained as above, using the point p∞ =∞ with corresponding group element
A∞ = Id.

Summarizing the above discussion gives:

Lemma 5 With the above notation, Γ admits the presentation Γ = 〈S∞, A1, ..., Ar|R∞, Ra,b,c〉.

2.4 The method in practice

We now give an outline of the method we use to apply Macbeath’s theorem:) )

(1) Find an explicit (affine) fundamental domain D∞ ⊂ ∂∞X ' Hu for the action of Γ∞ = StabΓ(∞), and a
presentation Γ∞ = 〈S∞|R∞〉.

(2) Find the covering depth n of Γ. Consider the corresponding covering complex C(ΓBucov ) ' Cn(Γ).

(3) Find all E-rational points {p1, ..., pd} in D∞ with depth at most n (and denote p∞ =∞).

(4) For each of the r Γ∞-orbits of points pa, find an explicit Aa ∈ Γ such that Aa(∞) = pa.
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(5) For each triple (a, b, c) for which there exist γ1
∞, γ

3
∞ ∈ Γ∞ such that Aa(γ1

∞pb) = γ3
∞pc we obtain a relation

Ra,b,c by identifying the element A−1
c (γ3

∞)−1Aaγ
1
∞Ab ∈ Γ∞ as a word in the generators S∞.

To find all such triples, we seek triple intersections of the form described above. A necessary condition
for the triple intersection B ∩AaB ∩ γ3

∞AcB to be nonemepty is for all three pairwise intersections to be
nonempty. We get two of them, B∩γ3

∞AcB 6= ∅ and B∩AaB 6= ∅, for free since Aa and Ac are generators.
For each of the finitely many Aa’s and Ac’s, we want to find all γ3

∞ such that the third pairwise intersection
is nonempty.

The third intersection AaB ∩ γ3
∞AcB will be nonempty if and only if the level between the corresponding

points pa and γ3
∞pc is at most the covering depth n. By Lemma 6, this translates to a bound on the Cygan

distance between these points, which by the triangle inequality gives a bound on the Cygan distance of
each point to the reference point (0, 0). As there are finitely many points {p1 . . . , pr}, we obtain an upper
bound on these distances, and cover a ball centered at (0,0) of the corresponding radius by translates of
D∞. The finite collection of translates required to do this is our finite list of candidates for γ3

∞. For each
such γ3

∞, we iterate over the Aa’s and Ac’s, checking the level between pa and γ3
∞pc to find all intersections.

Finally, we take all the pairs (a, c) for which the three pairwise intersections are nonempty, and compute
coordinates for the point A−1

a γ3
∞Acp∞. If the depth of this point is greater than n, it will not give us a

relation so we discard it. If it is less than n, then it is of the form γ1
∞pb. We can easily identify γ1

∞ and
b by figuring out which translate of D∞ the point lives in. The last step is to identify the group element
A−1
b (γ1

∞)−1A−1
a γ3
∞Ac as a word in the generators of Γ∞.

Then by Macbeath’s theorem and Lemma 5, Γ = 〈S∞, A1, ..., Ar|R∞, Ra,b,c〉. Note that in step (5) we don’t
in fact check which triples of horoballs have nonempty triple intersection (which is harder to check); rather we
write a relation for each triple satisfying the necessary condition arising from Lemma 6. In principle this may
yield redundant relations which we later eliminate.

Step (5) was largely carried out by a computer. Using the bound on the level coming from the Cygan
distance (see Lemma 6), we found a Cygan ball containing all centers of horoballs that could possibly have
nonempty intersections with any of {A1B, . . . , ArB}. We then covered this ball by Γ∞-translates of D∞, and
iterated over the list of centers to generate a list of cycles. We then compute the matrix representation of
A−1
c (γ3

∞)−1Aaγ
1
∞Ab and attempt to identify it as a word in Γ∞. For d = 1, 3, 7 we did this very inefficiently,

by iterating over words in Γ∞ of increasing length until we found it. This way of searching would have taken
unreasonably long for the quaternions, so instead we devised a way of guessing the element based on distance,
and then making small corrections to get it exactly right. See [MCode] for the details of the computations.

In order to avoid tedious repetition of similar arguments or straightforward computations, we will only
give one detailed proof for each step for the Picard modular groups; we will give detailed arguments for the
quaternionic Hurwitz lattice. We will usually choose the most difficult case, or the most instructive if the
various cases are of similar difficulty. Step (1) is routine and we just state the results, except for the Hurwitz
lattice, where we find a presentation for Γ∞ in Lemma 15 and use Philippe’s fundamental domain found in [Ph]
(see Proposition 4). We give a detailed argument and proof for step (2) for the Picard modular group Γ(7) in
Lemma 13, and for step (3) for the same group and depth 2 in Lemma 14.

There seems to be no general strategy for step (4); we find all relevant matrices in this paper by combining
two tricks, which luckily cover all the cases we need. The first trick is to use stabilizers of vertical complex lines
in the Heisenberg group: it is easy to find such a matrix when it stabilizes the vertical axis, then we carry over
to other vertical lines by conjugating by a horizontal translation. The second trick is to hit all relevant integral
points by the group elements that we already know, and see if we land in the Γ∞-orbit of the point we are
trying to reach.

2.5 A toy example: Γ = PSL(2,Z)

In order to illustrate the method, we now go through its steps for Γ = PSL(2,Z) exactly as we will for the
more complicated Picard and Hurwitz modular groups. The results are either well-known or elementary and
we state them without proof.

Presentation and fundamental domain for the cusp stablilizer Γ∞: The cusp stabilizer Γ∞ has
presentation 〈T 〉; a fundamental domain for its action on ∂H2

R \ {∞} ' R is D∞ = [0, 1]. Concretely we use the
following generator for Γ∞:
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T =

[
1 1
0 1

]
Covering depth and Q-rational points in D∞: The covering depth of PSL(2,Z) is 1. The Q-rational

points of depth 1 in D∞ are 0 and 1, both in the same Γ∞-orbit. An integral lift of 0 is p0 = [0, 1]T ; we denote
p1 = Tp0.

In the Picard modular and Hurwitz cases this is a more difficult estimation, owing to the fact that we cannot
simply look at a 2-dimensional picture. In the Picard modular case we can look at a 3-dimensional picture to
guess at the covering depth which we may then verify, but in the Hurwitz case it is much more challenging to
use a picture for help; see Figure 5 for some visual intuition in that case.

Generators: The following element A0 ∈ Γ maps the point ∞ = [1, 0]T to p0:

A0 = I0 =

[
0 −1
1 0

]
In the Picard modular and Hurwitz cases we must find generators mapping ∞ to points of depth greater

than 1. While there is no general method for doing this, in practice we were always able to do it by combining
the two tricks described at the end of the previous section.

Relations: We list in Table 1 the relations obtained for PSL(2,Z) by applying generators to points of depth
at most 1 as described in part (5) of section 2.4. The second relation is obtained by following the corresponding
cycle of points, which gives I0TI0TI0 ∈ Γ∞. The latter element is computed to be T−1, giving the relation
(I0T )3 = Id.

For each matrix A and point p for which A.p has depth less than or equal to the covering depth, we obtain
a relation from the following cycle of points

∞ Ap−−→ p
W−1A−−−−→ p′

A−1

p′−−−→∞

We write A.p = W.p′ where W is an element of Γ∞ written as a word in its generators. Then A−1
p′ W

−1AAp is
an element of Γ∞, where Ap and Ap′ are our chosen generators taking∞ to p and p′ respectively. We write that
element as a word W ′ in the generators of Γ∞, and the relation we obtain from the cycle is Ap′WAAp = W ′

A.p p′ A−1p′ W−1AAp W′

I0p0 ∞ I2
0 Id

I0p1 p0 (TI0)−1(TI0)−1I0 T

Table 1: Action of generators on vertices for PSL(2,Z)

This step works in exactly the same way in the Picard modular and Hurwitz cases, but with more points
and more cycles.

3 Horosphere intersections

Our main reference for this section is [KP]. We will use the Siegel model of hyperbolic space Hn
K (with

K = R,C,H), which is the projective model (as described in Section 2.2) associated to the Hermitian form on
Kn+1 given by 〈Z,W 〉 = W ∗JZ with:

J =

 0 0 1
0 In−1 0
1 0 0


Then hyperbolic space Hn

K can be parametrized by Kn−1 × ImK × R+ as follows, denoting as before by π the
projectivization map: Hn

K = {π(ψ(ζ, v, u)) | ζ ∈ Kn−1, v ∈ ImK, u ∈ R+)}, where:
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ψ(ζ, v, u) =

 (−|ζ|2 − u+ v)/2
ζ
1

 (2)

(For consistency between the cases K = C,H, we use the convention that elements of ImC are of the form it with
t ∈ R). With this parametrization the boundary at infinity ∂∞Hn

K corresponds to the one-point compactification:{
π(ψ(ζ, v, 0)) | ζ ∈ Kn−1, v ∈ ImK

}
∪ {∞}

where∞ = π((1, 0, ..., 0)T ). The coordinates (ζ, v, u) ∈ Kn−1×ImK×R+ are called the horospherical coordinates
of the point π(ψ(ζ, v, u)) ∈ Hn

K.

Definition 3 For a fixed u0 ∈ R+, the level set Hu0 = {π(ψ(ζ, v, u0)) | ζ ∈ Kn−1, v ∈ ImK} is called the
horosphere at height u0 based at ∞, and Bu0 = {π(ψ(ζ, v, u)) | ζ ∈ Kn−1, v ∈ ImK, u > u0} is called the
horoball at height u0 based at ∞.

The punctured boundary ∂∞Hn
K \ {∞} is then naturally identified to the generalized Heisenberg group

Heis(K, n), defined as the set Kn−1 × ImK equipped with the group law:

(ζ1, v1)(ζ2, v2) = (ζ1 + ζ2, v1 + v2 + 2Im (ζ2 · ζ1))

where · denotes the usual Euclidean dot-product on Kn−1. This is the classical 3-dimensional Heisenberg group
when K = C and n = 2. The identification of ∂∞Hn

K \ {∞} with Heis(K, n) is given by the simply-transitive
action of Heis(K, n) on ∂∞Hn

K \ {∞}, where the element (ζ1, v1) ∈ Heis(K, n) acts on the vector ψ(ζ2, v2, 0) by
left-multiplication by the following Heisenberg translation matrix in U(n, 1,K):

T(ζ1,v1) =

 1 −ζ∗1 (−|ζ1|2 + v1)/2
0 In−1 ζ1
0 0 1

 (3)

Given an element U ∈ U(n,K), the Heisenberg rotation by U is given by the following matrix:

RU =

 1 0 0
0 U 0
0 0 1

 (4)

There is an additional class of isometries fixing∞ when K = H, coming from the action of diagonal matrices
which is non-trivial in the non-commutative case. Recall that our convention is that matrices act on vectors
on the left, and scalars act on vectors on the right. Then, for any unit quaternion q ∈ H, the diagonal matrix
Cq = q Id acts by the isometry of hyperbolic space given by conjugating horospherical coordinates (the result
of multiplying the vector form (2) by q on the left, then normalizing by q−1 on the right):

Cq : (ζ, v, u) 7−→ (qζq−1, qvq−1, u) (5)

For this reason, when K = H the relevant projectivization of U(n, 1,H) acting on Hn
H is PU(n, 1,H) =

U(n, 1,H)/{±Id} rather than U(n, 1,H)/U(1).
Heisenberg translations and rotations, as well as conjugation by unit quaternions, preserve the following

distance function on Heis(K, n), called the Cygan metric, defined for (ζ1, v1), (ζ2, v2) ∈ Heis(K, n) by:

dC((ζ1, v1), (ζ2, v2)) =
∣∣∣|ζ1 − ζ2|4 +

∣∣v1 − v2 + 2Im (ζ2 · ζ1)
∣∣2∣∣∣1/4 (6)

= |2〈ψ(ζ1, v1, 0), ψ(ζ2, v2, 0)〉|1/2 (7)

This is in fact the restriction to ∂∞Hn
K \ {∞} of an incomplete distance function on Hn

K \ {∞} called the
extended Cygan metric (see [KP]), defined for (ζ1, v1, u1), (ζ2, v2, u2) ∈ Kn−1 × ImK× R>0 ' Hn

K \ {∞} by:

dXC((ζ1, v1, u1), (ζ2, v2, u2)) =
∣∣∣(|ζ1 − ζ2|2 + |u1 − u2|

)2
+
∣∣v1 − v2 + 2Im (ζ2 · ζ1)

∣∣2∣∣∣1/4 (8)

= |2〈ψ(ζ1, v1, u1), ψ(ζ2, v2, u2)〉|1/2 (9)
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We define Cygan spheres, Cygan balls, extended Cygan spheres and extended Cygan balls in the usual way
relative to these distance functions.

When Γ < U(n, 1,OE) is an integral lattice with OE a principal ideal domain as in section 2.2, the Cygan
distance relates to levels and depths of integral boundary points as follows:

Lemma 6 Let g = (gi,j) and h = (hi,j) ∈ U(n, 1,OE) satisfy g∞ 6= ∞, h∞ 6= ∞, and denote (ζg, vg), (ζh, vh)
the horospherical coordinates of g∞, h∞ respectively. Then:

dC ((ζg, vg), (ζh, vh)) =

(
4lev(g∞, h∞)

depth(g∞)depth(h∞)

)1/4

.

In particular, given n > 1:

lev(g∞, h∞) 6 n ⇐⇒ dC ((ζg, vg), (ζh, vh)) 6

(
4n

depth(g∞)depth(h∞)

)1/4

.

Proof. By Lemma 2, the first column vector of g (resp. h) is a primitive integral lift of g∞ (resp. h∞), and
it can be written in terms of horospherical coordinates as gn+1,1ψ(ζg, vg) (resp. hn+1,1ψ(ζh, vh)). Therefore,
using (6) we have:

lev(g∞, h∞) = 〈gn+1,1ψ(ζg, vg), hn+1,1ψ(ζh, vh)〉
= |gn+1,1|2|hn+1,1|2〈ψ(ζg, vg), ψ(ζh, vh)〉

= depth(g∞)depth(h∞)
dC ((ζg, vg), (ζh, vh))

4

4
.

�

When we apply Macbeath’s theorem we argue that the images under Γ of the horoball Bu based at ∞ at a
certain height u > 0 cover X, or equivalently cover the horosphere Hu = ∂Bu. The following result allows us
to control the traces on Hu of these images in terms of Cygan spheres depending only on arithmetic data. It
involves Ford isometric spheres, whose definition we first recall.

Definition 4 The Ford isometric sphere Ig of an isometry g ∈ U(n, 1,K) is defined as

Ig =
{
z = (ζ, v, u) ∈ Hn

K | |〈ψ(z), ψ(∞)〉| = |〈ψ(z), g−1ψ(∞)〉|
}

By Proposition 4.3 of [KP], the Ford isometric sphere Ig of g = (gi,j) ∈ U(n, 1,K) is in fact the extended

Cygan sphere S with center g−1(∞) and radius
√

2/|gn+1,1|.

Proposition 1 Let g = (gi,j) ∈ U(n, 1,K) satisfy g(∞) 6=∞, S = Ig−1 the extended Cygan sphere with center

g(∞) and radius
√

2/|gn+1,1|, and Hu0 the horosphere based at ∞ at height u0 > 0. Then Hu0 ∩ g(Hu0) =
Hu0 ∩ S.

Proof. Using the following standard form for g and g−1, equation (1.2) of [KP], where a, b, c, d ∈ K,
α, β, γ, δ ∈ Kn−1 and A ∈ Mn−1(K):

g =

 a γ∗ b
α A β
c δ∗ d

 , g−1 =

 d̄ β∗ b̄
δ A∗ γ
c̄ α∗ ā

 , (10)

from Equation (2) and Definition 4 we get that: z = (ζ, v, u) ∈ Ig−1 = S ⇐⇒
∣∣ c̄

2 (−|ζ|2 − u+ v) + α∗ζ + ā
∣∣2 =

1.
Now fix u0 > 0 and let z = (ζ, v, u0) ∈ Hu0

. We claim that: g−1(z) ∈ Hu0
⇐⇒ z ∈ S.

Indeed, using the above forms for g−1 and ψ(z) we have:
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g−1ψ(z) =

 d̄
2 (−|ζ|2 − u0 + v) + β∗ζ + b̄
δ
2 (−|ζ|2 − u0 + v) +A∗ζ + γ
c̄
2 (−|ζ|2 − u0 + v) + α∗ζ + ā

 =

 ζ1
ζ2
ζ3

 .

The corresponding point is in the horosphere Hu0
if and only if its u-coordinate in horospherical coordinates

equals u0. Now the u-coordinate of a point is recovered from any lift (ζ1, ζ2, ζ3)T by:

u = −ζ1ζ−1
3 − ζ1ζ−1

3 − |ζ2ζ−1
3 |2 = −ζ−1

3 ζ1 − ζ−1
3 ζ1ζ

−1
3 ζ3 − |ζ2ζ−1

3 |2 = −|ζ3|−2(ζ3ζ1 + ζ1ζ3 + |ζ2|2).

(Note that we conjugated by ζ3 in the second step). Therefore: g−1(z) ∈ Hu0
⇐⇒ ζ3ζ1+ζ1ζ3+|ζ2|2 = −u0|ζ3|2.

Expanding the left-hand side gives:(
(−|ζ|2 − u0 − v)

c

2
+ ζ∗α+ a

)( d̄
2

(−|ζ|2 − u0 + v) + β∗ζ + b̄

)
+

(
(−|ζ|2 − u0 − v)

d

2
+ ζ∗β + b

)( c̄
2

(−|ζ|2 − u0 + v) + α∗ζ + ā
)

+

(
(−|ζ|2 − u0 − v)

δ

2

∗
+ ζ∗A+ γ∗

)(
δ

2
(−|ζ|2 − u0 + v) +A∗ζ + γ

)
If we further expand by distributing and collecting the terms in (−|ζ|2− u0), ζ, v (and their conjugates and

products), all terms vanish by the relations gg−1 = g−1g = Id applied to the standard forms of g, g−1 from
equation (10), except for the term in (−|ζ|2 − u0)/2 which has coefficient (ad̄+ bc̄+ γ∗δ) + (cb̄+ dā+ δ∗γ) = 2
and the term in ζζ∗ which has coefficient αβ∗+βα∗+AA∗ = Id. Therefore the left-hand side simplifies to −u0,
whence:

g−1(z) ∈ Hu0
⇐⇒ −u0 = −u0|ζ3|2 ⇐⇒ |ζ3|2 = 1 ⇐⇒ z ∈ S.

This proves the claim and hence the Lemma. �

Corollary 1 Let E be a number field such that OE is a principal ideal domain, p ∈ ∂∞X an E-rational point
with depth n > 1 and gp ∈ U(H,OE) satisfying gp(∞) = p. Then Hu0

∩gp(Hu0
) = Hu0

∩S, with S the extended

Cygan sphere centered at p with radius
(

4
n

)1/4
. In particular: Hu0 ∩ gp(Hu0) = ∅ ⇐⇒ u0 > u(n) = 2√

n
.

Proof. Since gp(∞) = p and e1 = (1, 0, ..., 0)T is a lift of ∞, the first column vector of gp is a lift P0 of p,
and since gp ∈ U(H,OE) it is an integral lift. In fact by Lemma 2 it is a primitive lift, therefore the depth of p
is |〈P0, e1〉|2 = |gn+1,1|2, denoting as above gp = (gi,j), and the result follows from Proposition 1. The second
part of the statement follows by using this radius in the formula (8) for the extended Cygan metric. �

We will also use the following observation, which is Lemma 1 of [FFP], in our covering arguments:

Lemma 7 Extended Cygan balls are affinely convex in horospherical coordinates.

Finally, when considering the action of a discrete subgroup Γ∞ of Isom(∂∞X) (relative to the Cygan metric)
it is convenient to consider its vertical and horizontal components defined as follows (see [FP] for the case
K = C and n = 2). The homomorphism Π : Heis(K, n) → Kn−1 given by projection to the first factor in the
decomposition of the set Heis(K, n) as Kn−1 × ImK induces a short exact sequence:

1 −→ ImK −→ Isom(Heis(K, n))
Π∗−−→ Isom(Kn−1) −→ 1, (11)

where the isometries of Kn−1 are relative to the Euclidean metric and and ImK acts by (”vertical”) translations.
Denoting Γv∞ = Γ∞ ∩ ImK and Γh∞ = Π∗(Γ∞) this gives the short exact sequence:

1 −→ Γv∞ −→ Γ∞
Π∗−−→ Γh∞ −→ 1. (12)
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4 Picard modular groups

In this section we use the method described in Section 2.4 to compute presentations for the Picard modular
groups Γ(d) = PU(2, 1,Od) with d = 1, 3, 7. The following propositions summarize the results in this section.
Recall that presentations for Γ(d) = PU(2, 1,Od) with d = 1, 3 were obtained in [FP] and [FFP] respectively.
We only include these cases as test cases for our method; it turns out that the presentation we obtain when d = 1
simplifies nicely (thanks to Magma [Mag]) so we include it below, whereas the presentation we obtain when
d = 3 is much more complicated than the Falbel-Parker presentation, so we only include it in the appendix. We
note the abelianization in each case as a corollary of the presentation.

Corollary 2 ([FP]) The abelianization of Γ(3) is Z/6Z.

Proposition 2 The Picard modular group Γ(1) = PU(2, 1,O1) admits the presentation 〈I, A |R1〉, where R1

is the following set of 6 relations:

I2 = Id
A8 = Id
IA−2IA2IA2IA−2 = Id
(IA3IA−3)3 = Id
(A−1IA−2IA−1IA3IA−1IA−2I)3 = Id
IA−2IAIA3IAIA−2IA−1IAIA2IA−1IAIA−2−
IA−1IAIA−2IA−1IAIA−2IA−1IA3IAIA3IA3IA−1IA3IA3IA = Id

Corollary 3 ([FFP]) The abelianization of Γ(1) is Z/2Z× Z/4Z.

Proposition 3 The Picard modular group Γ(7) = PU(2, 1,O7) admits the presentation 〈T1, R, I |R7〉, where
R7 is the following set of 13 relations:

R2 = Id
I2 = Id
(RI)2 = Id
RT1RT1 = T1RT1R
(T1IT

−1
1 R)4 = Id

(T−1
1 IT1R)4 = Id

T−1
1 IT−1

1 IT1IT1IT
−3
1 IT1IT1IT

−1
1 IT−1

1 = Id
(T−1

1 IT1IT1IT
−1
1 IT−1

1 I)2 = Id
(IT−1

1 R)7 = Id
T−1

1 IT1IT1IT
−2
1 IT−1

1 IT1IT
2
1 IT

−1
1 IT−1

1 IT1I = Id
T−1

1 IT1IT1IRT1IRT1IT1IT
−1
1 IT−1

1 IT1RT
−1
1 IRT−1

1 I = Id
RT1IRT1IT1IT

−1
1 IT−1

1 IRT−1
1 IRT−1

1 IT−1
1 IT1IT1IT

−1
1 = Id

RT1IRT1RT
−1
1 IT1IT1IRT1IT1IT

−1
1 RT1RIT1RT

−1
1 IT1IT1IT1IT

−1
1 = Id

Corollary 4 The abelianization of Γ(7) is Z/2Z.

The action of Γ∞(d) = StabΓ(d)(∞) on ∂H2
C is well understood for all d, see [FP] for d = 3, [FFP] for d = 1

and Section 5.3 of [PW] for all other values (using unpublished notes of Falbel-Francsics-Parker). We will refer
to these papers for presentations and fundamental domains for Γ∞(d) which we state in Lemmas 8, 10 and 12.

We will denote τ = 1+i
√
d

2 when d ≡ 3 (mod 4), so that Od = Z[τ ].

4.1 The Eisenstein-Picard modular group Γ(3) = PU(2, 1,O3)

Presentation and fundamental domain for the cusp stabilizer Γ∞(3):
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Figure 1: Covering the prism D∞(3) by Cygan balls of depth 1

Lemma 8 1. The cusp stabilizer Γ∞(3) admits the following presentation:

Γ∞(3) =

〈
T1, Tτ , R

∣∣∣ [[T1, Tτ ], T1] , [[T1, Tτ ], Tτ ] , [[T1, Tτ ], R] ,
R−1TτR = T1, R

−1T1R = T1T
−1
τ , R6

〉
.

2. Let D∞(3) ⊂ ∂H2
C be the affine convex hull of the points with horospherical coordinates (0, 0), (1, 0),

( τ+1
3 , 0), (0, 2

√
3), (1, 2

√
3), ( τ+1

3 , 2
√

3). Then D∞(3) is a fundamental domain for Γ∞(3) acting on
∂H2

C \ {∞}.

Concretely, we use the following generators for Γ∞(3) (recall that τ = 1+i
√

3
2 )

T1 = T(1,
√

3) =

 1 −1 τ2

0 1 1
0 0 1

 Tτ = T(τ,
√

3) =

 1 −τ̄ τ2

0 1 τ
0 0 1

 R =

 1 0 0
0 τ 0
0 0 1


Covering depth and Q[i

√
3]-rational points in D∞(3):

We denote B ((z, t), r) the open extended Cygan ball centered at p = (z, t) ∈ ∂∞H2
C with radius r (see

Equation 8 for the definition of the extended Cygan metric). Recall that u(n) = 2√
n

is the height at which balls

of depth n appear, in the sense of Corollary 1.

Lemma 9 Let u = u(5) + ε = 0.895 and Hu the horosphere of height u based at ∞. Then the prism D∞(3)×
{u} is covered by the intersections with Hu of the following extended Cygan balls of depth 1: B

(
(0, 0),

√
2
)
,

B
(
(0, 2
√

3),
√

2
)

and B
(
(1,
√

3),
√

2
)
.

We omit the proof, which is similar to the proof of Lemma 13 but much simpler; see Figure 4.1.

Note that in order to cover D∞(3)× {u} we only need balls of depth 1, in particular none of depths 3 or 4
even though they are present at the height u = u(5) + ε which we consider. It seems however necessary to pass
to this height, as we have observed experimentally that at height u = u(4) + ε balls of depth at most 3 do not
cover D∞(3)×{u} (there are no Q[i

√
3]-rational points of depth 2), i.e. that the covering depth is more than 3.
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Corollary 5 The covering depth of Γ(3) is at most 4.

By inspection, we see that the Q[i
√

3]-rational points in D∞(3) with depth at most 4 are, in horospherical
coordinates:

• Depth 1: (0, 0), (0, 2
√

3) and (1,
√

3), all in the same Γ∞(3)-orbit;

• Depth 3: (0, 2
3

√
3), (1, 5

3

√
3) in one Γ∞(3)-orbit, andF (0, 4

3

√
3), (1, 1

3

√
3) in the other;

• Depth 4: (0,
√

3), (1, 0) and (1, 2
√

3), all in the same Γ∞(3)-orbit.

Integral lifts of representatives of Γ∞(3)-orbits of these points are:

p0 =

 0
0
1

 p3,1 =

 −1
0

i
√

3

 p3,2 =

 −2
0

i
√

3

 p4 =

 i
√

3
0
2


Generators: The following elements Aα ∈ Γ(3) map the point ∞ = [1, 0, 0]T to the corresponding pα as

above (for α = 0; 3, 1; 3, 2; 4) :

A0 = I0 =

 0 0 1
0 −1 0
1 0 0

 A3,1 = A3 =

 −1 0 i
√

3
0 1 0

i
√

3 0 2



A3,2 = A−1
3 A4 =

 −i√3 0 −2
0 −1 0

−2 0 i
√

3


Relations: We obtain a complete set of relations between these generators by applying generators to points

of depth at most 4 as described in part (5) of section 2.4. The detailed steps of the computation can be
found on the companion Sagemath Jupyter notebook in [MCode]. The direct output is a presentation with 8
generators and 583 relations, which simplifies, thanks to Magma [Mag], to the presentation in the appendix.
More specifically, we obtain that particular simplification by specifying a subset of the generators which must
be preserved, using in this case the command Simplify (G: Preserve:=[1,4,5]);.

To illustrate the steps involved we compute by hand the cycles and relations corresponding to triples (a, b, c)
for which the point Aa(pb) has depth at most 4, hence is of the form γ∞(pc) for some γ∞ ∈ Γ∞ and pc ∈ D∞
with depth at most 4. In the notation of part (5) of section 2.4, this corresponds to γ1

∞ = Id and γ3
∞ = γ∞.

The results are listed in Table 2, with the same notation as in the example of section 2.5.

4.2 The Gauss-Picard modular group Γ(1) = PU(2, 1,O1)

Presentation and fundamental domain for the cusp stabilizer Γ∞(1):

Lemma 10 1. The cusp stabilizer Γ∞(1) admits the following presentation:

Γ∞(1) =

〈
T2, Tτ , Tv, R

∣∣∣ [Tτ , T2] = T 4
v , [Tv, T2], [Tv, Tτ ], [Tv, R], R4,

RT2R
−1 = T 2

τ T
−1
2 T 4

v , RTτR
−1 = TτT

−1
2 T 2

v

〉
.

2. Let D∞(1) ⊂ ∂H2
C be the affine convex hull of the points with horospherical coordinates (0, 0), (1, 0), (τ, 0),

(0, 2), (1, 2), (τ, 2). Then D∞(1) is a fundamental domain for Γ∞(1) acting on ∂H2
C \ {∞}.

Concretely, we use the following generators for Γ∞(1) (denoting τ = 1 + i):
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A.p p′ A−1p′ W−1AAp W′

I0p0 ∞ I2
0 Id

A4p4 ∞ A2
4 Id

Rp0 p0 I0RI0 R

Rp3,1 p3,1 A−1
3 RA3 R

Rp3,2 p3,2 A3RA
−1
3 R

I0(0, 2
√

3) p3,2 A3TvI0TvI0 R3

I0(1,
√

3) p0 I0T
−1
τ TvI0T1I0 T−1

v T1T
−1
τ

I0p3,1 p0 I0TvI0A3 R3T−1
v

I0p3,2 p4 A−1
4 TvI0A

−1
3 R3

I0p4 p3,1 A−1
3 TvI0A4 R3

A3p0 p4 A−1
4 A3I0 R3Tv

A3p4 p0 I0T
−1
v A3A4 R3

A3p3,1 p3,2 A3
3 R3

A4p0 p3,2 A3A4I0 R3Tv

A4p3,1 p0 I0T
−1
v A4A3 R3

Table 2: Action of generators on vertices for d = 3

T2 = T(2,0) =

 1 −2 −2
0 1 2
0 0 1

 Tτ = T(τ,0) =

 1 −τ̄ −1
0 1 τ
0 0 1



Tv = T(0,2) =

 1 0 i
0 1 0
0 0 1

 R =

 1 0 0
0 i 0
0 0 1


Covering depth and Q[i]-rational points in D∞(1):
We denote B ((z, t), r) the open extended Cygan ball centered at p = (z, t) ∈ ∂∞H2

C with radius r (see
Equation 8 for the definition of the extended Cygan metric). Recall that u(n) = 2√

n
is the height at which balls

of depth n appear, in the sense of Corollary 1.

Lemma 11 Let u = u(5)+ε = 0.895 and Hu the horosphere of height u based at∞. Then the prism D∞(1)×{u}
is covered by the intersections with Hu of the following extended Cygan balls:

• (depth 1) B
(
(0, 0),

√
2
)
, B

(
(0, 2),

√
2
)
, B

(
(τ, 0),

√
2
)
, B

(
(τ, 2),

√
2
)
, B

(
(1,
√

7),
√

2
)
,

• (depth 2) B
(
(1, 1), 4

√
2
)
.

We omit the proof, which is similar to the proof of Lemma 13 but simpler; see Figure 4.2.

Note that in order to cover D∞(1)× {u} we only need balls of depth at most 2, in particular none of depth
4 even though they are present at the height u = u(5) + ε which we consider. It is however necessary to pass
to this height, as we have observed experimentally that at height u = u(4) + ε balls of depth at most 2 do not
cover D∞(1)× {u} (there are no Q[i]-rational points of depth 3).

Corollary 6 The covering depth of Γ(1) is at most 4.

14



Figure 2: Covering the prism D∞(1) by Cygan balls of depth 1 and 2

By inspection, we see that the Q[i]-rational points in D∞(1) with depth at most 4 are, in horospherical
coordinates:

• Depth 1: (0, 0), (0, 2), (τ, 0) and (τ, 2), all in the same Γ∞(1)-orbit;

• Depth 2: (1, 1)

• Depth 4: (0, 1), (τ, 1) in one Γ∞(1)-orbit and (1, 0), (1, 2) in the other.

Integral lifts of representatives of Γ∞(1)-orbits of these points are:

p0 =

 0
0
1

 p2 =

 −1
1 + i
1 + i

 p4,1 =

 i
0
2

 p4,2 =

 −1
2
2


Generators: The following elements Aα ∈ Γ(1) map the point ∞ = [1, 0, 0]T to the corresponding pα as

above (for α = 0; 2; 4, 1; 4, 2) :

A0 = I0 =

 0 0 1
0 −1 0
1 0 0

 A2 =

 −1 −2 2 + i
1 + i 2 + i −1− i
1 + i 1 + i −i



A4,1 =

 i 0 1
0 −1 0
2 0 −i

 A4,2 =

 −1 −2 2
2 3 −2
2 2 −1


Relations: We obtain a complete set of relations between these generators by applying generators to points

of depth at most 4 as described in part (5) of section 2.4. The detailed steps of the computation can be
found on the companion Sagemath Jupyter notebook in [MCode]. The direct output is a presentation with 8
generators and 247 relations, which simplifies, thanks to Magma [Mag], to the presentation in Proposition 2.
More specifically, we obtain that particular simplification by specifying a subset of the generators which must
be preserved, using in this case the command Simplify (G: Preserve:=[5,6]);.

To illustrate the steps involved we compute by hand the cycles and relations corresponding to triples (a, b, c)
for which the point Aa(pb) has depth at most 4, hence is of the form γ∞(pc) for some γ∞ ∈ Γ∞ and pc ∈ D∞
with depth at most 4. In the notation of part (5) of section 2.4, this corresponds to γ1

∞ = Id and γ3
∞ = γ∞.

The results are listed in Table 3, with the same notation as in the example of section 2.5.
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A.p p′ A−1p′ W−1AAp W′

I0p0 ∞ I2
0 Id

A4,1p4,1 ∞ A2
4,1 Id

A4,2p4,2 ∞ A2
4,2 Id

Rp0 p0 I0RI0 R

Rp4,1 p4,1 A−1
4,1RA4,1 R

I0(0, 2) p0 I0TvI0TvI0 RT−1
v

I0(τ, 0) (τ, 0) (TτI0)−1I0TτI0 R3Tτ

I0(τ, 2) p2 (TvTτI0)−1I0TτT
−1
2 A2 R2

I0p2 p0 I0T
−1
τ TvI0A2 RT−1

2 T−1
v

I0p4,1 p0 I0T
2
v I0A4,1 RT−1

v

I0p4,2 p0 I0T
−1
2 I0A4,2 T−1

2

A2p0 p0 I0T
2
v I0A4,1 RT−1

v

A2p2 ∞ A2
2 R−1T−1

2 TτT
−3
v

A2p4,1 p2 A−1
2 T−4

v T−1
2 TτA2A4,1 R2T−1

2

A2p4,2 p2 A−1
2 T−1

v A2A4,2 T2T
−1
τ R

A4,1p0 p0 I0T
−1
v A4,1I0 R−1T 2

v

A4,1p2 p2 A−1
2 A4,1A2 R2T−1

τ T−1
2 T−2

v

A4,2p0 p0 I0T
−1
2 A4,2I0 T−1

2

A4,2p2 (τ, 0) (TτI0)−1TvA4,2A2 R−1TτT
−1
2

Table 3: Action of generators on vertices for d = 1

4.3 The Picard modular group Γ(7) = PU(2, 1,O7)

Presentation and fundamental domain for the cusp stabilizer Γ∞(7):

Lemma 12 1. The cusp stabilizer Γ∞(7) admits the following presentation:

Γ∞(7) =
〈
T1, Tτ , Tv, R

∣∣∣ [Tτ , T1] = Tv, [Tv, T1], [Tv, Tτ ], [Tv, R], (RTτ )2, (RT1)2 = Tv, R
2
〉

2. Let D∞(7) ⊂ ∂H2
C be the affine convex hull of the points with horospherical coordinates (0, 0), (1, 0), (τ, 0),

(0, 2
√

7), (1, 2
√

7), (τ, 2
√

7). Then D∞(7) is a fundamental domain for Γ∞(7) acting on ∂H2
C \ {∞}.

Concretely, we use the following generators for Γ∞(7) (denoting τ = 1+i
√

7
2 ):

T1 = T(1,
√

7) =

 1 −1 τ − 1
0 1 1
0 0 1

 Tτ = T(τ,0) =

 1 −τ̄ −1
0 1 τ
0 0 1



Tv = T(0,2
√

7) =

 1 0 i
√

7
0 1 0
0 0 1

 R =

 1 0 0
0 −1 0
0 0 1


Covering depth and Q[i

√
7]-rational points in D∞(7):

We denote B ((z, t), r) the open extended Cygan ball centered at p = (z, t) ∈ ∂∞H2
C with radius r (see

Equation 8 for the definition of the extended Cygan metric). Recall that u(n) = 2√
n

is the height at which balls

of depth n appear, in the sense of Corollary 1.
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Figure 3: Covering the prism D∞(7) by Cygan balls of depth 1, 2 and 4

Lemma 13 Let u = u(8) + ε = 0.70711 and Hu the horosphere of height u based at ∞. Then the prism
D∞(7)× {u} is covered by the intersections with Hu of the following extended Cygan balls:

• (depth 1) B
(
(0, 0),

√
2
)
, B

(
(0, 2
√

7),
√

2
)
, B

(
(τ, 0),

√
2
)
, B

(
(τ, 2
√

7),
√

2
)
, B

(
(1,
√

7),
√

2
)
,

• (depth 2) B
(
(τ/2, 3

√
7/2), 4

√
2
)
, B

(
((τ + 1)/2,

√
7), 4
√

2
)

• (depth 4) B
(
(τ,
√

7), 1
)
.

Proof. Figure 4.3 shows the prism D∞(7) and the relevant Cygan balls. We prove the result by dissecting
the prism D∞(7) × {u} into affine polyhedra, each of which lies in one of the extended Cygan balls. This is
reminiscent of the proof of Proposition 5.2 of [Zh]. Consider the following points of ∂∞H2

C, in horospherical
coordinates (see Figure 4.3):

q1 = (0.65τ, 2.8) q2 = (τ, 2) q3 = (τ, 3.3) q4 = (0.35 + 0.65τ, 3.4) q5 = (0.7 + 0.3τ, 4.2)
q6 = (1, 4.3) q7 = ((τ + 1)/2, 1.5) q8 = (τ, 1.5) q9 = ((τ + 1)/2, 0) q10 = (1, 1)

q11 = (τ, 4) q12 = ((τ + 1)/2, 2
√

7) q13 = (τ/2, 4) q14 = (τ/2, 2
√

7) q15 = (0, 3.5)
q16 = (0.3τ, 3) q17 = (τ/2, 1) q18 = (0, 1.7) q19 = (τ/2, 0)

Denoting Hull(S) the affine hull (in horospherical coordinates) of a subset S ⊂ Hu ' ∂∞H2
C × {u}, we

claim that the following affinely convex pieces of D∞(7)× {u} are each contained in the corresponding (open)
extended Cygan sphere:

• D1 = Hull ((0, 0), (1, 0), q9, q10, q17, q18, q19) ⊂ B
(
(0, 0),

√
2
)

• D2 = Hull
(
(0, 2
√

7), (1, 2
√

7), q6, q12, q13, q14, q15

)
⊂ B

(
(0, 2
√

7),
√

2
)

• D3 = Hull ((τ, 0), q7, q8, q9, q17, q19) ⊂ B
(
(τ, 0),

√
2
)

• D4 = Hull
(
(τ, 2
√

7), q11, q12, q13, q14

)
⊂ B

(
(τ, 2
√

7),
√

2
)

• D5 = Hull
(
(1,
√

7), q6, q7, q10, q15, q16, q17, q18

)
⊂ B

(
(1,
√

7),
√

2
)
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• D6 = Hull (q1, q3, q4, q5, q11, q12, q13, q15, q16) ⊂ B
(
(τ/2, 3

√
7/2), 4

√
2
)

• D7 = Hull (q1, q2, q4, q5, q6, q7, q8, q16, q17) ⊂ B
(
((τ + 1)/2,

√
7), 4
√

2
)

• D8 = Hull (q1, q2, q3, q4) ⊂ B
(
(τ,
√

7), 1
)

To verify each of these claims, we check numerically that each of the vertices indeed belongs to the ball in
question using Equation (8), then extend to the whole affine covex hull by Lemma 7. For example, the point
q1 = (0.65τ, 2.8) indeed belongs to B

(
(τ/2, 3

√
7/2), 4

√
2
)
, B
(
((τ + 1)/2,

√
7), 4
√

2
)

and B
(
(τ,
√

7), 1
)

because:

dXC
(
(0.65τ, 2.8, u), (τ/2, 3

√
7/2, 0)

)
' 1.179 < 4

√
2 ' 1.189

dXC
(
(0.65τ, 2.8, u), ((τ + 1)/2,

√
7, 0)

)
' 1.172 < 4

√
2 ' 1.189

dXC
(
(0.65τ, 2.8, u), (τ,

√
7, 0)

)
' 0.982 < 1

The result then follows as the prism D∞(7)× {u} is the union of the affinely convex pieces D1, ..., D8. Indeed,
each of these pieces has all of its vertices on the boundary of the prism, the union of the boundaries of the pieces
covers the boundary of the prism, and each piece shares a codimension-1 face with its neighbors, see Figure 4.3.
�

Corollary 7 The covering depth of Γ(7) is at most 7.

Note that in the above covering argument we have only needed balls of depth at most 4 (in particular none of
depth 7) even though they are present at the height u = u8 + ε which we consider. It is however necessary to
pass to this height, as we have observed experimentally that at height u = u7 + ε balls of depth at most 4 do
not cover D∞(7)× {u} (there are no Q[i

√
7]-rational points of depths 5 or 6).

By inspection, we see that the Q[i
√

7]-rational points in D∞(7) with depth at most 7 are the following, in
horospherical coordinates. We give in Lemma 14 below a detailed justifcation for the points of depth 2.

• Depth 1: (0, 0), (0, 2
√

7), (τ, 0), (τ, 2
√

7) and (1,
√

7), all in the same Γ∞(7)-orbit;

• Depth 2: ( τ2 ,
3
2

√
7) in one Γ∞(7)-orbit and ( τ+1

2 ,
√

7) in the other;

• Depth 4: (0,
√

7), (τ,
√

7), (1, 0), (1, 2
√

7) in one Γ∞(7)-orbit, ( τ2 ,
1
2

√
7) in a second, ( τ+1

2 , 0), ( τ+1
2 , 2
√

7)

in a third, ( τ+1
4 , 5

√
7

4 ) in a fourth, and ( τ+2
4 , 3

√
7

2 ) in a fifth.

• Depth 7: for each k = 1, ..., 6, there is a Γ∞(7)-orbit containing the 3 points (0, 2k
7

√
7), (τ, 2k

7

√
7),

(1, 2k+7
7

√
7) (with 2k + 7 taken mod 7).

Integral lifts of representatives of Γ∞(7)-orbits of these points are:

p0 =

 0
0
1

 p2,1 =

 −τ − 2
−1
τ − 1

 p2,2 =

 2
1− τ
−τ



p4,1 =

 i
√

7
0
2

 p4,2 =

 τ − 1
τ
2

 p4,3 =

 −1
τ + 1

2

 p4,4 =

 −2τ − 1
−1
τ − 2

 p4,5 =

 2τ − 4
τ

τ + 1



p7,1 =

 −1
0

i
√

7

 p7,2 =

 −2
0

i
√

7

 p7,3 =

 −3
0

i
√

7

 p7,4 =

 −4
0

i
√

7

 p7,5 =

 −5
0

i
√

7

 p7,6 =

 −6
0

i
√

7


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(0, 0) (τ, 0)
(1, 0) (1, 0)

(1, 0)

(0, 2
√

7) (τ, 2
√

7)(1, 2
√

7) (1, 2
√

7)

(1, 2
√

7)

q1

q2

q3
q4

q5

q6q6

q7q8

q9

q9

q10q10

q11

q12

q12

q13

q14

q15

q16

q17

q18

q19

1 1

1

1

2 2

2

2

3 3

3

4

4

4

5

5

5

6

6

7

78

8

Figure 4: Affine cell decomposition of the prism D∞(7)
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Lemma 14 The Q[i
√

7]-rational points in D∞(7) with depth 2 are exactly ( τ2 ,
3
2

√
7) and ( τ+1

2 ,
√

7).

Proof. We illustrate the general procedure for finding points of depth n, then specialize to the present case.
The depths at which there will be E-rational points are the natural numbers n such that |z|2 = n has a

solution z ∈ Od. For d = 7, the first few n’s are 1, 2, 4, 7, . . .. Begin by assuming we have found all points of
depth less than n. In this case those are just the points at depth 1.

1. Find all q = x + yτ ∈ Od (up to multiplication by a unit) with |q|2 = n. From the geometry of
numbers, we know that there are only finitely many such q. In this case, there are two possibilities: either

q = τ := 1+i
√

7
2 or q = τ − 1.

2. Consider the standard lift of a point of ∂H2
K \ {∞}:

P =

 −|z|2+it
2
z
1


Note that t = b

√
7 for some b ∈ Q. The calculation is more transparent if we rewrite the first coordinate:

−|z|2 + it

2
=
−|z|2 − b

2
+ bτ

For P to be the vector form of an E-rational point p of depth 2, it must satisfy the following:

(a) P does not have depth 1 (in general, P does not have depth less than n). In other words, the
coordinates of P are not in O7.

(b) Pq’s coordinates must be in O7 for some q from step (1).

Next, we do some calculations to make sure (b) is satisfied.

3. Find all z in the projection to C of D∞ such that zq ∈ O7. If q = τ we can have z = 0, 1, τ, or 1+τ
2 . If

q = τ − 1, we can have z = 0, 1, τ, τ2 .

4. For each possible z, find |z|2 and compute
(
−|z|2−b

2 + bτ
)
q. Use this to list all b’s such that (z, b) ∈ D∞

and
(
−|z|2−b

2 + bτ
)
q ∈ O7.

z |z|2 q
(
−|z|2−b

2 + bτ
)
q b’s point(s) in horo. coords

0 0 τ −2b+ bτ
2 0, 2 (0, 0), (0, 2

√
7)

τ − 1 − 3b
2 −

b
2τ 0, 2 (0, 0), (0, 2

√
7)

1 1 τ 2b+ b−1
2 τ 1 (1,

√
7)

τ − 1 1−3b
2 − 1+b

2 τ 1 (1,
√

7)

τ 2 τ −2b− b−2
2 0, 2 (0, 0), (0, 2

√
7)

τ − 1 2−3b
2 − 2+b

2 τ 0, 2 (0, 0), (0, 2
√

7)
1+τ

2 1 τ 2b+ b−1
2 τ 1

(
1+τ

2 ,
√

7
)

τ
2

1
2 τ − 1 1−6b

4 − 1+2b
4 τ 3

2

(
τ
2 ,

3
√

7
2

)
5. Get rid of all the ones that are level 1 (or from any previous level). What you are left with are the level

2 points:
{(

1+τ
2 ,
√

7
)
,
(
τ
2 ,

3
√

7
2

)}
.

�

Generators: The following elements Aα ∈ Γ(7) map the point ∞ = [1, 0, 0]T to the corresponding pα as
above (for α = 0; 2, 1; 2, 2; 4, 1; ...; 4, 5; 7, 1; ...; 7, 6) :
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A0 = I0 =

 0 0 1
0 −1 0
1 0 0

 A2,1 =

 −τ − 2 −5 5
−1 −1 0

τ − 1 i
√

7 −i
√

7

 A2,2 =

 2 −τ τ − 1
1− τ −2 τ
−τ τ − 1 2



A4,1 =

 i
√

7 0 4
0 1 0

2 0 −i
√

7

 A4,2 =

 τ − 1 τ 2
τ 2 1− τ
2 1− τ −τ

 A4,3 =

 −1 τ − 2 2
τ + 1 3 −τ − 1

2 2− τ −1



A4,4 =

 −2τ − 1 −4 4
−1 −1 0

τ − 2 i
√

7 −i
√

7

 A4,5 =

 2τ − 4 3 + 3τ 4− 3τ
τ 2 1− τ

1 + τ 3− 2τ −2− τ



A7,1 =

 −1 0 0
0 1 0

i
√

7 0 −1

 A7,2 =

 −2 0 i
√

7
0 1 0

i
√

7 0 3

 A7,3 =

 −3 0 i
√

7
0 1 0

i
√

7 0 2



A7,4 =

 −4 0 3i
√

7
0 1 0

i
√

7 0 5

 A7,5 =

 −5 0 3i
√

7
0 1 0

i
√

7 0 4

 A7,6 =

 −6 0 i
√

7
0 1 0

i
√

7 0 1


Relations: We obtain a complete set of relations between these generators by applying generators to points

of depth at most 4 as described in part (5) of section 2.4. The detailed steps of the computation can be
found on the companion Sagemath Jupyter notebook in [MCode]. The direct output is a presentation with 18
generators and 406 relations, which simplifies, thanks to Magma [Mag], to the presentation in Proposition 3.
More specifically, we obtain that particular simplification by specifying a subset of the generators which must
be preserved, using in this case the command Simplify (G: Preserve:=[1,4,5]);.

To illustrate the steps involved we compute by hand the cycles and relations corresponding to triples (a, b, c)
for which the point Aa(pb) has depth at most 7, hence is of the form γ∞(pc) for some γ∞ ∈ Γ∞ and pc ∈ D∞
with depth at most 7. In the notation of part (5) of section 2.4, this corresponds to γ1

∞ = Id and γ3
∞ = γ∞.

The results are listed in Table 4, with the same notation as in the example of section 2.5.

5 The Hurwitz quaternion modular group PU(2, 1,H)

In this section we use the method described in Section 2.4 to compute a presentation for the Hurwitz modular
group Γ(H) = PU(2, 1,H) (also denoted PSp(2, 1,H)). Recall that the Hurwitz integer ring is H = Z[i, j, k, σ] ⊂
H, with σ = 1+i+j+k

2 . The resulting presentation is unfortunately too large for Magma to handle directly (see
comments at the end of this section), however it still allows us to obtain the following results.

Theorem 2 The abelianization of Γ(H) is Z/3Z.

Theorem 3 Γ(H) is generated by Γ∞(H) and I0.

Theorem 3 was in fact stated in [Ph] (Th. 4.4.2), but the very short proof given there is inadequate (it would
indeed apply to any group containing I0 and a nontrivial stabilizer of ∞). However, it is shown in [Ph] that
Γ∞(H) can be generated by only 3 elements, which combined with the above shows that Γ(H) can be generated
by 4 elements.

We will use Theorem 3 in the proof of Theorem 2, so for future reference we note that Theorem 3 follows
from the result of computational simplification of a partial presentation by Magma. More specifically, we enter
the Magma command Simplify(G: Preserve:=[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17]); applied
to the group G presented by all generators and the first thousand relations in our main presentation (see file
QuaternionsTruncated1000.txt at [MCode]). This returns a presentation of G with 17 generators, corre-
sponding to 16 generators for Γ∞(H) and I0. Theorem 3 follows since Γ(H) is a quotient of G.
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A.p p′ A−1p′ W−1AAp W′

I0p0 ∞ I2
0 Id

A4,1p4,1 ∞ A2
4,1 Id

A4,2p4,2 ∞ A2
4,2 Id

A4,3p4,3 ∞ A2
4,3 Id

Rp0 p0 I0RI0 R

I0p2,2 p4,3 A−1
4,3T1I0A2,2 T1

I0p4,1 p7,5 A−1
7,5TvI0A4,1 R

I0p4,2 p2,1 A−1
2,1TvT1I0A4,2 RT−1

v T−1
τ T−2

1

I0p4,3 p0 A−1
4,3I0TτT1T

−1
v I0 T1Tτ

I0p7,1 p0 A−1
7,1I0T

−1
v I0 R

I0p7,2 p4,1 A−1
7,2I0T

−1
v A4,1 Id

I0(0, 2
√

7) p7,6 A−1
7,6TvI0TvI0 Id

I0(1,
√

7) p2,1 A−1
2,1TvI0T1I0 T 2

1 T
−1
v

I0(τ, 0) (τ, 0) (TτI0)−1I0TτI0 RTτ

A2,1p0 p7,5 A−1
7,5A2,1I0 RTvT

−1
1

A2,2p0 p4,2 A−1
4,2A2,2I0 Id

A4,1p0 p7,4 A−1
7,4A4,1I0 Id

A4,1p4,4 p2,2 A−1
2,2TτA4,1A4,4 T−1

1

A4,1p7,3 p0 I0T
−1
v A4,1A7,3 R

A4,2p0 p2,2 A−1
2,2A4,2I0 Id

A4,2p7,2 p2,2 A−1
2,2T1T

−1
τ A4,2A7,2 TτT

−2
1 Tv

A4,3p0 p0 I0T
−1
1 T−1

τ TvA4,3I0 T−1
1 T−1

τ Tv

A4,4p0 p7,4 A−1
7,4A4,4I0 RT−1

1

A4,5p2,2 p7,5 A−1
7,5A4,5A2,2 RTv

A7,1p0 p0 I0A7,1I0 RT−1
v

A7,2p4,1 p0 I0A7,2A4,1 T−1
v

A7,2p7,3 ∞ A7,2A7,3 R

A7,2p7,4 p7,1 A−1
7,1A7,2A7,4 R

A7,3p0 p4,1 A−1
4,1A7,3I0 RTv

A7,3p4,2 p2,1 A−1
2,1T1A7,3A4,2 T−1

τ T 2
1 Tv

A7,3p7,1 p7,4 A−1
7,4A7,3A7,1 Id

A7,3p7,2 ∞ A7,3A7,2 R

A7,4p0 p4,1 A−1
4,1A7,4I0 Id

A7,5p2,2 p4,3 A−1
4,3T1T

−1
v A7,5A2,2 RT−2

τ T1

A7,5p4,1 p0 I0T
−1
v A7,5A4,1 R

A7,5p4,4 p0 I0T
−1
v T1A7,5A4,4 Id

A7,5p7,3 p7,6 A−1
7,6A7,5A7,3 Id

A7,5p7,4 ∞ A7,5A7,4 RTv

A7,6p0 p0 I0T
−1
v A7,6I0 Tv

A7,6p7,1 ∞ A7,6A7,1 RTv

A7,6p7,2 p7,5 A−1
7,5A7,6A7,2 R

Table 4: Action of generators on vertices for d = 7

22



Presentation and fundamental domain for Γ∞(H):
In this section we study the action of the cusp group Γ∞(H) = StabΓ(H)(∞) on ∂∞H2

H \ {∞} ' H× ImH.
The referee informed us that a fundamental domain for the action of Γ∞(H) on ∂∞H2

H \ {∞} had been found
by Philippe in her thesis [Ph]. In a previous version of this paper we only used a coarse fundamental domain,
i.e. a domain whose translates cover the space; using her fundamental domain simplified the arguments and
computations in this section, so we thank the referee for drawing our attention to it. In fact Philippe gives in
[Ph] (Theorem 4.3.11, Proposition 4.3.22 and pp. 103–104) two fundamental domains, related by a sequence of
cut-and paste operations. We denote these two domains by D1

∞(H) and D2
∞(H) and will in fact use both, as

they have different geometric/combinatorial advantages. More specifially, D2
∞(H) is simpler combinatorially as

it is a product of a 4-simplex and a 3-cube, whereas D1
∞(H) is a union of two such objects. However each of

the two isometric pieces of D1
∞(H) is contained in a smaller Cygan ball centered at 0, which makes it easier to

use in the covering argument below.
Recall that ∂∞H2

H \ {∞} ' H× ImH; we will refer to H as the horizontal direction and ImH as the vertical
direction. The vertices of the horizontal component of these domains consist in the following points in H
(following the notation in [Ph]):

p0 = 0, p3 = i, c1 = (1 + i/3 + j + k)/2, c2 = (−1 + i/3− j − k)/2,

q0 = i/2, q14 = (i+ k)/2, q18 = (i+ j)/2, q16 = (i− k)/2, q20 = (i− j)/2.

Proposition 4 ([Ph]) Consider the subsets S = Hull(p0, p3, c1, q14, q18), C1 = Hull(p0, q0, c1, q14, q18) and
C2 = Hull(p0, q0, c2, q16, q20) of H. Then D1

∞(H) = (C1 ∪ C2) × [−1, 1]3 and D2
∞(H) = S × [−1, 1]3 are

fundamental domains for the action of Γ∞(H) on ∂∞H2
H \ {∞} ' H× ImH.

We now determine a presentation for Γ∞(H) by more algebraic methods, understanding this group as a
sequence of normal extensions of simpler subgroups. The presentation we give is highly redundant in terms of
generators, but we will need this ”geometrically complete” set of generators when we are required to algorith-
mically identify given elements of Γ∞(H) in terms of the generators. (Also note that [Ph] does not identify a
presentation corresponding to the above fundamental domains).

We use the notation of Equations (3), (4) and (5), namely T(ζ,v), Rw, Cw respectively denote Heisenberg
translation by (ζ, v), Heisenberg rotation by w and conjugation by w. Note that for any unit quaternion w ∈ H
and purely imaginary q ∈ H, Γ∞(H) contains the following Heisenberg translations:

Tw = T(w,i+j+k) =

 1 −w̄ −1+i+j+k
2

0 1 w
0 0 1

 , Tvq = T(0,2q) =

 1 0 q
0 1 0
0 0 1

 (13)

Lemma 15 Γ∞(H) admits the following presentation:

Γ∞(H) = 〈S∞ |R∞〉 =
〈
Ri, Rσ, Ci, Cσ, T1, Ti, Tj , Tk, Tσ, Tvi , Tvj , Tvk | A1,A2,A3,A4,A5

〉
where the An are the following sets of relations:

A1 = {R4
i , R

2
iR
−3
σ , (RiRσ)3, (R−1

i Rσ)2R−1
i R−2

σ }

A2 = {C2
i , C

3
σ, (CiCσ)3}

A3 =

{
[Tvw , T ] , [T1, Tw] = T−2

vw , [T1, Tσ] = T−1
vi T

−1
vj T

−1
vk
,

[Tw, Tŵ] = T 2
vwŵ

, [Tw, Tσ] = TvwT
−1
vŵ
Tvwŵ , T1TiTjTk = T 2

σTviT
−1
vj Tvk

}
where T runs over T1, Ti, Tj , Tk, Tσ, Tvi , Tvj , Tvk , w runs over i, j, k, and î = j, ĵ = k, k̂ = i.

A4 =
{
CiRiCi = Ri, CiRσCi = RiR

4
σRi, CσRiC

−1
σ = RσRiR

−1
σ , CσRσC

−1
σ = Rσ

}
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A5 = {GTG−1 = EG,T },

where G runs over Ri.Rσ, Ci, Cσ, T runs over T1, Ti, Tj , Tk, Tσ, Tvi , Tvj , Tvk , and EG,T is the entry in the G
column and T row of the table below:

Ri Rσ Ci Cσ
T1 Ti Tσ T1T

−1
vj T

−1
vk

T1

Ti T−1
1 TviTvjTvk T−1

1 T−1
k TσTvjT

2
vk

TiT
−1
vj T

−1
vk

Tj
Tj Tk T−1

1 T−1
i TσT

2
viTvk T−1

j Tvi Tk
Tk T−1

j TviTvjTvk T−1
1 T−1

j TσTviT
2
vj T−1

k Tvi Ti
Tσ T−1

σ TiTkTvjT
−1
vk

T−1
1 Tσ T−1

j T−1
k TσTvj Tσ

Tvi Tvi Tvi Tvi Tvj
Tvj Tvj Tvj T−1

vj Tvk
Tvk Tvk Tvk T−1

vk
Tvi

Proof. To obtain a presentation for Γ∞(H), we identify 3 of its subgroups, observe that some of them
normalize each other, and build up the presentation via a sequence of extensions using the following procedure.
Suppose that G is a group with subgroups N and K where N is normal in G and G is an extension of N by K.
Suppose also that we know presentations for N and K, N = 〈SN |RN 〉 and K = 〈SK |RK〉. Then G admits the
presentation 〈SN ∪SK |RN ∪RK ∪R〉, where the set R consists of relations of the form knk−1 = n′ where k runs
over all elements of SK , n runs over the elements of SN , and n′ ∈ N is expressed as a word in the generators
SN .

The three subgroups of Γ∞(H) we identify are the rotation, conjugation, and translation subgroups.
The rotation subgroup consists of all Heisenberg rotations Rw where w is a Hurwitz integral unit quaternion.

It is isomorphic to the binary tetrahedral group, which has order 24 (see e.g. [CoS]). It admits the presentation

〈Ri, Rσ | A1〉

The conjugation subgroup consists of all conjugations by unit quaternions. Elements of this group also
correspond to Hurwitz unit integral quaternions, only Cw acts the same as C−w. Thus, this group is isomorphic
to the quotient of the binary tetrahedral group by −1, which is the tetrahedral group (or the alternating group
on 4 elements). It admits the presentation

〈Ci, Cσ | A2〉

The translation subgroup consists of all Heisenberg translations. It admits the presentation〈
T1, Ti, Tj , Tk, Tσ, Tvi , Tvj , Tvk | A3

〉
The rotation subgroup is normalized by the conjugation subgroup. The extension of the rotation subgroup

by the conjugation subgroup is a finite group of order 288. We obtain the four relations in A4 by conjugating
Ri and Rσ by Ci and Cσ.

The translation subgroup is normalized by the rotation-conjugation subgroup. The conjugates of the trans-
lation generators by the rotation and conjugation generators are listed in the table. The translations T are
along the left side, the rotations/conjugations G are along the top, and the table entry EG,T is the element
GTG−1 written as a word in the translation generators. A5 contains these relations. �

Corollary 8 The abelianization of Γ∞(H) is (Z/3Z)2, generated by (the images of) Rσ and Cσ.

Covering depth and Q[i, j, k]-rational points in D∞(H):
We denote as before B ((ζ, v), r) the open extended Cygan ball centered at p = (ζ, v) ∈ ∂∞H2

H with radius r
(see Equation 8 for the definition of the extended Cygan metric dXC). Recall that u(n) = 2√

n
is the height at

which balls of depth n appear, in the sense of Corollary 1.
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Lemma 16 Let u = u(5) + ε = 0.89443 and Hu the horosphere of height u based at ∞. Then the prism
D1
∞(H) × {u} is covered by the intersections with Hu of the following 17 extended Cygan balls of depth 1:

B
(
(0, 0),

√
2
)
, B

(
(σ,±i± j ± k),

√
2
)
, B

(
(σ − 1− j − k,±i± j ± k),

√
2
)
.

Proof. Recall from Proposition 4, using the notation from [Ph], thatD1
∞(H) = (C1∪C2)×[−1, 1]3 ⊂ H×ImH,

where C1 and C2 are the 4-simplices C1 = Hull (p0, q0, q14, q18, c1) ⊂ H and C2 = Hull (p0, q0, q16, q20, c2) ⊂ H.

Claim: C1 × [0, 1]3 is contained in B0 ∪ Bσ, where B0 = B
(
(0, 0),

√
2
)

and Bσ = B
(
(σ, i+ j + k),

√
2
)
.

Using coordinates (x1 + x2i+ x3j + x4k, t1i+ t2j + t3k) on H× ImH, we separate C1 × [0, 1]3 into 2 pieces
by the piecewise linear hypersurface A = {(x1 +x2i+x3j+x4k, t1i+ t2j+ t3k) ∈ H× ImH |T = L(X)}, where
we denote T = t1 + t2 + t3 , X = x1 + x2 + x3 + x4, and L is the piecewise linear function defined by:

L(X) =

 2.7 if X ∈ [0, 1/2]
−1.4X + 3.4 if X ∈ [1/2, 1]
−0.9X + 2.9 if X ∈ [1, 5/3].

.
Heuristically, the coordinate X (resp. T ) measures the (l1-) distance from the origin (0, 0) in the horizontal

(resp. vertical) direction, and the choice of the hypersurface A was inspired by the position of the 40 vertices
of C1 × [0, 1]3 relative to the Cygan balls B

(
(0, 0),

√
2
)

and B
(
(σ, i+ j + k),

√
2
)
, see Figure 5 and below.

The claim is then verified by showing that C1 × [0, 1]3 ∩ A− ⊂ B
(
(0, 0),

√
2
)

and C1 × [0, 1]3 ∩ A+ ⊂
B
(
(σ, i+ j + k),

√
2
)
, where A± denote the 2 half-spaces bounded by A, with (0, 0) ∈ A− and (σ, i+j+k) ∈ A+.

This is done as in the proof of Lemma 13, by checking the vertices numerically using Equation (8), then extending
the result to their affinely convex hull by Lemma 7.

Since A is only piecewise linear, we first subdivide A+ and A− into affinely convex pieces as follows.
First we add the base vertices s1, ..., s5 ∈ H defined as the respective intersections of the affine segments
[p0, q18], [p0, c1], [p0, q14] with the hyperplane {X = 1/2}, and [q0, c1], [p0, c1] with the hyperplane {X = 1} (see
Figure 5). Explicitly:

s1 =
i+ j

4
, s2 =

3 + i+ 3j + 3k

20
, s3 =

i+ k

4
, s4 =

3 + 5i+ 3j + 3k

14
, s5 =

3 + i+ 3j + 3k

10
.

Since C1 = Hull (p0, q0, q14, q18, c1) with X(p0) = 0, X(q0) = 1/2, X(q14) = X(q18) = 1 and X(c1) = 5/3,
this ensures that:

C1 ∩ {X 6 1/2} = Hull (p0, q0, s1, s2, s3) ,
C1 ∩ {1/2 6 X 6 1} = Hull (q0, q14, q18, s1, s2, s3, s4, s5) ,
C1 ∩ {1 6 X 6 5/3} = Hull (p0, q0, s1, s2, s3) .

This produces a total of 10 vertices in the horizontal factor H, above each of which lies a 3-cube in the
vertical factor, spanned by 0, i, j, k, i+ j, i+ k, j+ k, i+ j+ k. We check numerically, using Equation (8) that
each of these 80 vertices lies in B0, Bσ, or both as indicated in Figure 5. Finally, we check that each point of
intersection of an edge of a cube with the hypersurface A lies in both B0 and Bσ (of course, the values appearing
in the definition of the function L above were chosen to satisfy this property). Explicitly, these intersection
points comprise:

• 3 points at height T = 2.7 on the top 3 edges of the cube above p0,

• 12 points at height T = 2.7 on the top 3 edges of the cubes above q0, s1, s2, s3,

• the 12 vertices at height T = 2 (with vertical coordinates i+ j, i+ k, j + k) above q18, s4, s5, q14,

• and 6 points at height T = 1.4 on the middle 6 edges of the cube above c1.

For example, the relevant point above c1 = (1 + i/3 + j + k)/2 on the vertical edge [j, i+ j] has coordinates
(c1, 0.4i+ j) = (1/2, 1/6, 1/2, 1/2, 0.4, 1, 0) and satisfies:

dXC ((c1, 0.4i+ j, u), (0, 0, 0)) ' 1.410 <
√

2,
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p0

q0 q18

q14

c1s2

s1

s3

s4

s5

Figure 5: Vertices of the prism C1× [0, 1]3 (p0, q0, q14, q18, c1) and its intersections with the level sets {X = 1/2}
(s1, s2, s3) and {X = 1} (s4, s5). The vertices of the horizontal base are labelled by name, above each lies a
vertical 3-cube spanned by 0, i, j, k, i+j, i+k, j+k, i+j+k, ordered here from bottom to top and left to right.
A vertex is colored white if it belongs to B

(
(0, 0),

√
2
)
, black if it belongs to B

(
(σ, i+ j + k),

√
2
)
, and black and

white if it belongs to both. Cubes in a common column belong to a common level set of X = x1 +x2 +x3 +x4.

dXC ((c1, 0.4i+ j, u), (σ, i+ j + k, 0)) ' 1.394 <
√

2.

All other computations are similar, and the claim follows.
We now complete the proof of Lemma 16 from the claim. Replacing C1 by C2 by negating the first, third

and fourth horizontal coordinates gives that the other subprism C2 × [0, 1]3 is contained in B
(
(0, 0),

√
2
)
∪

B
(
(σ − 1− j − k, i+ j + k),

√
2
)
, since that transformation is an (affine) isometry of the Cygan metric.

Finally, by likewise negating some or all of the vertical coordinates we get that the 14 other subprisms
C1 × [−1, 0]× [0, 1]2, C2 × [−1, 0]× [0, 1]2.... are contained in the extended Cygan balls obtained by switching
the corresponding signs of the vertical coordinates of the center. This results in the 17 Cygan balls in the
statement of Lemma 16. �

Corollary 9 The covering depth of Γ(H) is at most 4.

We now use the other fundamental domain to list the points up to depth 4, namely D2
∞(H) = S × (−1, 1]3,

where S is the simplex S = Hull
(
0, i+j2 , i+k2 , 1

2 (1 + i
3 + j + k), i

)
⊂ H.

Lemma 17 The Q[i, j, k]-rational points in D2
∞(H) with depth at most 4 are, in horospherical coordinates:

• Depth 1: (0, 0);

• Depth 2: (0, i+ j);
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• Depth 3: (0, ±2i∓2j±2k
3 ), ( 1+3i+j+k

6 , 3i−j−k
3 ), ( 1+3i+j+k

6 , −i+3j+k
3 ), ( 1+i+j+3k

6 , 3i−j−k
3 ) (5 points total);

• Depth 4: (0, i), (0, i+ j + k), ( i+j2 , ±i±j±k2 ) (10 points total);

and all of their Γ∞-translates.

Proof. We use the general procedure outlined in Lemma 14.
Let Γfin∞ ⊆ Γ∞ be the finite subgroup of order 288 described in Lemma 15. Γfin∞ describes two different

actions by units u ∈ H on ∂∞H
2
H. One is the action by left multiplication on the first coordinate

Ru : p = (z, t) 7→ (uz, t)

The other is by conjugation
Cu : p = (z, t) 7→ (uzu−1, utu−1)

Consider the standard lift P of a point p ∈ ∂H2
K \ {∞}:

P =

 −|z|2+it1+jt2+kt3
2
z
1


For P to be the vector form of a Q(i, j, k)-rational point p of depth n, it must satisfy the following:

1. P does not have depth less than n

2. Pq’s coordinates must be in H for some q with |q|2 = n. Write z = z1 + iz2 + jz3 + kz4 and q =
q1 + iq2 + jq3 + kq4+. Then we have

z1q1 − z2q2 − z3q3 − z4q4,
z1q2 + z2q1 + z3q4 − z4q3,
z1q3 + z3q1 − z2q4 + z4q2,
z1q4 + z4q1 + z2q3 − z3q2

∈ Z, or ∈ Z +
1

2
(14)

and
1

2
(−|z|2q1 − t1q2 − t2q3 − t3q4),

1

2
(−|z|2q2 + t1q1 + t2q4 − t3q3),

1

2
(−|z|2q3 + t2q1 − t1q4 + t3q2),

1

2
(−|z|2q4 + t3q1 + t1q3 − t2q2)

∈ Z, or ∈ Z +
1

2
(15)

To list the points of depth n, we first assume we have already listed the points of depth less than n, and then
we follow these steps:

1. Find all q ∈ H with |q|2 = n. From the geometry of numbers, we know that there will only be finitely
many q’s. Even better, we only need to consider one representative for every Γfin∞ orbit of q’s under the
Γfin∞ action on H. The reason for this is that if u is a unit, then

• if Pqu has coordinates in H then so does Pq.

• if Puq has coordinates in H then C−1
u Pq = u−1Puq also has coordinates in H.

• if Puqu−1 has coordinates in H then C−1
u Pq also has coordinates in H.

Thus, we will always find a point in the Γfin∞ -orbit of P using our chosen q.

2. For each q, find all potential first coordinates z, which are solutions to (14). Like in the previous step,
we only need one z representing each Γfin∞ -orbit. We pick z inside the fundamental domain C, and if
necessary we modify our choice of q by a unit so that zq ∈ H.
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3. For each z, find all solutions to (15) with −1 ≤ t1, t2, t3 < 1. Keep only those solutions that are not on
the list of points of depth less than n.

In practice, here’s how that goes:
Depth 1: In step 1, q must be a unit, and there is a single orbit of q’s represented by 1. In step 2, we must

have z ∈ H ∩Dh
∞(H), and so z = 0 is the only solution to (14).

It follows that |z|2 = 0, and so in step 3, the solutions to (15) satisfying the inequalities are (t1, t2, t3) ∈ Z3

with 0 ≤ t1, t2, t3 ≤ 2 and t1, t2, t3 all even. This gives us exactly the depth 1 point listed above.
Depth 2: In step 1, there is one orbit of q’s, represented by 1 + i. In step 2, we find z ∈ C by solving (14)

which specializes to

z1 − z2, z1 + z2, z3 + z4, z4 − z3 ∈ Z, or ∈ Z +
1

2

Using some basic algebra, we conclude that

2z1, 2z2, 2z3, 2z4 ∈ Z, or ∈ Z +
1

2

The possible values of z in C are then represented by 0, i2 ,
i+j
2 .

The values of |z|2 corresponding to these z’s are 0, 1
4 ,

1
2 respectively. In step 3, (15) specializes to

1

2
(−|z|2 − t1),

1

2
(−|z|2 + t1),

1

2
(−t2 + t3),

1

2
(t3 − t2) ∈ Z, or ∈ Z +

1

2

With z = 0, we find that taking two of t1, t2, t3 equal to 1 and the other equal to 0 gives a solution. These
solutions are all new points of depth 2, and are Γfin∞ -equivalent (by conjugation). This is the depth 2 point
listed above.

For the other two z’s, with |z|2 = 1
2 and 1

4 , there are no solutions to (15).
Depth 3: In step 1, there is one orbit of q’s, represented by 1− j − k. In step 2, we find z by solving (14)

which specializes to

z1 + z3 + z4, z2 − z3 + z4,−z1 + z3 + z4,−z1 + z4 − z2 ∈ Z, or ∈ Z +
1

2

Using some basic algebra, we conclude that

3z1, 3z2, 3z3, 3z4 ∈ Z, or ∈ Z +
1

2

The possible values of z in C are then represented by

0,
i

3
,
i+ j

3
,

1 + 3i+ j + k

3

The values of |z|2 corresponding to these z’s are 0, 1
9 ,

2
9 , and 1

3 respectively. In step 3, (15) specializes to

1

2
(−|z|2 + t2 + t3),

1

2
(t1 − t2 + t3),

1

2
(|z|2 + t2 + t1),

1

2
(|z|2 + t3 − t1) ∈ Z, or ∈ Z +

1

2

Using some basic algebra, we find that

3|z|2

2
,

3t1
2
,

3t2
2
,

3t3
2
∈ Z, or ∈ Z +

1

2

meaning that 3|z|2 ∈ Z and its parity is the same as that of 3t1, 3t2, 3t3. Therefore, we see that |z|2 = 0 or 1
3 .

We then solve (15), and in addition to finding the depth 1 point we already have, we find five new solutions at
depth 3.

Depth 4:
In step 1, there is one orbit of q’s, represented by 2. In step 2, we find z by solving (14) which specializes to

2z1, 2z2, 2z3, 2z4 ∈ Z, or ∈ Z +
1

2
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The possible values of z in C are then represented by

0,
1

2
,
i+ j

2

The values of |z|2 corresponding to these z’s are 0, 1
4 , and 1

2 respectively. In step 3, (15) specializes to

|z|2, t1, t2, t3 ∈ Z, or ∈ Z +
1

2

Thus, we must have z = 0 or z = i+j
2 . When we solve for t1, t2, t3, we recover all the depth 1 and 2 solutions

we already found, as well as ten new points of depth 4. �

Integral lifts of representatives of Γ∞(H)-orbits of these points are:

p0 =

 0
0
1

 p2 =

 −1
0

i+ j

 p3,1 =

 1
0

−i+ j − k

 p3,2 =

 1
0

i− j + k



p3,3 =

 1
1−i−j+k

2
−1−3i+j+k

2

 p3,4 =

 1
−k

−1−i−3j−k
2

 p3,5 =

 1
1−i+j−k

2
−1−i−j−3k

2

 p4,1 =

 i
0
2



p4,2 =

 i+ j + k
0
2

 p4,3 =

 1
1− i

−1− i− j − k

 p4,4 =

 1
−i− k

−1 + i− j − k

 p4,5 =

 1
−i+ k

−1− i+ j − k



p4,6 =

 1
−1− i

−1 + i+ j − k

 p4,7 =

 1
1− j

−1− i− j + k

 p4,8 =

 1
−j − k

−1 + i− j + k

 p4,9 =

 1
−j + k

−1− i+ j + k



p4,10 =

 1
−1− j

−1 + i+ j + k


Generators: The following elements Aα ∈ Γ(H) map the point∞ = [1, 0, 0]T to the corresponding pα as above
(for α = 0; 2; 3, 1; ...; 3, 5; 4, 1; ...; 4, 10) :
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A0 = I0 =

 0 0 1
0 −1 0
1 0 0

 A2 =

 −1 0 i+ j
0 1 0

i+ j 0 1



A3,1 =

 1 0 0
0 1 0

−i+ j − k 0 1

 A3,2 =

 1 0 0
0 1 0

i− j + k 0 1



A3,3 =

 1 0 0
1−i−j+k

2 1 0
−1−3i+j+k

2
−1−i−j+k

2 1

 A3,4 =

 1 0 0
−k 1 0

−1+i−3j−k
2 −k 1



A3,5 =

 1 0 0
1−i+j−k

2 1 0
−1−i−j−3k

2
−1−i+j−k

2 1

 A4,1 =

 i 0 1
0 −1 0
2 0 −i



A4,2 =

 i+ j + k 0 2
0 −1 0
2 0 −i− j − k

 A4,3 =

 1 0 0
1− i 1 0

−1− i− j − k −1− i 1



A4,4 =

 1 0 0
−i− k 1 0

−1 + i− j − k −i− k 1

 A4,5 =

 1 0 0
−i+ k 1 0

−1− i+ j − k −i+ k 1



A4,6 =

 1 0 0
−1− i 1 0

−1 + i+ j − k 1− i 1

 A4,7 =

 1 0 0
1− j 1 0

−1− i− j + k −1− j 1



A4,8 =

 1 0 0
−j − k 1 0

−1 + i− j + k −j − k 1

 A4,9 =

 1 0 0
−j + k 1 0

−1− i+ j + k −j + k 1



A4,10 =

 1 0 0
−1− j 1 0

−1 + i+ j + k 1− j 1


Relations: We find a complete set of relations by applying generators to points of depth at most 4 as

described in part (5) of section 2.4. The detailed steps of the computation can be found in the companion files
in [MCode]. The direct output is a presentation with 33 generators and 968,480 relations, which is unfortunately
too large for Magma to handle directly (the text file for this presentation, quaternions.m, is slightly over 200
MB and can also be found at [MCode]).

To illustrate the steps involved we compute by hand some of the cycles and relations corresponding to triples
(a, b, c) for which the point Aa(pb) has depth at most 4, hence is of the form γ∞(pc) for some γ∞ ∈ Γ∞ and
pc ∈ D∞ with depth at most 4. In the notation of part (5) of section 2.4, this corresponds to γ1

∞ = Id and
γ3
∞ = γ∞. The results are listed in Tables 5–9, with the same notation as in the example of section 2.5.

We would also like to make explicit certain relations in the group, which essentially follow from these tables.

Proposition 5 The following relations hold among the generators of Γ∞(H) and I = I0:

I2, [I,Ri], [I,Rσ], [I, Ci], [I, Cσ], (TviI)3 = RiCi, (TviTvjI)4 = R2
i , (TviTvjTvkI)6,

[IT−2
vi IRiT

−1
vi Ci, Rσ], [C−1

σ (IT−1
vi T

−1
vj T

−1
vk

)3R2
iCσ, Ri], [C−1

σ (IT−1
vi T

−1
vj T

−1
vk

)3R2
iCσ, Rσ],

[C−1
σ (IT−1

vi T
−1
vj T

−1
vk

)3R2
iCσ, Cσ], (IT−2

vi IRiT
−1
vi Ci)

2, IT−1
vi (ITvj )

2 = (TvjIT
−1
vi )2RiCi,

[(TviTvjI)2, C−1
σ (IT−1

vi T
−1
vj T

−1
vk

)3R2
iCσ], IT1T

−1
σ ITσI = T1T

−1
vi T

−1
vj T

−1
vk
C−1
σ

(16)
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It is straightforward to check that each of these relations hold. However we find it instructive to illustrate
how some of them can be deduced from the cycle relations in the tables. We now give more details on how
to obtain the relations (TviTvjTvkI)6 and [(TviTvjI)2, C−1

σ (IT−1
vi T

−1
vj T

−1
vk

)3R2
iCσ]. The rest of the details are

either straighforward or similar to these two.
Substituting for A2 in (2) using (1) (both from Table 6), we obtain

A4,2 = IT−1
vi T

−1
vj IT

−1
vi T

−1
vj TvkTviTvjITviTvjIC

−1
σ RiCσTviTvjT

−1
vk
C−1
σ CiCσ

Use the relations CσTvwC
−1
σ = Tvŵ and [Ri, Tvw ] = 1 from Γ∞(H) and the relations (5) and (6) from Table 9

to get
A4,2 = C−1

σ IT−1
vj T

−1
vk
ITviITvjTvkITvjTvkT

−1
vi RiCiCσ

Use the relation (ITvi)
3 = RiCi to make the subsitution ITviI = T−1

vi IT
−1
vi RiCi.

A4,2 = C−1
σ IT−1

vj T
−1
vk
T−1
vi IT

−1
vi RiCiTvjTvkITvjTvkT

−1
vi RiCiCσ

Use the relations [Ci, Tvi ] = 1 and CiTvwC
−1
i = T−1

vw if w 6= i from Γ∞(H) to get

A4,2 = C−1
σ IT−1

vj T
−1
vk
T−1
vi IT

−1
vi T

−1
vj T

−1
vk
IT−1

vj T
−1
vk
T−1
vi R

2
iCσ

= C−1
σ (IT−1

vi T
−1
vj T

−1
vk

)3R2
iCσ

The relation (TviTvjTvkI)6 comes from substituting this expression for A4,2 in the relation (4) from Table
8. The relation [(TviTvjI)2, C−1

σ (IT−1
vi T

−1
vj T

−1
vk

)3R2
iCσ] comes from first observing that (3) in Table 8 and (2)

in Table 6 are conjugate to each other by A2. Since both are equal to A4,2, we obtain [A2, A4,2] = 1. Then to
get the relation that appears in the presentation, we substitute for A2 using (1) from Table 6 and for A4,2 using
the expression obtained above.

Corollary 10 The abelianization of Γ(H) is Z/3Z, generated by (the image of) Rσ, or trivial.

Proof. By Theorem 3, Γ = Γ(H) is generated by Γ∞(H) and I0, hence by S∞ and I0 (where S∞ denotes our
generating set for Γ∞(H), see Lemma 15). Therefore Γ is a quotient of the abstract group ∆ with generators
S∞ and I0 and relations R∞ together with the relations listed in Proposition 5 (with S∞ the set of relations
for Γ∞(H), see Lemma 15). By Corollary 8, the abelianization of ∆ is a quotient of (Z/3Z)2, generated by (the
images of) Rσ and Cσ. By inspecting the relations listed in Proposition 5, we see that the abelianization of ∆
is Z/3Z, generated by (the image of) Rσ. �

We then obtain Theorem 2 by combining these results with a computational check using the full presentation.
More specifically, while the full presentation is too large for Magma to handle at once, we found that it could
handle files approximately 10 times smaller in a few hours. To check that the abelianization remains unchanged
after adding the roughly 106 relations of the mondo presentation, we subdivide the file with all relations into
10 pieces (each with approximately 105 relations), see files mondo1.m,...,mondo10.m at [MCode] (each of these
also contains the relations from Γ∞(H)). Recall from Corollary 8 that the abelianization of Γ∞(H) is (Z/3Z)2.
We add to each file enough relations to bring the abelianization down to Z/3Z - in practice we simply add the
relations Cσ = 1 = I0 (which hold in the abelianization by the above, but of course not in the group). This
produces the files mondo1modified.m,...,mondo10modified.m, for which Magma is able to compute that all 10
abelianizations are Z/3Z, proving Theorem 2.
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A.p p′ A−1p′ W−1AAp W′

Ip0 ∞ I2 Id

I(σ, i+ j + k) p0 IT1T
−1
σ ITσI T1T

−1
vi T

−1
vj T

−1
vk
C−1
σ

Ip2 p0 ITviTvjIA2 T−1
vi T

−1
vj R

2
i

Ip3,1 p0 ITviTvjTVkIA3,1 Id

Ip3,2 p0 IT−1
vi TvjTVkIA3,2 Id

Ip3,3 p0 ITσT
−1
i TvjTvkIA3,3 Id

Ip4,1 p0 IT 2
viIA4,1 T−1

vi RiCi

Ip4,2 p3,1 A−1
3,1TviTvjTvkIA4,2 R1

iT
−1
vi T

−1
vj T

−1
vk

Ip4,3 p0 IT 2
viTvjT

2
vk
T−1
k T−1

i IA4,3 Id

Ip4,4 p0 IT−1
k T−1

1 T 2
vjTvkIA4,4 Id

Table 5: Cycles coming from I

A.p p′ A−1p′ W−1AAp W′

A2p0 p0 I0T
−1
vj T

−1
vi A2I0 A2 = (TviTvjI0)2 (1)

A2p2 ∞ A2
2 R2

i

A2p3,1 p0 I0T
−1
vi T

−1
vj T

−1
vk
A2A3,1 R−1

σ R−1
i RσC

−1
σ CiCσTvk

A2p3,3 p3,3 A−1
3,3A

−1
2 R−1

i TviTvjC
−1
σ CiCσA3,3 C−1

σ CiCσRi

A2p4,1 p2 A−1
2 T−1

vi A2A4,1 CσR
−1
i C−1

σ TviTvjCσCiC
−1
σ

A2p4,2 p2 A−1
2 T−1

vk
A2A4,2 C−1

σ RiCσTviTvjT
−1
vk
C−1
σ CiCσ (2)

A2p4,3 p2 A−1
2 T−1

σ A2A4,3 T−1
1 TσT

−1
k TviCi

Table 6: Cycles coming from A2
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A.p p′ A−1p′ W−1AAp W′

A3,1p0 p0 IA3,1I T−1
vi T

−1
vj T

−1
vk

A3,2p0 p0 IA3,2I TviT
−1
vj T

−1
vk

A3,2p4,1 p3,1 A−1
3,1A3,2A4,1 RiCiT

−1
vi

A3,3p0 p0 IA3,3I T−1
vj T

−1
vk
TiT

−1
σ

Table 7: Cycles coming from A3,1, A3,2, A3,3

A.p p′ A−1p′ W−1AAp W′

A4,1p0 p0 IT−1
vi A4,1I T 2

viR
−1
i Ci

A4,1p2 p2 A−1
2 TvjA4,1A2 T−1

vi TvjRiCi

A4,1p3,1 p3,2 A−1
3,2CiT

−1
vi A4,1A3,1 R−1

i

A4,1p4,1 ∞ A2
4,1 Id

A4,1p4,3 p4,4 A−1
4,4CiT

−1
vi R

−1
i R2

σA4,1A4,3 R−1
σ

A4,2p0 p3,2 A−1
3,2CiT

−1
vi T

−1
vj T

−1
vk
A4,2I TviTvjTvkR

2
iCi

A4,2p2 p2 A−1
2 T−1

vk
A4,2A2 TviTvjT

−1
vk
C−1
σ RiCiCσ (3)

A4,2p3,1 p0 IT−1
vi T

−1
vj T

−1
vk
A4,2A3,1 TviTvjTvkR

2
i

A4,2p3,3 p3,3 A−1
3,3C

−1
σ CiCσT

−1
vi T

−1
vj R

2
iA4,2A3,3 CiT

−1
j T−1

k TvjT
2
vk

A4,2p4,2 ∞ A2
4,2 Id (4)

A4,2p4,3 p4,4 A−1
4,4CiT

−1
vi T

−1
vj T

−1
vk
R−1
σ RiA4,2A4,3 CiT

−1
vi T

−1
vk
RσRiR

−1
σ R−1

i R−1
σ TiTk

A4,3p0 p0 IA4,3I TiTkT
−2
vi T

−1
vj T

−2
vk

A4,4p0 p0 IA4,4I T1TkT
−2
vj T

−1
vk

A4,4p4,1 p4,3 A−1
4,3RσA4,4A4,1 CiRσR

−1
i RσR

−1
i R−1

σ T−1
vi

Table 8: Cycles coming from A4,1, A4,2, A4,3, A4,4

6 Appendix: presentation for the Eisenstein-Picard modular group
PU(2, 1,O3)

The presentation for the Eisenstein-Picard modular group PU(2, 1,O3) which we obtain is 〈T1, R, I |R3〉,
where R3 is the following set of 19 relations:

I2 = Id
R−1IRI = Id
R6 = Id
RT1R

−1T−1
1 R−1T1R = Id

IT1IRT1IT
−1
1 IR−1T−1

1 = Id
T−1

1 IT1IRT1IT
−1
1 R−1I = Id

R−2T−1
1 IR2IR−1T1RT

−1
1 = Id

IR2T1IR
2T1R

2IT1 = Id
IRT−1

1 R−1T1IT
−1
1 IT1R

−1T−1
1 R = Id

T−1
1 RT 2

1R
−1T−1

1 RT−1
1 R−1T1R

−1T1R = Id
IT−1

1 RT1IR
−3T1RIRT1 = Id

IR2T−1
1 R−1IR−1T−1

1 R−2IT−1
1 R2 = Id

IR−1T1IR
−1IT−1

1 R−2T1IT
−1
1 IR−2T−1

1 = Id
IT−1

1 R−2T1IT
−1
1 R−2T1IT

−1
1 IT−1

1 R−1IT1R
−1 = Id

T1IT
2
1 IRT

−1
1 IRT1IR

−2T1IT
−2
1 IT−1

1 I = Id
T1R

−1IT−1
1 R2IT−1

1 IT1IR
−1T1IT

−1
1 IRT−1

1 R−1I = Id
T1IT

−1
1 R2T−1

1 R−1T1R
−1T1IT

−1
1 R−2T1IT

−1
1 RIT−1

1 R2T−1
1 R−1 = Id

T−2
1 RT1IT1IT

−1
1 R2T1RIT

−1
1 RT 2

1R
−1IT−1

1 R−2T1R
−3T1IT1R = Id

(T−1
1 RT1R

−2T1IT1IT
−1
1 R−2T1IT

−1
1 )2 = Id
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Image of a point Cycle of points Relation

Rip0 = p0 ∞ I0−→ p0
Ri−−→ p0

I0−→∞ [Ri, I0] = Id (5)

Rσp0 = p0 ∞ I0−→ p0
Rσ−−→ p0

I0−→∞ [Rσ, I0] = Id

Cip0 = p0 ∞ I0−→ p0
Ci−→ p0

I0−→∞ [Ci, I0] = Id (6)

Cσp0 = p0 ∞ I0−→ p0
Cσ−−→ p0

I0−→∞ [Cσ, I0] = Id

Rip2 = p2 ∞ A2−−→ p2
Ri−−→ p2

A−1
2−−−→∞ [Ri, A2] = Id

Rσp2 = p2 ∞ A2−−→ p2
Rσ−−→ p2

A2−−→
−1

∞ [Rσ, A2] = Id

Rip4,1 = p4,1 ∞ A4,1−−−→ p4,1
Ri−−→ p4,1

A−1
4,1−−−→∞ [Ri, A4,1] = Id

Rσp4,1 = p4,1 ∞ A4,1−−−→ p4,1
Rσ−−→ p4,1

A−1
4,1−−−→∞ [Rσ, A4,1] = Id

Rip4,2 = p4,2 ∞ A4,2−−−→ p4,2
Ri−−→ p4,2

A−1
4,2−−−→∞ [Ri, A4,2] = Id

Rσp4,2 = p4,2 ∞ A4,2−−−→ p4,2
Rσ−−→ p4,2

A−1
4,2−−−→∞ [Rσ, A4,2] = Id

Cip4,1 = p4,1 ∞ A4,1−−−→ p4,1
Ci−→ p4,1

A−1
4,1−−−→∞ [Ci, A4,1] = Id

Cσp4,2 = p4,2 ∞ A4,2−−−→ p4,2
Cσ−−→ p4,2

A−1
4,2−−−→∞ [Cσ, A4,2] = Id

Table 9: Action of generators on vertices for H, degenerate cycles coming from R’s and C’s
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