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1. INTRODUCTION

Research on anomaly detection is of great interest in machine
learning and data mining. Detecting anomalies or finding outliers
involves identifying abnormal or inconsistent patterns in a data-
set. Abnormal data often results from unauthorized activity. Credit
card fraud offers a well-known example. Transactions with a stolen
or fake credit card can produce suspicious data. A fake card can be
made by copying information from an authorized card and using it
to create a new unauthorized one. Data such as personal identifying
information may be obtained through phishing or from employees
who work in credit card companies [1]. Another source of abnor-
mal data may derive from unauthorized intrusions in networks.
Abnormal traffic or user actions are common signs of intrusions,
which may occasion breaches of sensitive or confidential data.
Intrusions may also cause sensor networks to generate erroneous
data. When a sensor malfunctions, it is unable to capture data cor-
rectly and thus may produce anomalies. Abnormal changes in data
sources may also result in anomalies [2].

Anomaly detection typically uses data mining and machine learn-
ing methods for detecting abnormal activities in systems. Many
anomaly detection techniques have been developed, including
Support Vector Machines (SVM), which can solve classification
and regression problems. The performance of SVM depends on the
selection of kernel function and kernel parameters. The selection
quality of SVM parameters and kernel functions has an effect on
learning and generation performance. Appropriate kernel function
and associated parameters should be selected to obtain optimal
classification performance. When an appropriate kernel function
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Analysis of large data sets is increasingly important in business and scientific research. One of the challenges in such analysis
stems from uncertainty in data, which can produce anomalous results. This paper proposes a method for detecting an anomaly
in time series data using a Support Vector Machine (SVM). Three different kernels of the SVM are analyzed to predict anomalies
in the UCR time series benchmark data sets. Comparison of the three kernels shows that the defined parameter values of the
Radial Basis Function (RBF) kernel are critical for improving the validity and accuracy in anomaly detection. Our results show
that the RBF kernel of the SVM can be used to advantage in detecting anomalies.
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and parameters are selected, the prediction error of SVM can be
minimized.

This paper reports on application of the support vector machine
method to eight real world time series data sets to detect anomalies
using three different kernels for analysis and prediction. In addi-
tion, SVM kernels are compared for effectiveness based on Area
under the Curve (AUC), Precision, Recall, F1-Score, Specificity,
and Jaccard index criteria.

2. SUPPORT VECTOR MACHINE
ALGORITHM

The SVM algorithm’s goal is to create the best line or decision
boundary that can decompose an n-dimensional space into sets
supporting categorization of new data points. Hyperplanes define
the boundaries in this space.

In our proposed method, we used SVM provided by Scikit-learn to
detect the anomaly in time series data.

For a given dataset x with a number i of training data, SVM finds
the maximum margin hyperplane separating different classes of
data [3]:

x=(x,)xeR, ye{-11},Vi=12.,N (1)

where x, is the p-dimensional input vector, y, is the output value
(1 or —1) and “” is the dot product which has a formula form by
Xy = in ¥,. A decision vector separating two classes is given

by:
w i x+b=0 2)
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where w' is the optimal weighting vector and b is the bias. The mar-
gins of linearly separable training data can be defined as:

wl-x+b=1and w -x+b = -1 (3)

The distance between the margins can be defined by 2/Iwl.
Therefore, minimizing Iw’l is an objective function. In practice, it
is not easy to linearly decompose the training dataset. Let C be the
regularization parameter that defines the separation of two classes
and the error when using a training dataset. The hyperplane is
determined by minimizing:

3 1y e
cxe+lv @

with constraints ¢ y(x) > 1-&,i= 1, ..., N where t, is the target value
and &, is the set of slack variables.

Instead of using a minimization model (4), the problem may be
formulated using Lagrangian dual multipliers ¢ as:

N 1A
maxzai_Ezlzlaiajyiyj(xpxj) (5)
=1 j=

i=1
subject to:
0<,<CVi=12,.,nand ) ay =0 (6)
i=1
Kernel trick can be applied to reduce the complexity of the optimi-

zation problem.

Support vector machine with nonlinear kernel has an objective
function form as follows:

N
max ) o, -
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3. KERNELS

In machine learning, kernel methods are a popular class for a vari-
ety of tasks. Kernel methods can generate the model complex data
through the kernel trick, which is an important feature [4].

In this paper, two types of kernel functions are chosen and eval-
uated, namely the linear and Radial Basis Function (RBF). The
mathematical formula for the said functions are as follows:

3.1. Linear Kernel

k(x,.,xj) = (x,.,xj) (8)

3.2. Radial Basis Function Kernel

—|x.—x.||2J
k(x,x ) = —i =50
X x] exp( (20.2) (9)

K(x, x].) =X X is the kernel function, which is generalized dot
products. “” denotes the dot product. The two kernels have their
own advantages and limitations. The linear kernel offers ease of
performance as well as an ability to deal with small and linearly
separable samples. The RBF kernel, on the other hand, is known
as a good mapping function since it can be used for all kinds of

samples, small or large with both high and low dimensions [5]. The
SVM performance for each kernel will be evaluated in this study to
determine the optimal kernel.

4. EXPERIMENTS

This section introduces the data sets and the evaluation metric
used. We have compared the three kernels and evaluated their
effectiveness for anomaly detection in SVMs.

4.1. Data Sets

Time series data obtained from UCR public data set [6] were used
to evaluate effectiveness. Table 1 shows the details of the datasets.
All datasets are presented in time series form, and every data point
is manually labeled. For all datasets, we designated the minority
class as an anomaly class. Twenty percent of the data was used for
testing.

4.2. Evaluation Metrics

The accuracy of an anomaly detection method is evaluated using
the AUC of the Receiver Operating Characteristic (ROC), Precision
(Pre), Recall (Rec), F1-Score, Specificity, and Jaccard index, defined
as follows (Figure 1):

.. TP
Precision = (10)
TP+FP
Table 1 Summary of the datasets
Datasets Length 1\‘Iumber of Anon"naly
instances ratio

ItalyPowerDemand 24 1096 0.49
Wafer 152 7164 0.11
SonyAIBORobotSurface2 65 980 0.38
ECGFiveDays 136 884 0.50
TwoLeadECG 82 1162 0.50
MoteStrain 84 1272 0.46
Herring 512 128 0.40
Strawberry 235 983 0.36

Support Vector Machine
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Figure 1 Structure of anomaly detection in time series data used SVM.
We used eight time series data sets processed by SVM, and three different
kernels based on AUC, Precision, Recall, F1-Score, Specificity, and Jaccard
index criteria.
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TP
Recall = Sensitivity = —————
YT TPy EN (1)
Pre xRec
F1-Score = 2 x ——— (12)
Pre +Rec
TN
Specificity = ————
P YT INtFP (13)
TP
accard = ——
J TP+FP +EN (14)

where TP is the accurately detected abnormal, FP is the false
detected abnormal, TN is the accurately assigned normal, and FN
is the false assigned normal.

5. RESULTS AND DISCUSSION

The efficiency of the following three SVM kernels are compared:
1. Linear Kernel

2. RBF Kernel (Default parameters value)

3. RBF1 Kernel (We define the parameters C = 20, y = 0.02)

We performed experiments on accuracy of analysis and prediction
of anomalies for eight time series data sets using the three different
SVM kernels. Accuracy of analysis and prediction can be measured
by the AUC as shown in the ROC in Figures 2-9. The blue line is
the Linear Kernel of SVM, the orange line is the RBF kernel, and
the green line is the RBF1 kernel.
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Figure 2 The kernel performance comparison of Linear, RBF and RBF1
for testing ItalyPowerDemand dataset using ROC.
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Figure 3 The kernel performance comparison of Linear, RBF and RBF1
for testing Wafer dataset using ROC.
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Figure 4 The kernel performance comparison of Linear, RBF and RBF1
for testing SonyAIBORobotSurface2 dataset using ROC.
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Figure 5 The kernel performance comparison of Linear, RBF and RBF1
for testing ECGFiveDays dataset using ROC.
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Figure 6 The kernel performance comparison of Linear, RBF and RBF1
for testing TwoLeadECG dataset using ROC.
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Figure 7 The kernel performance comparison of Linear, RBF and RBF1
for testing MoteStrain dataset using ROC.
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Figure 2 shows that the RBF1 kernel is slightly more efficient than
the Linear and RBF kernels for the ItalyPowerDemand data set.
However, all three kernels yield almost 100% accuracy.

Figure 3 shows that the RBF and RBF1 kernels are more efficient
than the Linear kernel, and that the RBF kernel is almost 100%
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Figure 8 The kernel performance comparison of Linear, RBF and RBF1
for testing Herring dataset using ROC.
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Figure 9 The kernel performance comparison of Linear, RBF and RBF1
for testing Strawberry dataset using ROC.

accurate. In particular, the RBF1 kernel gives a ROC value perfectly
for the Wafer data set.

Figure 4 reveals that RBF1 is slightly more efficient than the
linear and RBF kernels for the SonyAIBORobotSurface2 data set.
In particular, the RBF and RBF1 kernels provide almost 100%
accuracy.

Figure 5 shows that all three kernels give perfect ROC values for the
ECGFiveDays data set.

Figure 6 shows that the RBF kernel is almost 100%. Linear and
RBF1 kernels give nearly perfect ROC values for the TwoLeadECG
data set.

Figure 7 shows that the RBF1 kernel to be slightly more efficient
than the linear and RBF kernels for the MoteStrain data set.

Figure 8 reveals that the Linear kernel gives slightly more accurate
ROC values than does the RBF kernel, but the RBF1 kernel is the
most accurate for the Herring data set.

Finally, Figure 9 shows that the Linear kernel is more accurate than
the RBF kernel. In particular, the RBF1 kernel is almost 100% for
the Strawberry data set.

Table 2 shows the summary of anomaly detection results and
comparisons. The results show that SVM with RBF1 kernel gives
the highest accuracy, specificity, Jaccard index, and F1-Score
on all aspects and data sets, except for the Herring data set, for
which the RBF kernel gives the highest of F1-Score and Jaccard.
All three kernels gave perfect results for AUC, Precision, Recall,
F1-Score, Specification, and Jaccard index on the ECGFiveDays
data set.

We compared our results to the latest research in “Time Series
Anomaly Detection with Variational Autoencoders [7]”, which used
a different method. There are six data sets utilized in our method,
namely, ItalyPowerDemand, Wafer, ECGFiveDays, TwoLeadECG,
MoteStrain, and Herring. Table 3 shows the AUC results of the
latest research. These results demonstrate that our proposed

Table 2 Summary of the kernel performance comparison of Linear, RBE, and RBF1

Kernel: Linear

Kernel: RBF (Default) Kernel: RBF (C = 20, y = 0.02)

Datasets
AUC  Precision Recall F1-Score AUC Precision Recall F1-Score AUC Precision Recall F1-Score
ItalyPowerDemand 0.9994 0.9818 0.9818 0.9818 0.9990 0.9910 1.0000 0.9955 0.9999 0.9910 1.0000 0.9955
Wafer 0.7510 0.9687 0.9946 0.9815 0.9999 1.0000 0.9969  0.9985 1.0000 1.0000  0.9985 0.9992
SonyAIBORobotSurface2 0.9819 0.9646 0.9478 0.9561 0.9974 0.9910 0.9565 0.9735 0.9997 1.0000 0.9826 0.9912
ECGFiveDays 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
TwoLeadECG 1.0000 0.9915 1.0000 0.9957 0.9994 0.9915 1.0000  0.9957 1.0000 1.0000 1.0000 1.0000
MoteStrain 0.9540 0.9552 0.8767 0.9143 0.9789 0.9783 0.9247 0.9507 0.9840 0.9716 0.9384 0.9547
Herring 0.6667 0.7647 0.7647 0.7647 0.6275 0.6538 1.0000 0.7907 0.7255 0.7692  0.5882 0.6667
Strawberry 0.9884 0.9908 0.8710 0.9270 0.9366 0.6327 1.0000 0.7750 0.9904 0.9911 0.8952  0.9407
Kernel: Linear Kernel: RBF (Default) Kernel: RBF (C = 20, y = 0.02)
Datasets
Specificity Jaccard Specificity Jaccard Specificity Jaccard
ItalyPowerDemand 0.9818 0.9643 0.9909 0.9910 0.9909 0.9910
Wafer 0.6719 0.9636 1.0000 0.9969 1.0000 0.9985
SonyAIBORobotSurfaceZ 0.9506 0.9160 0.9877 0.9483 1.0000 0.9826
ECGFiveDays 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
TwoLeadECG 0.9914 0.9915 0.9914 0.9915 1.0000 1.0000
MoteStrain 0.9450 0.8421 0.9725 0.9060 0.9633 0.9133
Herring 0.5556 0.6190 0.0000 0.6538 0.6667 0.5000
Strawberry 0.9863 0.8640 0.0137 0.6326 0.9863 0.8880
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Table 3 Comparing AUC of VAE results from latest research

Datasets OUR ANOGAN ALAD MLP-VAE IF

ItalyPowerDemand ~ 0.761 0.516 0.538 0.768  0.763
Wafer 0.965 0.558 0.587 0.790  0.847
ECGFiveDays 0.970 0.970 0.694 0910  0.678
TwoLeadECG 0.891 0.554 0.515 0.731 0.760
MoteStrain 0.840 0.746 0.504 0.750  0.762
Arrhythmia 0.758 0.576 0.515 0.747  0.530
KDD99 0.958 0.887 0.950 0.622  0.929

GunPointAgeSpan ~ 0.881 0.515 0.547 0.821  0.612
ToeSegmentation2  0.846 0.547 0.544 0.816  0.787
Herring 0.659 0.488 0.569 0.627  0.698

method achieves superior results compared to the approach taken
in Zhang and Chen [7] for all six datasets.

This shows that the RBF kernel with parameter values C = 20,
y = 0.02 exhibits good performance in anomaly detection for time
series data.

6. CONCLUSION

In this paper, we presented an analysis of anomaly detection in
time series data using SVM with three different kernels, namely,
Linear, RBF and RBF1. We evaluated the accuracy of anomaly
detection methods based on AUC, Precision, Recall, F1-Score,
Specificity, and Jaccard index criteria. The evaluation results show
that the kernel with defined parameters can improve accuracy on
all aspects and data sets. This application of the SVM method,
with the RBF kernel, can be efficient for detecting anomalies
in time series data. The results for data set ECGFiveDays show
100% accuracy with all three kernels, and the results for the
TwoLeadECG show almost 100% with all three kernels. Moreover,
the results indicate a high degree of accuracy for the three ker-
nels on all the data sets, perhaps because our data was trained in
supervised conditions. Since we train the machine using data that
is well labeled, and the algorithms learn to predict output from the
input data. It means some data is already tagged with the correct
answer.

AUTHORS INTRODUCTION

In the future, we intend to implement the variational autoencoder
method for detecting and predicting anomalies in time series and
spectrum data to compare it with the autoencoder method.
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