
Metadata of the chapter that will be visualized in
SpringerLink

Book Title Advances in Intelligent Networking and Collaborative Systems

Series Title

Chapter Title Bio-inspired VM Introspection for Securing Collaboration Platforms
Copyright Year 2022
Copyright HolderName The Author(s), under exclusive license to Springer Nature Switzerland AG

Corresponding Author Family Name Huseynov
Particle
Given Name Huseyn
Prefix
Suffix
Role
Division Department of Electrical Engineering
Organization City University of New York, City College
Address New York, NY, USA
Email hhuseynov@ccny.cuny.edu

Author Family Name Saadawi
Particle
Given Name Tarek
Prefix
Suffix
Role
Division Department of Electrical Engineering
Organization City University of New York, City College
Address New York, NY, USA
Email saadawi@ccny.cuny.edu

Author Family Name Kourai
Particle
Given Name Kenichi
Prefix
Suffix
Role
Division Department of Computer Science and Networks
Organization Kyushu Institute of Technology
Address Fukuoka, Japan
Email kourai@ksl.ci.kyutech.ac.jp

Abstract As organizations drastically expand their usage of collaborative systems and multi-user applications during
this period of mass remote work, it is crucial to understand and manage the risks that such platforms may
introduce. Improperly or carelessly deployed and configured systems hide security threats that can impact
not only a single organization, but the whole economy. Cloud-based architecture is used in many
collaborative systems, such as audio/video conferencing, collaborative document sharing/editing, distance
learning and others. Therefore, it is important to understand that safety risk can be triggered by attacks on

remote servers and confidential information might be compromised. In this paper, we present an AI
powered application that aims to constantly introspect multiple virtual servers in order to detect malicious
activities based on their anomalous behavior. Once the suspicious process(es) detected, the application in
real-time notifies system administrator about the potential threat. Developed software is able to detect user-
space based keyloggers, rootkits, process hiding and other intrusion artifacts via agent-less operation, by
operating directly from the host machine. Remote memory introspection means no software to install, no
notice to malware to evacuate or destroy data. Conducted experiments on more than twenty different types
of malicious applications provide evidence of high detection accuracy.

Bio-inspired VM Introspection for
Securing Collaboration Platforms

Huseyn Huseynov1(B), Tarek Saadawi1, and Kenichi Kourai2

1 Department of Electrical Engineering, City University of New York, City College,
New York, NY, USA

{hhuseynov,saadawi}@ccny.cuny.edu
2 Department of Computer Science and Networks, Kyushu Institute of Technology,

Fukuoka, Japan
kourai@ksl.ci.kyutech.ac.jp

Abstract. As organizations drastically expand their usage of collabo-
rative systems and multi-user applications during this period of mass
remote work, it is crucial to understand and manage the risks that such
platforms may introduce. Improperly or carelessly deployed and config- AQ1

ured systems hide security threats that can impact not only a single
organization, but the whole economy. Cloud-based architecture is used
in many collaborative systems, such as audio/video conferencing, collab-
orative document sharing/editing, distance learning and others. There-
fore, it is important to understand that safety risk can be triggered by
attacks on remote servers and confidential information might be com-
promised. In this paper, we present an AI powered application that aims
to constantly introspect multiple virtual servers in order to detect mali-
cious activities based on their anomalous behavior. Once the suspicious
process(es) detected, the application in real-time notifies system admin-
istrator about the potential threat. Developed software is able to detect
user-space based keyloggers, rootkits, process hiding and other intrusion
artifacts via agent-less operation, by operating directly from the host
machine. Remote memory introspection means no software to install, no
notice to malware to evacuate or destroy data. Conducted experiments
on more than twenty different types of malicious applications provide
evidence of high detection accuracy.

1 Introduction

Collaborative platforms, groupware, or multi-user applications allow groups of
users to communicate and manage common tasks. Many companies, industrial
infrastructures, government agencies and universities rely on such applications
periodically. All of these systems contain information and resources with different
degrees of sensitivity. The applications deployed in such systems create, manip-
ulate, and provide access to a variety of protected information and resources.

Balancing the competing goals of collaboration and security is difficult
because interaction in collaborative systems is targeted towards making peo-
ple, information, and resources available to all who need it, whereas information
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
L. Barolli et al. (Eds.): INCoS 2021, LNNS 312, pp. 1–10, 2022.
https://doi.org/10.1007/978-3-030-84910-8_4

A
ut

ho
r

Pr
oo

f

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-84910-8_4&domain=pdf
https://doi.org/10.1007/978-3-030-84910-8_4

2 H. Huseynov et al.

security seeks to ensure the availability, confidentiality, and integrity of these
elements while providing it only to those with proper authorization. Protection
of contextual information and resources in such systems therefore requires a
constant automated mechanism that will address necessary vulnerability points.

Among the several areas of security under consideration for collaborative
environments, authorization or access control is particularly important because
such systems may offer open access to local desktops or resources through net-
work. In such environments, some applications can gain privilege to access text-
based chat, audio/video files, shared whiteboard or any other data. Users need
a mechanism not only for identifying collaborators through proper authentica-
tion, but to manage files, applications, system processes and so forth. Proposed
application aims to eliminate these needs for users. In this paper, we present
a single solution to detect malicious applications that tries to surreptitiously
gain access to personal files. This solution provide secure environment by con-
stantly checking servers for the presence of keyloggers, rootkits, trojans and
other malicious applications using cutting edge artificial immune system (AIS)
based technology [1,2]. Crucial part of proposed architecture is KVMonitor -
the virtualization module that collects data (interrupts, system calls, memory
writes, network activities, etc.) by introspecting remote servers [3].

The rest of this paper is organized as follows: Sect. 2 provides a brief back-
ground on security for collaboration platforms and list of potential threats.
Section 3 explains the negative selection algorithm (NSA) and artificial immune
system based IDS. Section 4 describes our proposed end-to-end intrusion detec-
tion approach for cloud based collaboration platforms. Section 5 provides a
detailed performance evaluation of the proposed security approach. Section 6
draws conclusion and discusses future work.

2 Security and Privacy in Collaboration Platforms

Collaboration and communication, hence it is very common for organizations of
all sizes to use tools that facilitate connection between their employees. However,
with the advancement in technological collaboration platforms, the risk level also
goes up. Hence, the people who hold the authority to adopt such platforms must
be aware of some hygiene practices to mitigate risks.

Security in collaboration platforms starts with hardening the security of Vir-
tual Machines deployed in the cloud servers. For example, with cloud computing,
user data is usually stored in the cloud service providers (CSPs) data centers
across the globe, unknown to the user. The security of such data is crucial in
any network environment and even more critical in cloud computing, given the
fact that files are constantly replicated across different geographical zones. Sev-
eral possibilities of attacks exist in this realm. One of the most threatening is
the insider attack, which also considered as one of the largest threats in this
decentralized cloud computing environment.

A
ut

ho
r

Pr
oo

f

Bio-inspired VM Introspection for Securing Collaboration Platforms 3

The heterogeneity and diversity of the cloud computing environment opens
up a series of avenues for malicious attacks and privacy issues that could con-
stitute a major threat to the entire system. These threats can be classified from
three different perspectives: network, application and virtualization.

• Security threats from a network perspective. Denial of Service (DoS)
attack is an age-long threat in various computing and networking areas. DoS
creates an artificial scarcity or lack of online and network services. It could
happen in the form of distributed denial-of-service (DDoS) or wireless jam-
ming and could be launched on both the virtualization and regular network
infrastructures. In case of Software Defined Networks (SDN), DoS attacks
have limited scope, as described in [4], DoS attack on the network edge will
affect only the attacked vicinity and not the entire network. Therefore, due
to the autonomous and semi-autonomous nature of edge data centers, the
attack might not lead to a complete disruption of the core network infrastruc-
ture. Another known network-based attack technique is Man-in-the-Middle
(MitM), characterized by the presence of a third malicious party interposed
between two or more communication parties and secretly relaying or altering
the communication between such parties. The potency of an MitM attack on
mobile networks has been proven in various works and literature [5,6]. Such
attacks would be even more threatening for the SDN scenario, considering
that SDN heavily relies on virtualization, hence launching an MitM attack
on multiple VMs could very easily affect all other elements on both sides of
the attack (Fig. 1). AQ2

Fig. 1. Network layers in cloud computing infrastructure

A
ut

ho
r

Pr
oo

f

4 H. Huseynov et al.

• Security threats from system and application perspective. Third
party applications running in remote servers can pose a fatal security threats
by exposing virtual machines to different malicious applications. When virtu-
alization software such as hypervisor or container engine is attacked, remote
applications can fail and data can be leaked. Interim attacks through manip-
ulated or malware-infected remote applications or spread of infection to other
cloud-based software and data leakage can occur. Keyloggers, rootkits, spy-
ware, adware, ransomware, worms, trojans and other nefarious threats are
considered as potential risk factors for virtual machines. Exploitation of vul-
nerabilities in open SDN systems can occur, also known as hyperjacking, in
which a hacker takes control over the hypervisor that creates the virtual envi-
ronment within a VM host.

• Security threats from a virtualization perspective. While virtual
machines are relatively secure because they provide a completely isolated
computing environment, containers are vulnerable since they share a single
operating system. One of the possible threats in SDN is VM manipulation,
which mainly affects the virtualization infrastructure. The adversary in VM
manipulation is mostly a malicious insider with enough privileges or a VM
that has escalated privileges. In addition, arbitrary container access manip-
ulation can lead to a control takeover attack on the container, and there is a
possibility of data manipulation or data leakage through open API vulnera-
bilities in cloud-based applications.

Proposed work mainly lies on detecting security threats in Virtual Machines
within system and application perspective. Designed approach employs artificial
immune system (AIS) based algorithm for anomaly detection. One significant
feature of the theory immunology is the ability to adapt to changing environment
and dynamically learning. AIS is inspired by the human immune system (HIS),
which has the ability to distinguish internal cells and molecules of the body
against diseases [1].

3 Artificial Immune System Based Intrusion Detection

Anomaly-based intrusion detection system monitors network traffic and
user/system activity for abnormal behavior. Unlike the signature-based detection
method, the anomaly-based IDS can detect both known and unknown (zero-day)
attacks. Hence, it is a better solution than the signature-based detection tech-
nique if its system is well designed [4]. Therefore, efficiency of anomaly-based
IDS depends on multiple requirements such as what kind of algorithms have
been deployed, what is the main target, understanding generated input data,
application run-time and so on.

Artificial Immune System (AIS) is a type of “adaptive systems”, inspired by
theoretical immunology and observed immune functions, principles, and models,
which are applied to problem-solving. Immunology uses models for understand-
ing the structure and function of the immune system. Simplification of such
biological immune system models can produce AIS models that when applied

A
ut

ho
r

Pr
oo

f

Bio-inspired VM Introspection for Securing Collaboration Platforms 5

to determined problems, could be the basis of artificial immune system algo-
rithms and consequently computer programs [1]. An important mechanism of
the adaptive immune system is the “self/nonself recognition”. The self-nonself
(SNS) model is an immunology model that has been successfully utilized in AIS
in the design of IDS systems to detect malicious activities and network attacks
in a given operating system. Immune system is able to recognize which cells are
its own (self) and which are foreign (nonself); thus, it is able to build its defense
against the attacker instead of self-destructing [2].

3.1 Negative Selection Algorithm

The negative selection algorithm is based on the self-nonself model of the human
immune system (HIS). The first step of the NSA according to Forest et al. [7]
involves randomly generating detectors (which is the AIS’s equivalent of B cell
in HIS) in the complementary space (i.e., space which contains no seen self
elements) and then to apply these detectors to classify new (unseen) data as
self (no data manipulation) or nonself (data manipulation). Several variations
of NSAs have been proposed after the original version was introduced (Forest
et al., 1994); however, the main features of the original algorithm still remain.
The whole shape-space U is divided into a self set S and a nonself set N with

U = S ∪ N and S ∩ N = ∅ (1)

There are two steps or phases in NSA, known as detector generation phase and
nonself detection phase. In the first step, a set of detectors is generated by some
randomized process that uses a collection of self as the input. Candidate detectors
that match any of the self-samples are eliminated, whereas unmatched ones are
kept [2]. Algorithm 1 shows a pseudocode of a basic negative selection algorithm.
At the detector generation phase, normal profiles (also called self profiles or self
samples) which have been extracted from the training data are used to generate
random detectors. Each data instance in the normal profile is obtained from
the data instances captured by the system during periods of normal activity
(i.e., during the absence of any malicious applications). A detector is defined as
d = (C, rd), where C = {c1, c2, ..., cm}, ci ∈ R, is an m-dimensional point that
corresponds to the center of a unit hyper-sphere with rd ∈ R as its unit radius.
For the generic NSA shown in Algorithm 1, rd = rs [8].

A
ut

ho
r

Pr
oo

f

6 H. Huseynov et al.

Algorithm 1. A Generic Negative Selection Algorithm
1: function GenericNSA(S, Tmax, rs)
2: � Where S - set of normal/self profiles, Tmax - max. number of detectors, rs -

matching threshold.
3: D ← ∅
4: while |D| < Tmax do
5: Generate a random detector (d)
6: if d does not match any element in S then
7: D ← D ∪ d
8: end if
9: end while

10: for All new incoming samples ν ∈ ∪ do
11: if ν matches any element in D then
12: Classify ν as a nonself sample
13: end if
14: end for
15: return D
16: end function

Figure 2 shows a basic block-diagram of two NSA phases: detector genera-
tion process on the left and nonself detection on the right. Randomly generated
candidates that match any self samples are discarded. The detector generation
process is halted when the desired number of detectors is obtained. To determine
if a detector (C, rdi) matches any normal profile, the distance (dValue) between
this detector and its nearest self profile neighbor (Xnormal, rs) ∈ S is computed,
where Xnormal is an m-dimensional point {x1, x2, ..., xm} and corresponds to the
center of a unit hyper-sphere (with rs as its unit radius). Here di is a random
candidate detector with center C and radius rdi.

Random
Candidates Match

Self
Samples

No

Yes

Add to the list
of detectors

Discard

Data Match

List of
Detectors

No

Yes

Normal (Self)

Abnormal
(Nonself)

Fig. 2. Detector generation process on the left and nonself detection on the right.

In the proposed work distance dValue is obtained using Squared (Euclidean)
distance, however, depending on architecture, any real valued distance measures
can be used (such as Euclidean distance, Manhattan distance, Chebyshev dis-
tance, etc.).

d(c, x) =
m∑

i=1

(ci − xi)2 (2)

A
ut

ho
r

Pr
oo

f

Bio-inspired VM Introspection for Securing Collaboration Platforms 7

Process of generating random candidates to cover the nonself space employs
Genetic Algorithm. The self-space consisted of a set S, a subset of [0, 1]m; accord-
ingly, a data point was represented as a feature vector x = (x1, x2, ..., xm) in
[0, 1]m. At the beginning, an initial population of candidate detectors is gener-
ated at random. Such detectors then mature through an iterative process. In
each iteration, the radius of each detector is calculated as rd = dValue − rs,
where rs is the variable distance around a self [1,2].

4 Proposed Security Approach

The proposed intrusion detection and mitigation approach, the overall architec-
ture of which is depicted in Fig. 3, provides security in cloud-based networks
by automated, intelligent analysis of network flows and system level forensics,
followed by mitigation actions being taken in accordance with the decision of
IDS component. KVMonitor is the crucial part of nonself detection phase and
provides an API for translating a virtual address to a physical one [3]. To intro-
spect a virtual disk with the qcow2 format, KVMonitor uses network block
device (NBD) for QEMU. By doing so, it allocates a real disk space only to used
blocks, therefore saving a disk space. Several conducted experiments confirmed
efficiency of memory introspection using KVMonitor [3].

VM

host operating system

QEMU-KVM

Virtual NIC

Virtual disk

Artificial Immune
System based

IDS

Virtual Machine
Introspection
module KVMonitor

Offload

monitor

Fig. 3. Basic architecture of proposed intrusion detection system.

List of detectors obtained from the detector generation phase is being used
in the second phase. During the nonself detection phase (Fig. 2), KVMonitor
constantly introspects multiple VMs and returns raw feature values to the IDS.
Next, the application converts these features into the binary tuples and begins
matching process. If application finds a match for any incoming set of features
among the detectors, it is immediately notifies administrator about potential
anomaly. Primary focus is made on the following features:

A
ut

ho
r

Pr
oo

f

8 H. Huseynov et al.

• Keyboard Driver: XkbGetState(), XKeysymToString(), XkbRules().
• Memory Usage: system calls Read() and Write(), RssFile(), RssShmem().
• File System: ReadFile and WriteFile, CreateFile, OpenFile.
• Network Flow: Send, Sendto, Sendmsg, TCP socket, UDP socket.

The controller at IDS periodically collects these entries from virtual
machines, which are retrieved by the KVMonitor at regular intervals. Upon
retrieval, features are converted into binary tuples for every flow and algorithm
begins matching process. While looping over the flow entries, the incoming fea-
tures are immediately sent to the IDS, without waiting to finish creation of other
flow entries. One of the main benefits of AIS based virtual machine introspection
is zero load on VM, since IDS operates from the host operating system.

5 Experimental Evaluation

In this section, we provide an experimental evaluation of the proposed secu-
rity approach using three different types of Linux based keyloggers taken from
the open source software list [9]. The experiments were conducted on a host
machine with Intel Core i5-11400 @2.60GHz processor and 16 GB RAM. The
guest machine was running on Ubuntu 18.04 LTS with allocated 2 GB memory.
All malicious applications listed in the Table 1 have been initially installed into
the VM.

In order to demonstrate efficiency of proposed system, we have divided exper-
iments into two parts. First, after being logged in to the VM, user starts typ-
ing short sentences with periodic pauses (≈40–80 characters). The text can
be entered into any application (browser, text editor, etc.) running inside VM
(Chart (a)). As part of the second experiment, user types long text making cer-
tain pauses between sentences (≈400–1500 characters) using any default text
editor (Chart (b)). We measured time for both scenarios considering fluctuation
of several features (keyboard tracking, file access, network flow).

0 60 120 180 240 300 360 420 480 540 600
0

0.2

0.4

0.6

0.8

1

Time [sec]

N
o
rm

a
li
ze

d
A

P
I

C
a
ll

F
re

q
u
en

cy
V

a
lu

es

(a) API calls invoked by Firefox using Logkeys

Keyboard Tracking

File Access

Network

0 60 120 180 240 300 360 420 480 540 600
0

0.2

0.4

0.6

0.8

1

Time [sec]

N
o
rm

a
li
ze

d
A

P
I

C
a
ll

F
re

q
u
en

cy
V

a
lu

es

(b) API calls invoked by gedit using Blueberry

Keyboard Tracking

File Access

Network

A
ut

ho
r

Pr
oo

f

Bio-inspired VM Introspection for Securing Collaboration Platforms 9

Chart (a) shows the result of anomalous fluctuation of the features depicted
by our IDS while typing in the infected VM. The X-axis represents time in sec-
onds and the Y -axis is normalized value of API call frequencies. The normalized
API call frequency values are the total value we get during 10 s divided by the
maximum value of the whole period (600 s). Chart (b) represents second part of
the experiment, but with a different keylogger. In this case, keylogger triggers
networking features by trying to send captured keystrokes over the TCP protocol
to remote server.

Table 1. Three different types of keyloggers used in this experiment

Logkeys ::: Multi functional GNU/Linux keylogger. Logs all entered
keystrokes including function keys [10]

Blueberry ::: Opens a stream to the keyboard event handler and gets every
key press. Create logs when the buffer gets 300 characters
and sends it to the remote server over TCP protocol [11]

EKeylogger ::: Sends recorded keystrokes every 10 sec using SMTP protocol
[12]

Proposed IDS was able to detect all listed keyloggers within the first 10 s
of their launch. This time is allocated as an interval for VM introspection and
can be reduced depending on IDS configuration. Moreover, application efficiently
detects other types of malicious applications (trojans, rootkits, adware and so
on) without human interaction. Artificial Immune System based IDS is able to
track minor deviations from normal profile triggered by malevolent processes.
Conducted experiments on more than twenty different malicious application
demonstrate high detection accuracy and efficient VMI without any user being
engaged. The proposed security approach is promising for achieving real-time,
highly accurate detection and mitigation of attacks in cloud-based servers, which
will be in widespread use in the 5G and beyond era.

6 Conclusions

Collaboration solutions have become key to enabling remote work, and if the
proper steps are taken to securely configure and deploy them, the risks they intro-
duce can be mitigated. As these platforms become used more heavily in regular
business, it is increasingly imperative that organizations have threat intelligence
feeds in place, and vulnerabilities impacting these platforms are identified and
addressed promptly. In this paper, we provided a distributed solution to secure
cloud-based servers for collaboration platforms. We began by examining and
classifying potential vulnerabilities for such systems. Next, we presented Artifi-
cial Immune System algorithm that is used in proposed application. Following
by describing overall IDS architecture and providing experimental evaluation

A
ut

ho
r

Pr
oo

f

10 H. Huseynov et al.

of presented application. Our future work will include an extension of current
introspection by accessing virtual machines remotely. Initial experiments were
successfully conducted to introspect a virtual machine over the GRE tunnel.
Continuous tests on many different malicious applications provide capability to
detect large attack surface in a variety of network structures. We believe that our
study helps to introduce a new model for securing collaboration platforms and
provide best practices on issues that has high impact on security and privacy.

References

1. Igbe, O., Saadawi, T., Darwish, I.: Digital Immune System for Intrusion Detection
on Data Processing Systems and Networks, March 2020. Patent No. US 10,609,057;
Filed, 26 June 2017; Issued 31 March 2020

2. Dasgupta, D., Nino, F.: Immunological Computation: Theory and Applications,
1st edn. Auerbach Publications, Boca Raton (2008)

3. Kourai, K., Nakamura, K.: Efficient VM introspection in KVM and performance
comparison with Xen. In: Proceedings of the 2014 IEEE 20th Pacific Rim Inter-
national Symposium on Dependable Computing, PRDC 2014, pp. 192–202, USA.
IEEE Computer Society (2014)

4. Roman, R., Lopez, J., Mambo, M.: Mobile edge computing, Fog et al.: a survey
and analysis of security threats and challenges. Future Gener. Comput. Syst. 78,
680–698 (2018)

5. Stojmenovic, I., Wen, S., Huang, X., Luan, H.: An overview of fog computing and
its security issues. Concurr. Comput. Pract. Experience 28(10), 2991–3005 (2016)

6. Zhang, L., Jia, W., Wen, S., Yao, D.: A man-in-the-middle attack on 3G-WLAN
interworking. In: Proceedings of the 2010 International Conference on Commu-
nications and Mobile Computing, CMC 2010, vol. 01, pp. 121–125, USA. IEEE
Computer Society (2010)

7. Forest, S., Perelson, A., Allen, L., Cherukuri, R.: Self-nonself discrimination in a
computer. In: Proceedings, Research in Security and Privacy, pp. 202–212, USA.
IEEE Computer Society Symposium (1994)

8. Igbe, O., Darwish, I., Saadawi, T.: Distributed network intrusion detection systems:
an artificial immune system approach. In: 2016 IEEE First International Confer-
ence on Connected Health: Applications, Systems and Engineering Technologies
(CHASE), pp. 101–106 (2016)

9. Top Open Source Keylogger Projects. https://awesomeopensource.com/projects/
keylogger. Accessed 2 May 2021

10. Logkeys - a GNU/Linux Keylogger. The source code for the index construction
and search is available at https://github.com/kernc/logkeys. Implemented on C
and dual licensed under the terms of either GNU GPLv3 or later, or WTFPLv2
or later. Accessed 2 June 2021

11. Blueberry - Simple Open Source Keylogger for Linux. The source code for the index
construction and search is available at https://github.com/PRDeving/blueberry.
Implemented on C and has open license. Accessed 2 June 2021

12. EKeylogger or simply Keylogger. The source code for the index construction and
search is available at https://github.com/aydinnyunus/Keylogger. Implemented on
Python for the purpose of testing the security of information systems. Accessed 2
June 2021

A
ut

ho
r

Pr
oo

f

https://awesomeopensource.com/projects/keylogger
https://awesomeopensource.com/projects/keylogger
https://github.com/kernc/logkeys
https://github.com/PRDeving/blueberry
https://github.com/aydinnyunus/Keylogger

Author Queries

Chapter 4

Query
Refs.

Details Required Author’s
response

AQ1 This is to inform you that corresponding author has been
identified as per the information available in the Copy-
right form.

AQ2 Please check and confirm the inserted citation of Fig. 1
is correct. If not, please suggest an alternative citation.

A
ut

ho
r

Pr
oo

f

MARKED PROOF

Please correct and return this set

Instruction to printer

Leave unchanged under matter to remain

through single character, rule or underline

New matter followed by

or

or

or

or

or

or

or

or

or

and/or

and/or

e.g.

e.g.

under character

over character

new character

new characters

through all characters to be deleted

through letter or

through characters

under matter to be changed

under matter to be changed

under matter to be changed

under matter to be changed

under matter to be changed

Encircle matter to be changed

(As above)

(As above)

(As above)

(As above)

(As above)

(As above)

(As above)

(As above)

linking characters

through character or

where required

between characters or

words affected

through character or

where required

or

indicated in the margin

Delete

Substitute character or

substitute part of one or

more word(s)
Change to italics

Change to capitals

Change to small capitals

Change to bold type

Change to bold italic

Change to lower case

Change italic to upright type

Change bold to non-bold type

Insert ‘superior’ character

Insert ‘inferior’ character

Insert full stop

Insert comma

Insert single quotation marks

Insert double quotation marks

Insert hyphen

Start new paragraph

No new paragraph

Transpose

Close up

Insert or substitute space

between characters or words

Reduce space between
characters or words

Insert in text the matter

Textual mark Marginal mark

Please use the proof correction marks shown below for all alterations and corrections. If you

in dark ink and are made well within the page margins.

wish to return your proof by fax you should ensure that all amendments are written clearly

