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ABSTRACT

In today’s data-driven world, it is critical that we use appro-
priate datasets for analysis and decision-making. Datasets
could be biased because they reflect existing inequalities in
the world, due to the data scientists’ biased world view, or
due to the data scientists’ limited control over the data col-
lection process. For these reasons, it is important to ensure
adequate data coverage across different groups over the in-
tersection of multiple attributes. Often, the dataset to be
analyzed is obtained through complex joins and predicate
combinations over multiple relational tables in a database.
Due to the sheer data volume we often have to deal with,
determining adequate coverage can require an unacceptably
long execution time.

In this paper, we provide an efficient approach for cover-
age analysis, given a set of attributes across multiple tables.
To identify regions with insufficient coverage in the com-
binatorially large set of value combinations, we design an
index scheme to avoid explicit table joins, achieve efficient
memory usage, and support predicate combination at a high
level of parallelism. We also propose P-WALK, a priority-
based search algorithm, to traverse the lattice space. Since
in practice, coverage assessment typically does not require
precise COUNT aggregation results, we further present ap-
proximate methods to reduce computation time. Experi-
mental evaluation using three real-world datasets shows the
effectiveness, efficiency, and accuracy of proposed methods.
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1. INTRODUCTION

The era of big data is having an increasingly significant
impact on science, engineering, and society. Computer algo-
rithms are making more objective, accurate, and efficient de-
cisions based on large datasets and data-driven techniques.
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Machine learning models, for example, make predictions on
the basis of large datasets. Automated Decision Systems
analyze data to inform human decisions where known cases
include health issues [36], education [5], policing [44], crimi-
nal justice [25], etc. Although computer algorithms promise
to be data-driven and “neutral”, they are never really so; the
data used to support the downstream machine learning and
decision-making process is never truly objective [39]. This is
because we embed human bias in the process of collecting,
using, and analyzing the data. Additionally, the data itself
also reflects existing inequality and prejudice in the world.
Analyzing the representativeness, diversity, and suitability
of decision support datasets is critical in identifying and re-
moving inequalities and biases of downstream tasks.

It has been shown in [12, 6] that inadequate data collec-
tion can induce inaccuracy and discrimination for a specific
category. This topic is critical when it comes to data-driven
predictions in areas such as medical diagnosis and criminal
justice, where a false signal can have catastrophic effects on
people’s lives. Many diseases are correlated with race, gen-
der, and other demographic factors. For example, Ashkenazi
Jewish women are known to have a higher risk of breast
cancer [18]; it has also been shown [8] that the death rate
of heart disease varies by race and ethnicity; the weight-to-
height ratio varies across racial/ethnic groups, which makes
a difference when assessing childhood obesity [52]. For sen-
tinel health surveillance systems [45] used for monitoring dis-
eases and detecting outbreaks, coverage analysis for the se-
lected institutions and groups is of vital significance. When
using machine learning to predict potential criminal acts,
population bias [39], which refers to the demographic distor-
tion between the studied and targeted population, is also ex-
posing minority groups to a higher risk of model unfairness.
For example, a widely-applied criminal justice tool system-
atically assesses defendants of marginalized communities to
have a higher likelihood to re-offend [21]. The Boston gov-
ernment was until recently using a system to assign students
to schools close to their homes [19]. However, this attempt
ignored the lack of high-quality schools in predominantly
minority neighborhoods.

All these examples indicate the importance of analyzing
the data coverage of decision-support datasets. Given a set
of attributes, each of which takes one of several discrete val-
ues’, we would like to ensure that there are enough instances
of the intersection of attributes to satisfy a given “coverage
threshold”. We would like to identify subgroups whose cov-
erage is insufficient in that it does not meet the specified

We can bucketize continuous-valued attributes.

2229



threshold. These under-represented subgroups are at higher
risk of experiencing intersectional unfairness [27, 17, 20] in
downstream data-driven algorithms. We now develop one
concrete example in further detail to better appreciate our
coverage analysis task.

Example 1. An insurance company wants to train a model
to quote the insurance premium for drivers based on their
predicted probability of getting involved in severe and fatal
accidents. They use the UK Road Safety dataset containing
records of Accidents and Vehicles. The coverage is defined on
a set of attributes, including driver information, road condi-
tions, and vehicle conditions. Before the implementation of
this model, the company would like to catch any imbalance
in attribute value distribution, which might mislead the pre-
diction results. For example, the database does not contain
enough accident records for young people driving new cars.
This could perhaps occur because most young people do not
yet have the money to buy a new car. Whatever the reason,
it would not be correct for the system to assume that the
accident rates are similar for young people with old cars and
with new cars; perhaps young people with new cars have a
flashier lifestyle and drive more recklessly. To identify such
cases, the company needs to know the attribute value com-
binations for which the count is low. This analysis requires
considering a large number of potential groups, and using
complex SQL queries to access the database.

Since the number of attribute value combinations is com-
binatorial, determining the count for each combination can
be very time-consuming. Previous work has attempted to re-
duce this cost, for example, by exploiting a DAG of attribute
value combinations starting from no attributes specified at
the root and all attributes specified at the leaves. See related
work (Section 7) for a brief survey. However, previous works
assume that the dataset is a single table, and the coverage
of data patterns can be determined with one pass over the
dataset. In the real world, big data is more commonly stored
and integrated into databases, or even data warehouses, with
multiple tables. They might come from heterogeneous re-
sources, and different groups of data users may have different
downstream data applications. For a given set of attributes,
coverage analysis typically involves exploring combinatorial
value combinations of attributes from different tables and
evaluating their coverage. In this process, joining the tables,
constructing indexes at run time, and combining the predi-
cate results across tables can be computationally expensive.
Such OLAP operations typically access a large proportion of
the data and require multiple passes over the data. In this
case, making use of indexes and approximate query process-
ing methods can greatly save time and effort.

To summarize, we make the following contributions:

e Database coverage analysis involves a large number
of similar and computationally expensive queries. We
present a compact and highly parallel index scheme to
handle joins and cross-table predicate combinations.

Identifying inadequate data collections over multiple
categorical attributes does not have polynomial-time
solutions [6]. We make use of the monotonicity prop-
erty of data patterns and propose a priority-based al-
gorithm to minimize the number of COUNT opera-
tions, which is the most time-consuming step of cov-
erage analysis.
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e Since approximate answers usually suffice for the cov-
erage analysis problem, we consider sampling from the
original database to respond quickly with smaller data
sizes. We address challenges in sample-then-join es-
timation by inserting correlation-aware samplers and
construct stratified samples in one pass over the data.

We evaluate our approach on three real-world datasets
having millions of records. We compare our method
with baseline methods based on single-table algorithms
and analyze the efficiency and accuracy of our method.

2. PRELIMINARIES

We follow the general setup of [6], making only the changes
required by our problem. Consider a database D with mul-
tiple tables {T1,---,T,}, where each table T; has n; tu-
ples defined over m; attributes {ai 1, - ,aim,}. We use
the notation a;; to refer to the j-th attribute of 73. We
consider a user-specified set of “attributes of interest”, A =
{A1, -+, Ag}, where every A, € A is an attribute a; ; in a
table T;. Let T be the set of tables that have at least one at-
tribute in the attributes of interest, i.e., T = {7} | a;; € A}.
Without loss of generality, we assume T = {T3,,---,T},,}
forms a join table, in form of X =T; ™ Tj, - T; .
In this paper, we consider the equi-join of tables, which in-
cludes a wide range of joins such as key-foreign key joins,
star-joins and many-to-many joins. Our objective is to in-
vestigate the coverage over A in X, as defined in [6]. For
convenience, we summarize the symbols in Table 1.

For attributes having continuous values or with high car-
dinalities, we first use the bucketization technique to reduce
the computational complexity by grouping similar values
into the same bucket. After bucketization, the total number
of attribute value combinations is equal to Hle ¢i, where
¢; is the cardinality of attribute A;. Definition 2.1 provides
a formal statement of attribute value combinations.

Definition 2.1. (Pattern). A data pattern, P, is a k-
dimensional vector of value combinations for the attribute
set A = {A1, Ao, As, ..., A }. The i-th position P; represents
the value of attribute A;, which can either be X (meaning
this element is unbound) or bound to a deterministic value.
Formally,

P = (P, Py, Ps,... P)

where P; is either a deterministic value of A; or P; = X.

For example, consider a four-dimensional data pattern
P = 0X1X, which contains two bound elements and two
unbound elements. This data pattern considers an attribute
set with four attributes but with only two predicates, rep-
resenting by bound element value assignments A; = 0 and
A3z = 1. In the join table X of attribute set A, we say
a record satisfies pattern P if for all values d; = P;, this
record satisfies A; = d;.

We find it useful to allow “don’t care” values for some
attributes while specifying a pattern. It is permitted by
unbound elements in the data pattern. We can thus have a
root pattern with “don’t care” for each attribute value, which
matches every tuple in the database, leaf patterns that are
fully instantiated attribute value combinations, and every-
thing in between. The total number of distinct patterns is
l_[le (c; +1), where we add one to the cardinality ¢; in each
term of the product to account for the “don’t care” value.



Table 1: Table of Notations

Symbol  Description
Xt Join table of tables in set T
A; The i-th attribute of the attribute set A
P; The i-th dimension of data pattern P
T Data coverage threshold
cov(P) Coverage of data pattern P
G(A)  Data pattern graph for attribute set A
MUP Maximal Uncoverd Pattern

Given a set of “attributes of interest” A and a fixed cov-
erage threshold 7, sufficient data coverage means that the
join table X of table set T contains at least 7 records sat-
isfying pattern P. The value of coverage threshold 7 varies
according to the need of downstream applications. Identi-
fying the insufficient coverage for the underlying data dis-
tribution enables us to get a better handle of potentially
underrepresented groups in downstream algorithms.

Definition 2.2. (Covered/Uncovered Pattern). Given a
database D and a data pattern P, the coverage of a data
pattern cov(P) is defined as the number of records in the join
table X | that satisfy pattern P. With the fixed coverage
threshold 7, pattern P is a covered pattern if cov(P) = 7.
Otherwise, this pattern is said to be uncovered.

If we regard uncovered regions as data holes in the k-
dimensional data space represented by the k attributes in
set A, larger data holes represent regions that cover more
dimensions in the data space. In most situations, larger un-
covered regions are more harmful than smaller ones. As a
result, we aim to find the maximal data holes in the data
space of the join table X ;. In Definition 2.3, we define the
dominance of data patterns. Based on the dominance rela-
tion, we construct the pattern graph and define the Maximal
Uncovered Pattern in Definition 2.4.

Definition 2.3. (Dominance of Data Patterns). A pattern
Py is said to be dominated by a pattern Ps, if P; can be
obtained by assigning any of the unbound elements in Py
with a deterministic value. In this case, P is a descendant
of Pz, and P2 is the ancestor of P;. Furthermore, we say a
pattern P is dominated by a pattern set S when there exists
a pattern P’ € S that dominates P, and we say P dominates
S when P dominates P’ € S for some P’.

For example, consider two pairs of data patterns (P; =
1XX, P, = 1X0) and (P; = 1XX, P3 = 110). From the
definition of dominance, we say that P; dominates P, and
Ps3. On top of that, we define the parent-child relationship
such that a parent can be obtained by replacing one of the
bound elements from the child pattern with X. In this way,
P is a parent of Pz, and Ps is a parent of Ps.

With the dominance relation of data patterns, we can con-
struct the pattern graph G(A) for all possible value combi-
nations. The number of layers in the pattern graph is d + 1
where d is the number of dimensions of attribute set .A.
Given a pattern P with k, bound elements and k,, unbound
elements, pattern P is in Layer ks of the pattern graph. The
number of parents of P is ki, where each parent is obtained
by changing one of P’s bound element to unbound. The
number of children for P is the sum of the cardinalities for all
k. unbound elements. This is because we pick a value from
the data domain of each unbound attribute. Formally, the
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Figure

1: Pattern Graph for Attribute Set (d

number of parents of pattern P is # of parents(P) = ky,
while the number of children is # of children(P) = 3, ¢;.

Figure 1 shows an example of the pattern graph for the
running example in Section 4. The attribute set has a di-
mension of 2, and the cardinalities for each attribute are 7
and 2, respectively. In Layer 0, there is only one data pat-
tern X X whose attribute values are all unbound. In Layer
d, all HZ=1 ¢, data patterns contain only bound elements,
where ¢, represents the cardinality for attribute Aj. The
total number of data pattern nodes is HZ:1(61€ +1). In
the pattern graph, there are links between each parent-child
pair. The hierarchical structure of pattern graphs based
on the dominance of patterns is very helpful when pruning
the searching process among the combinatorial explosion of
value combinations. Once we find an uncovered pattern, all
its descendants are uncovered patterns. Similarly, for each
covered pattern, all its ancestors are covered.

In Figure 1, we color all uncovered patterns in red and
covered patterns in green. For example, pattern node 7X
in Layer 1 is uncovered, and therefore all its children are
uncovered. Similarly, pattern node 61 in Layer 2 is covered
and all its parent nodes 6.X and X1 are covered patterns.

Definition 2.4. (Maximal Uncovered Pattern, MUP). Pat-
tern P is said to be a maximal uncovered pattern if its
coverage cov(P) < 7, and for all its parent pattern P,
cov(P') = 7.

In other words, an MUP refers to an uncovered pattern
whose parents are all covered. In Figure 1, node 5X, 7X,
21, and 22 are MUPs since all their parents are covered.
However, node 71 and 72 are not MUPs since they have an
uncovered parent 7X. When the data distribution is more
uniform, MUPs are more likely to appear in lower layers. In
contrast, when the data distribution is skewed, MUPs are
more likely to appear in the upper layers.

All descendants of an MUP must also necessarily be un-
covered. A user would typically prefer to be informed about
a single MUP rather than the potentially large number of
uncovered descendant patterns. Based on definitions above,
our coverage analysis problem can be formulated as follows:

Problem 1 (Database Coverage Analysis). In database D,
given a coverage threshold T, analyze the coverage over at-
tribute set A in the join table X1, and find all maximal
uncovered patterns M = {P | P € M if P is an MUP}.

3. BASELINE METHODS

We provide a motivating example in Internet Movie Data
Base (IMDB) to analyze the drawbacks of straightforward
baseline methods. We construct a set of “attributes of in-
terest” comprising 6 attributes from 5 relations. Figure 2
shows the query graph of the example. The circles are the
attributes in set A, while the squares are the relations in
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Figure 2: Query Graph for Motivating Example

set T, that contain attributes in A. We use dashed edges to
represent join predicates and solid arrows to indicate which
relation the attribute is part of. Our coverage requirement
is to ensure that we have enough instances for each cate-
gorical group. For example, we wish to be alerted if, in our
database, all action movies are from big American studios,
or all docudramas are from independent producers in recent
years. According to the definitions in Section 2, this at-
tribute set has a dimension of 6. The total number of data
patterns is [[0_, (¢; + 1), where ¢; denotes the cardinality
of the i-th attribute.

An MUP identification algorithm has two major steps:
(1) searching (and pruning) the pattern graph, and (2) com-
puting the coverage of the related pattern when visiting a
node in the graph. It has been proven that it is not pos-
sible to identify the MUPs of even a single table with a
polynomial-time algorithm [6]. In view of the combinatori-
ally large MUP search space (pattern graph), for the second
step, we consider two types of baseline methods here. We
can either check the coverage for each pattern individually
using a conjunctive COUNT query or perform group-by to
get the counts for all patterns in the leaf layer, and adding
them up to determine the coverage for other nodes. We
present below query execution plans for baseline methods.

Solution 1. Apply WHERE clause with JOIN predicates.
For each data pattern we are visiting in the searching pro-
cess, we use WHERE clause for bound elements value filter-
ing and consider the join restriction to get the join result.
For example, suppose we want to determine the pattern’s
coverage in the bottom (leaf) layer. The query would be:

SELECT COUNT (x)
FROM title AS t, cast_info AS ci, company name AS cn,
name AS n, movie companies AS mc
WHERE t.kind = ‘tv series’
AND t.production_year = ‘2000 - 2010’
AND n.gender = ‘f’
AND ci.role = ‘director’
AND cn.country_code = ‘[us|’
AND mec.company type = ‘production companies’
AND <join predicates>;

Issue 1. We profile the query execution plan using the Post-
greSQL EXPLAIN function, to show how the involved tables
are scanned (by index or sequential scan) and what kind of
join algorithm will be applied. As indicated in the execu-
tion plan, the most time-consuming operation is the hash
join to generate the temporary join table X ;. To consider
attributes across multiple tables, join operations usually in-
volve a large proportion of the data. The coverage analysis
of a combinatorially large pattern set unavoidably requires

multiple passes over the data. Performing join operations
repeatedly is not desirable even if they can make use of
indexes in original tables. Alternatively, materializing the
join table could save the time to perform joins. However,
creating the join table also has critical limitations: the long
time latency of table scans and the lack of indexes of the
join table. To create the join table and the corresponding
indexes, prohibitively large storage space is also needed as
many queries have a product/join of large input relations.
Experimental results also show the enormous index creation
time for each attribute in the join table, without which the
cost of repeated full table scans (required to compute counts)
becomes prohibitive.

Solution 2. Instead of checking the coverage of each data
pattern individually via a conjunctive COUNT query, the
group by operation computes the counts for all data pat-
terns in the bottom (leaf) layer with a shared join operation.
These numbers can be added up to obtain counts for nodes
in the upper layers, and hence to find MUPs in the pattern
graph. The corresponding query would be:

SELECT COUNT (%)
FROM title AS t, cast_info AS ci, company _name AS cn,
name AS n, movie_ companies AS mc
WHERE <join predicates>
GROUP BY t.kind, t.production_year, n.gender, ci.role,
cn.country _code, mc.company_ type;

Issue 2. If the number of leaves is not too large, this is
indeed an effective technique: a single scan of the table
may suffice, and even more, efficient access methods may
be possible. However, this bottom-up computation does not
scale well, given the combinatorially large number of nodes
in the pattern graph. The memory consumption of record-
ing all bottom-layer patterns and their counts also increases
quickly with the growth of the dimension and the cardinal-
ities of attributes. In addition, note that the GROUP BY
gives us counts for the leaf nodes: we still have to compute
summations for other nodes in the pattern graph. If we want
to identify MUPs in the pattern graph following top-down
search, we need to add up the combinatorially large size of
pattern counts each time we want to compute the coverage
for a node in upper layers.

4. EXACT COVERAGE ANALYSIS

Index structures are traditionally used to speed up query
evaluation in a database. Building upon the extensive work
on this topic, in Section 4.1, we propose several schemes to
avoid actual table joins and execute efficient predicate com-
binations across different tables, by using join indexes and
bit-mapped index arrays. Then, in Section 4.2, we develop
a priority-based search algorithm to minimize the number
of COUNT operations required.

4.1 Index Structures for Pattern Coverage As-
sessment

Coverage computation of each data pattern is the key op-
eration in the MUP identification process. However, in cov-
erage exploration queries, creating the join table is a time
and space consuming operation. Our method proposes to
make use of the join index structure. We first illustrate the
basic implementation of the join index and gradually explain
further improvements in the following subsections.
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Figure 3: Using Join Index for Data Pattern Coverage
Assessment, cov(P = 11)

4.1.1 Join Index

Valduriez [49] proposed using a join index for efficient join
operations. A join index is a data structure projecting, down
to row identifiers, the join result of two relations. Assuming
that each row in each relation is identified by a surrogate
(row identifier RID) uniquely, the join index stores surro-
gates of record pairs from the two relations that appear in
the join result. Formally, the join index on relation R and
S with join predicate f(R,S) is represented by:

JI = {(ri,s;) | f(rs,s;) is true}

Even when index construction cost is taken into account, it
has been shown in [49] that join index usually outperforms
the hybrid-hash join and index nested loop join methods
because join index is able to make efficient use of memory
and has high adaptiveness to parallel execution.

We note that it is straightforward to generalize the idea
of a join index from two tables to multiple tables. We do
not discuss this generalization here in the interests of space.

A typical way to use a join index, also applicable in our
scenario, is to identify records in the first table that satisfy
the desired predicate, using single-table index structures,
such as a B-tree. In our case, the desired predicate will be
an equality predicate on the values of attributes in this table
whose values are specified in the pattern of current interest.
For each RID from one table, for a row satisfying such a
predicate, we can use the join index to determine which rows
satisfy the join restriction in other tables. Once again, these
rows are identified by RID, and we may need to retrieve
the actual row for each such RID to determine whether it
satisfies the desired attribute pattern for attributes in the
second (and third, fourth, ...) table. Consequently, building
efficient indexes to enable fast access to join index records
via RIDs in different tables is essential. In general, a simple
method is to maintain multiple copies of the join index, each
one clustered on RIDs of different tables, and then imple-
ment a clustered B*-Tree to enable quick access.

In Figure 3, we show an example of using join index to de-
termine the coverage for the “attributes of interest” set A =
{title.kind_id,movie_companies.company_type_id}. For
simplicity, we encode the domain of each attribute as inte-
gers. The domain for title.kind_id is {1, 2, 3, 4, 5, 6, T},
and the domain for movie_companies.company_type_id is
{1,2}. These two tables are related through a key-foreign
key join. The join index table stores row identifiers in the
join result. Say we want to compute the coverage of a data
pattern P = 11 (<movie, distributors>), which means
that the number of instances in the join table satisfying
the predicate conditions of title.kind_id = 1 (movie) and
movie_companies.company_type_id = 1 (distributors).
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Figure 4: Join Index and One-Hot Inverted Index for Data
Pattern Coverage Assessment, cov(P = 11)

The algorithm will firstly use the index on the predicate col-
umn of one table to get a set of entries (RIDs) to the join
index table. Each entry to the join index will return a row
identifier to retrieve attribute values in the other table.

4.1.2  One-Hot Inverted Indexes for Predicate Result
Access

Making use of the join index overcomes the long time la-
tency of the join operation. However, we still need to access
the original table and check attribute values with RID en-
tries from the join index. Generally, clustered B'-Tree takes
2-3 disk I/Os for each index access on average.

A possible alternative is to use an “inverted index” and
store RIDs of the rows in the second table with desired val-
ues for “attributes of interest”. Of course, this only works for
very selective predicates that produce small output results.
Otherwise, these lists of RIDs can grow long, and we lose the
central benefit of the join index, which is its small size com-
pared to the actual join result. Similar challenges have been
addressed in the context of data warehouses, through the
use of bit-mapped index structures. In this subsection, we
present the construction of (bit-mapped) One-Hot Inverted
Indexes, which allows the process of checking attribute val-
ues in different tables to be completed in constant time com-
plexity and in the memory without any disk I/Os.

One-Hot Inverted Indexes are a set of bit arrays, where
each bit array is associated with one attribute value and
stores its predicate result. Therefore, the total number of bit
arrays we need to construct equals to the sum of cardinalities
of all attributes Zle ¢i, where d is the number of attributes
in set A and ¢; is the cardinality for the i-th attribute. The
length of each bit array is associated with the length of the
table this attribute belongs to.

The i-th bit in an inverted index represents the i-th row of
the corresponding table; it is set to 1 when this row satisfies
the predicate (the specified attribute value), and to 0 oth-
erwise. To represent one predicate result of a table with 10
million rows, we only need about 1MB storage (10M bits).
As a result, the One-Hot Inverted Indexes can be cached in
memory. In addition, the construction of One-Hot Inverted
Indexes can rely on the index structures on original tables
and hence adds little time overhead.

Consider the example of A = {title.kind_id, movie_
companies.company_type_id}. We construct One-Hot In-
verted Indexes for each attribute value. As shown in Fig-
ure 4, to get the coverage of a specific pattern, e.g., P = 11,
we can either scan the join index and check the bit ar-
rays representing kind_id = 1 and company_type_id = 1,
or check the bit array on one table first, for all 1’s in the bit
array, access the join index and check the bit array on the
other table. We can make this execution decision according
to the join and the WHERE clause selectivity.



4.1.3  Universal Inverted Indexes for Combining Pred-
icates in Different Tables

The construction of One-Hot Inverted Indexes allows us
to avoid accessing the large original tables and efficiently
combine predicates in the same table. However, since bit
arrays representing attributes from different tables have dif-
ferent sizes and position mapping, we cannot simply perform
AND operations on arrays from two or more tables. Scan-
ning and accessing the join index is needed to “translate” bit
arrays. In this section, we consider doing bit array exten-
sions to support AND operations for combining predicates
on different tables. If we can improve this process to pure
bitwise operations, combining predicates can be very effi-
cient, since we can execute 64 bits (or the word width on
the computer system used) in parallel. We call the set of
extended bit arrays as universal inverted indexes.

Our focus would be on many-to-one equijoins, such as
key-foreign key joins and star joins, which constitute more
than 90 percent of real-world cases [40]. For key-foreign
key joins, each row in the child table would find exactly
one match in the parent table. Similarly, in the star join
schema, there will be a large fact table with foreign keys
referencing any number of dimension tables. For this reason,
the join size for many-to-one join is the same as the size of
the child or the fact table. This property makes it possible
to extend bit arrays for small parent/dimension tables to the
same size as the child /fact table and support efficient AND
operations [40]. For less common many-to-many equijoins
for large tables, extending bit arrays might not be efficient
since we need to extend bit arrays on both sides, and the
final join result can be as large as the Cartesian product of
the tables. In this situation, we use the method we proposed
in Section 4.1.2.

Essentially, the construction of Universal Inverted Indexes
is the extension of One-Hot Inverted Indexes on small tables
to the same size of the large table. This extension process
relies on the materialized join results in the join index: for
each original One-Hot Inverted Indexes, we read RIDs of all
1’s in parent/dimension tables, and set the corresponding
bits representing rows in the child/fact table according to
join index records.

In our running example, there is a key-foreign key join
between the title and the movie_companies table. We need
to extend the bit arrays representing the predicate results
for the smaller parent table, title, to the same size as the
movie_companies table. Figure 5 illustrates the extension
process. The original bit array for kind_id = 1 stores filter
results as RIDs of the title table. The 1 in the first position
means that the first row in the title table satisfies the
predicate condition kind_id = 1. In the extension process,
we find that the first row in title joins the first two rows in

tid mid
titlekind id [ 1 [ 1 [2[2 [ 1 . | 111
[1[0[0[1[~.]Original 1 2
kind id = 1 — 213
[(LTI[IT0[0[0[I] ..] [374
Extended 3 3
01011[1101'--10riginal 4|6
kind id =2 \\A 5T
[(0TO0JOTITITI]0] .1 [
Extended  j5in Index

Figure 5: Bit Array Extensions on the Referenced Table

movie_companies. Therefore, in the extended bit array, we
set the first two bits as 1. Similarly, since the 2"¢ and 5*®
row of title join the 3" and 7" row of movie_companies,
we set the corresponding bits as 1. Because we can view
the many-to-one join as predicates over a wider column set,
we can perform AND operations for extended bit arrays to
combine predicates in different tables.

For now, we have discussed several optimizations to quickly
determine the coverage for a given data pattern. Algo-
rithm 1 illustrates a detailed process of counting pattern
coverage. Coverage computation adopts different strategies
for many-to-one and many-to-many joins. For many-to-one
joins (line 2-6), the computation only relies on the extended
Universal Inverted Indexes since they have incorporated the
join result in the bit-mapped form. For many-to-many joins
(line 7-14), the coverage computation scans the join index in
parallel and checks corresponding bits in One-Hot Inverted
Indexes for attribute values.

Algorithm 1 Count Pattern Coverage

Input: Data pattern P = a1, a2, ..., an, join index JI, bit
vectors V storing predicate and join results
Output: Coverage count cnt of pattern P = a1, az, ..., an

1: Initialize ent = 0

2: if only consists many-to-one join relation then

3: bv = [1] * length of detail table

4: for each Universal Inverted Index b; that represents
a predicate of bound elements in pattern P do

5: bv = bv A b;

6: cnt= number of 1’s in bv

7: else

8: for each records of row identifiers 7; , in JI do

9: Flag = True

10: for each bound element a; in pattern P do

11: Find One-Hot Inverted Index b; represents a;

12: Check position 7 of b;

13: if bi[ri k] = 0 then Flag = False

14: if Flag = True then cnt++

15: return cnt

4.2 MUP Identification Algorithms

In the coverage analysis task, we aim to determine the
coverage for every possible value combinations and find all
maximal uncovered patterns (MUPs). We not only need to
optimize the execution of COUNT queries, but also need a
well-designed traversal algorithm to minimize the number of
COUNT operations performed. In this section, we discuss
various algorithms to efficiently prune the search space.

4.2.1 Pattern Graph Traversal

One obvious choice is to traverse the pattern graph (recall
Fig. 1) top-down from the root in a breadth-first manner. If
a node has sufficient coverage (the count for the associated
pattern is greater than or equal to a specified threshold),
then all its immediate children are added to the queue. If a
node is found not to have sufficient coverage, it is reported as
a MUP, and all its descendants can be removed from further
consideration since each must be uncovered but none can
be maximally uncovered. (There is some additional book-
keeping required to avoid visiting a node multiple times,
since the graph is a lattice and not a tree. This is straight-
forward, and not conceptually interesting; hence we do not
describe fully). Such a top-down traversal works well to find
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“large” MUPs, close to the root, very quickly. However, if
the MUPs are low in the pattern graph, we may end up
computing counts for almost every pattern.

An alternative could be to try a bottom-up traversal,
starting from the leaf nodes in the pattern graph. If a node
is uncovered when we compute its count, then its parents
are added to the queue. If a node is covered, then we do
not need to explore any of its ancestors, since they must
all also be covered. Furthermore, its children could possibly
be MUPs, but we have to check other parents of each child
to determine whether it is a MUP. This algorithm also re-
quires bookkeeping to avoid re-visiting nodes. It also needs
a final MUP determination phase. These small costs could
be worth it if the MUPs are close to the leaves. However,
we note that the number of leaves is large, and may even
constitute the vast majority of the pattern graph. Exploring
all the leaves may leave out only a small fraction of non-leaf
nodes in the pattern graph.

To address the difficulties with the top-down and bottom-
up algorithms, [6] proposed the deep diver (DD) algorithm
and showed that it performed much better. DD uses a
depth-first search in the pattern graph, diving deeper to
identify MUPs. However, like the first two methods, it treats
all categorical attribute values equally, so that the search
process cannot benefit from the different pruning efficiency
of nodes. We propose a new algorithm, P-WALK, which
makes use of priority-based search to visit the node with
the highest pruning efficiency first. In addition, the pruning
of P-WALK not only relies on the discovered MUPs but also
on the coverage status of all previously visited nodes.

4.2.2 P-WALK Algorithm

Like previous algorithms, P-WALK also makes use of the
data patterns’ monotonicity property: for each covered pat-
tern, all its parents are covered, and for each uncovered
pattern, all its children are uncovered. The dominance of
the data patterns enables us to prune all parents/children
branches once we find a covered /uncovered pattern. In view
of this property, the main idea of P-WALK is to prioritize
visiting nodes that have the greatest pruning power. To
heuristically approach the “greatest pruning power”, we de-
fine a priority scoring function as follows in Definition 4.1.

Definition 4.1. (Priority Scoring Function) The priority
scoring function is a heuristic function to decide the order in
which to check the coverage of each data pattern. Formally,
the priority for each data pattern is:

priority = wp X Ny + We X Ne

where n, and n. are the number of parent nodes and child
nodes for each data pattern, w, and w. are the weights for
parents and children.

If we assign a higher weight for child nodes, the prior-
ity search algorithm will be close to top-down BFS, because
nodes in higher layers have more child nodes. On the other
hand, when parent nodes are assigned higher weight, the
search algorithm is more likely to traverse deep to the lower
layer. For nodes in the same layer, the cardinality of its un-
bound attributes will also affect the priority score, preferring
nodes with more neighbors to get higher pruning efficiency.
Once we find a covered pattern, we visit the next node with
the highest priority; once we find an uncovered pattern, we
check its ancestors iteratively until we find MUPs.

ii. Traverse up until
V\reach the MUP

iii. Prune all children of the
uncovered pattern

Figure 6: Example of P-WALK Pruning Process

We illustrate the iterative checking-ancestor operation and
the pruning of P-WALK algorithm in Figure 6. It shows
part of the pattern graph with 3 binary attributes. The
red and green nodes stand for uncovered and covered nodes
respectively, while grey nodes represent pruned nodes. Sup-
pose we first visit the node P = X01 and find it is uncovered.
P-WALK would first go up until it reaches a MUP that dom-
inates it. The MUP in this example is P = X0X. In this
process, we prune its ancestors whenever we find a covered
pattern, e.g., P = X X1, and prune its descendants, when-
ever we find an uncovered pattern, e.g., P = X01, X0X.

We combine this P-WALK search algorithm with the index-
based data pattern coverage counting algorithm we proposed
in Sec. 4. The pseudo-code of P-WALK is shown in Alg. 2.

In Alg. 2, searching the nodes with higher pruning ef-
ficiency is crucial to reduce unnecessary count operations.
When a node is dominated by MUPs or dominates a cov-
ered pattern, we can prune this branch based on the coverage
monotonicity property (line 8-9). For each covered node, in
line 11-13, we push all its children to the priority queue and
add the node to the covered set. For each uncovered pattern,
in line 15-23, P-WALK starts a local search that goes up to
its ancestors to find MUPs that dominates this pattern.

Algorithm 2 P-WALK Coverage Analysis Algorithm

Input: Pattern graph G(A), coverage threshold 7
Output: Maximal uncovered patterns M

1: procedure INITIALIZATION

2: neighbors <« empty priority queue sorted nodes by
the priority scoring function
3: C an empty set to store covered nodes
4: procedure COVERAGEASSESSMENT
5: push the root node P = X X...X to neighbors
6: while neighbors is not empty do
7 p = pop a node from neighbors
8: if p is dominated by M or p dominates C then
9: continue
10: cov(p) = COUNT_PATTERN_COVERAGE(p)
11: if cov(p) = 7 then
12: push all children of p into neighbors
13: push p into C
14: else
15: Initialize stack S’ <— empty stack
16: push all parents of p into S’
17: while stack S’ is not empty do
18: pop a node p’ from S’
19: if cov(p’) < 7 then
20: if all parents of p’ are covered then
21: push p’ into M
22: else push all uncovered parents into S’
23: else push p’ into C
24: return maximal uncovered patterns M
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S. APPROXIMATE COVERAGE ANALYSIS

Coverage assessment queries return numerical results to
determine whether pattern coverage is greater than or equal
to the given threshold. Providing a precise COUNT result is
not required. Sampling-based techniques are common meth-
ods to estimate query results by taking samples from the
data. In this section, we consider the use of sampling-based
techniques to further improve upon the performance we ob-
tained with index-based techniques in the preceding section.

For coverage analysis task, using the Bernoulli sampler to
pass rows uniformly-at-random is insufficient given the fol-
lowing drawbacks. Firstly, the estimated aggregation results
have a higher variance for small groups and highly selective
predicates. To identify the insufficient data coverage, we are
actually interested in small groups generated via predicate
conjunctions. In this case, using stratified sampling to im-
prove the accuracy of small groups would be necessary. In
Section 5.1, we discuss how we adapt distinct sampler [26]
to construct stratified samples in one pass over the data.

Additionally, to avoid the costly join-then-sample opera-
tion [11, 14|, we would like to push samplers past join op-
erations so that sampling (and the associated downsizing)
occurs first. Pushing Bernoulli/Uniform samplers past joins
is not effective, as joining independently obtained random
samples is likely to severely under-estimate the join size. We
adopt the Correlated sampling method [50] to improve
the efficiency and accuracy of sample-then-join.

After sampling, we run P-WALK MUP identification al-
gorithm and check the pattern coverage more efficiently with
much smaller data size. This remains the same as discussed
above in Section 4, except for the use of estimated counts.
We provide below respective application scenarios, detailed
implementation, and variance analysis for the two samplers.

5.1 Distinct Sampler

Frequently, a data warehouse is organized in a star schema,
where large fact tables contain foreign keys of other rela-
tions. As mentioned in Section 4.1.3, such joins produce
results equal in size to the original fact table. In fact, these
joins can be regarded as stratifying predicates over a table
with a wider column set, including columns from the small
dimension tables. The same logic applies to sampling. As
such, we apply the distinct sampler [26] only to the fact
tables and maintain the original small dimension tables.

Consider the join T; i T; where T; is the referenced table
and T} is the referencing table. We want to construct the
sample table Tsi’j from T, with columns A, that include the
join column on Tj; as well as the columns a;¢ € A from Tj.
To ensure T, ; includes enough records for each group, we
consider stratified sampling for every possible value com-
bination in As. Specifically, for every value combination
C from the cardinality of A, we would like to maintain a
sample of portion p of it, while considering p € (0, 0.1].? For
example, p = 0.1 means that we would like to include 10%
of instances matching C in T, ;. For value combinations
that include less than k instances in T}, we include all of
them in TSM. Following the rule-of-the-thumb in central
limit theorem, we set k = 30.

The distinct sampler uses the reservoir sampling tech-
nique [2] while considering reservoirs of sizes larger than S
for different value combinations. Given parameters As, f, p,

2 As suggested by [26], we do not consider sampling rate p
above 0.1 for higher performance gain.
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the sampler I‘QM ,p Teturns at least f rows (if available), for
each value combination C' of attributes in the column set A
and pass the other rows with the probability of p in database
D. It does so by performing a three-stage sampling process
in one pass through the table. First, for each distinct value
combination, the distinct sampler passes the first f rows
with weight = 1. If the value count of this data pattern is
less than f, the number of records contained in the samples
would be the exact frequency count for this value. Subse-
quently, distinct sampler maintains a reservoir with size S;
for value frequencies (counts) within (f, f + S/p], distinct
sampler passes the first f tuples with weight 1 and passes the
others in the reservoir with the weight of (freq — f)/S. Dur-
ing this process, the reservoir keeps flushing rows with prob-
ability ﬁ. If the value frequency is larger than f +.S/p,
the sampler will pass the rest of rows with probability p.
Formally, Equation (1) shows how distinct sampler works
when observing different value frequency.

1. if freq < f, pass all rows with w = 1

2. if f <freq < f + S/p, pass rows in the

reservoir with w = (freq — f)/S

3. if freq > f + S/p, pass rows with w = 1/p

(1)

We select S and f such that £k = S + f to ensure to in-

clude all instances of value combinations with frequencies k

in the sample table T, ;. Having the sample table 7%, ; con-

structed, we use the Horvitz- Thompson (HT) estimator [26]

for aggregate estimation. For each group G, the estimated

COUNT aggregation result C(G) can be written as:

D
Pagtp =

()
Cr,, @) = teT; (@) Prlt e Ty, ;(G)] )

Because the HT estimator is unbiased, we get E[CTSM_ (@]
C(G). Also, since Var[X] = E[X?] — E*[X]:
VarlCr,, | ()]

Pli,je T, (G)] D) ene
ZG (Pr[z‘ €T, (G- Prlje T, (@] 1) cHCE)

(3)
For the distinct sampler, the weight of samples is the recip-
rocal of the sampling probability. Therefore, we have:

_ )1 freq < f
@)= { max(f/freq, p) freq > f (4)

Ifi # j, Prli,j € Ts, ;(G)] = Prli € Ty, ;(G)|Pr[j € Ts, ; (G)].
5.2 Correlated Sampling Method

For many-to-many joins (like joining two fact tables) of
large relations, we apply correlated sampling method to both
of the relations and pick the rows having join values in the
same data space. Although it will introduce higher variance,
it is practical in reducing the enormous join size of large
tables, in which situation the join size could as large as the
Cartesian product of large input relations.

Although distinct sampler reduces the estimation variance
for small groups, when the size of dimension tables becomes
very large, the distinct sampler would keep almost every
record when stratifying the join columns. Therefore, even
for a few many-to-one join situations, we prefer to use the
correlated sampling algorithm.

PlieT.
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Correlated sampling method [50] first picks a hash func-
tion h(-), which maps the join values to a uniform distri-
bution within range [0,1]. For instance, h(v) ((kv +
b) mod p)/p, where k,b € [1,p), and p is a large prime num-
ber [29]. Suppose the sampling probability is p in the corre-
lated sampling method. Similarly, we consider p range from
0.1 to 107°. For each table, if the join value v; for row 7 is
smaller than p after the hash mapping, i.e., h(v;) < p, this
row would be included in our samples. The unbiased esti-
mated join size for the samples would be J = J'/p, where
J' is the join size for the sampled set. To consider the cov-
erage of data patterns over attribute of interest set A, the
estimated COUNT aggregation is essentially the estimated
join size subject to a set of predicates of A. When we apply
WHERE clause restrictions a; € A to table T}, the esti-
mated aggregation result would be JA = J'(A)/p. The
variance for correlated sampling method is given by [50]:

(% _ 1) ;Fl (0)2Fy(v)?

Where Fi(v) and F>(v) are the frequency of a join value
appears in the two tables. The variance after applying filters

A~

Var(J) = (5)

in A becomes smaller as we replace Fj;(v) with Fjga'j)(v).

6. EXPERIMENTAL EVALUATION

To validate the efficiency of the proposed methods, we
conducted experiments on a Linux machine with a 3.8 GHz
Intel Xeon processor and 64GB memory. The bit array
construction and intersection operation are implemented in
C++417, using CRoaring [30] Library, one of the most per-
formant bitmap compression methods [51]. The index con-
struction process is done via parallel client-end queries to
any general-purpose database systems. In this paper, the
datasets for experiments are stored in PostgreSQL 12.2. The
P-WALK algorithm is implemented in Java. P-WALK calls
the C+-+ functions to check the pattern coverage for each
visiting node individually.

In the coverage checking process, we rank all bit arrays
according to their cardinality, which reflects predicate selec-
tivity and perform pairwise AND operation of all bit arrays
starting from the most-filtering predicate. We classify a pat-
tern as uncovered once the cardinality of the intermediate
result is less than the coverage threshold.

Our experiments are conducted as follows. (1) We analyze
the index construction time and memory consumption of our
method. (2) For pattern coverage assessment to compute
the COUNT result for a given data pattern, we compare
the runtime of index-based methods (Sec. 4.1) with read-
optimized DBMS solutions, under varying data size and
data pattern level. (3) For MUP identification algorithms,
we compare P-WALK (Sec. 4.2) with three baseline single
table algorithms: Pattern Breaker, Pattern Combiner, and
Deep Diver proposed in [6]. We vary the coverage thresh-
old and compare the number of COUNT operations needed
by different algorithms. (4) For the exact MUP identifica-
tion runtime, we compare our method (Sec. 4) with the three
baseline traversal algorithms using group-by and conjunctive
COUNT queries to determine the pattern coverage. (5) For
the approximate coverage analysis method (Sec. 5), we eval-
uate the MUP identification accuracy of the distinct sampler
and the correlated sampling method and compare the per-
formance with the Bernoulli (naive) sampler. In addition,
we analyze the time efficiency of sampling-based methods.
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6.1 Dataset Description
We use three real-world datasets for evaluations:

e IMDB?: IMDB is a real-world database containing facts
related to movies. It is widely used in many data anal-
ysis and machine learning tasks. The data is publicly
available on the IMDB website. We use the imdbpy*
tool to transform the text files into a relational database
containing 21 tables and 14.1GB data. The two largest
tables cast_info and movie_info contain 58,892,067
and 24,131, 800 records, respectively. We ignored text
attributes like names, notes, and attributes used as
checksums or join keys. We include all other attributes
distributed in 6 different tables for coverage analy-
sis. Continuous attributes like production_year are
grouped in buckets, each ten years wide.

UK Road Safety’: UK Road Safety is a detailed dataset
released by the UK government of more than 2 mil-
lion road accidents and involved vehicles in the United
Kingdom from 2005 to 2017. It contains more than 2
million records about the road and weather conditions
of accidents, demographic information of drivers and
vehicle information. We used 8 attributes about traf-
fic accidents with cardinalities ranging from 3 to 10,
namely light_condition, weather_condition, road_type,
day_of_week, speed_limit, urban_rural, severity, surfa-
ce_condition, and 4 attributes about drivers, namely
driver_age, driver_sex, driver_home, vehicle_age, with
cardinalities ranging from 4 to 12 for studying the cov-
erage in the database.

SF Bay Area Bike ShareS: SF Bay Area Bike Share is
the dataset of Bay Wheels, a bicycle sharing system in
San Francisco. It records information like weather, the
number of available docks and bikes in every minute,
the location and construction time of each station, and
bike trips among these stations. The dataset can be
used to investigate trends such as how weather influ-
ences bike trips; how bike trips patterns differ by the
time of day and the time of week. We chose attributes
including location, temperature, humidity, visibility,
wind_speed, cloud_cover, and availability_of_docks_

and_bikes in each station for coverage analysis.

6.2 Performance Evaluation
6.2.1 Index Construction Overhead

Our method not only works when the indexes already ex-
ist. The join table and inverted indexes can also be con-
structed and maintained on the fly. In Table 2, for each
database, we report the number of tables |T| and the num-
ber of records for join tables | X ;|. We compare the mem-
ory consumption of all index structures with the size of
databases and the join tables containing only the “attributes
of interest”. We note that the sizes of indexes are small be-
cause in the bit-mapped representation, each row is only re-
lated to several bits indicating whether it satisfies the pred-
icate restrictions. In addition, we report the join index cre-
ation time and the total time to construct all bit-mapped
arrays in parallel for the set of “attributes of interest”.

3ftp://ftp.funet.fi/pub/mir‘r‘ors/ftp.imdb.com/pub/ﬁ“ozendata/
4https://imdbpy.r‘eadthedocs.io/en/Iatest/usage/ptdf.htmI

5 https:/www.kaggle.com/tsiaras/uk-road-safety-accidents-and-vehicles
6https://www.kaggle.oom/benhamner‘/sf—bay—ar‘ea—bike—share


ftp://ftp.funet.fi/pub/mirrors/ftp.imdb.com/pub/frozendata/
https://imdbpy.readthedocs.io/en/latest/usage/ptdf.html
https://www.kaggle.com/tsiaras/uk-road-safety-accidents-and-vehicles
https://www.kaggle.com/benhamner/sf-bay-area-bike-share
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Figure 7: Number of COUNT Operations for Searching Algorithms

Table 2: Index Construction Overhead for Datasets: IMDB
(I), UK Road Safety(U), SF Bay Area Bike Share (S)

Dataset I U S
# of tables, |T| 6 2 3
# of records, | X | 135.3M 21M  62.6M
Database Size(GB) 14.1 1.26 4.45
Join Table Size(GB) 9.57 0.12 0.85
Join Index Size 1.6GB 16.5MB 0.15GB
Inverted Indexes ) yop 736MB  0.14GB
Memory Consumption

Join Index

Creation Time(s) 18.38 8.47 10.80
Total Inverted Indexes 17.19 6.05 21.53

Creation Time(s)

6.2.2 Exact Coverage Analysis

(1) Ezact - Data Pattern Coverage Assessment. Deter-
mining the coverage of a data pattern is in fact to compute
the COUNT result in the join table X | for the correspond-
ing group. We compare the conjunctive COUNT query ex-
ecution time of our index-based solution with the following
baseline methods: (i) database query in PostgreSQL (ii) op-
timized query based on PostgreSQL materialized views (iii)
database query in column-based systems MonetDB [10] and
HyPer [37]. We use the largest IMDB dataset for this ex-
periment. The query execution time is highly related to
the data size, the number of bound attributes in the data
pattern and the selectivity of WHERE clause predicates.
To reduce the variance from WHERE clause selectivity, we
randomly generate predicate values for data patterns and
record the average execution time. In Fig. 8, the y-axis
shows the runtime of data pattern coverage assessment in
milliseconds. We first fix the layer of data patterns to be 6
(same as |A[, the dimension of the attribute set) and com-
pare the execution time of different methods under varying
data size (Fig. 8, left). We observe that the query execution
time of materialized views swells because of the lack of in-
dex structures. Compared with the baseline methods, our
bit-mapped solution scales well as the data size grows. We
note that the runtime of bit-mapped solution is close to zero
because of the highly parallel in-memory execution.

Next, we fix the data size as the original database and
vary the number of bound attributes in the data pattern.
The experimental result also exhibits the efficiency and ro-
bustness of our method (Fig. 8, right). In this experiment,
we observe a surge of running time for some baseline meth-
ods when the data pattern is in the upper layer. This is
because the indexes on original tables fail to increase the
computation efficiency with fewer predicate restrictions.
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—4— PostgreSQL
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Runtime (ms) Varying Data Size

—4— PostgreSQL 3000 \
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Figure 8: Runtime (ms) for Data Pattern Coverage As-
sessment (IMDB)

3 4 5
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(2) Ezact - MUP Identification. We profiled the MUP
identification process and demonstrated that the most time-
consuming operation is the COUNT operation to determine
the coverage of a data pattern. To validate the pruning and
searching efficiency of P-WALK, we compare the number of
COUNT needed for all searching algorithms. The number of
COUNT operations is affected by the distribution of MUPs
at each level, and MUP distribution is, in turn, affected by
the value of the coverage threshold 7. In our evaluation, we
choose the value of 7 to be dependent on | X |, the size
of the join table. We define ¢ as the threshold rate, where
t=7/| X+|. Wevary 7 from 0.1 x | X 1 |, where most of the
patterns are uncovered, to 1, where most of the data pat-
terns are covered. In Fig. 7, the bars show the number of
MUPs as the coverage threshold rate varies. As the thresh-
old rate decreases, for the bottom-up Pattern Combiner al-
gorithm, the number of COUNT operations decreases. On
the contrary, the number of COUNT increases for the other
algorithms. This phenomenon can be explained by the “mov-
ing down” tendency of MUPs (will be discussed in Sec. 6.2.4)
when we define smaller coverage thresholds. We find that
P-WALK algorithm outperforms the others in all scenar-
ios. In the UKRoad dataset with low threshold rate ¢, the
number of COUNT operations of P-WALK is more than 60
times less than the others. In addition, the growing ten-
dency of COUNT operations of P-WALK also indicates the
same trend as the MUP number variation tendency, which
means the priority search heuristically approaches the path
with higher pruning power.

In Fig. 9, we report the running time for MUP identifi-
cation algorithms under varying thresholds. The time over-
head of MUP identification is affected by the number of
COUNT operations and the efficiency of COUNT execu-
tion. For baseline experiments, we choose the three baseline
searching algorithms discussed above to prune the lattice
space. To determine the coverage of data patterns, we found
that relying on conjunctive COUNT query to determine
the pattern coverage is prohibitive even with read-optimized
techniques (e.g., materialized views, column-store, indexes
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Figure 9: Runtime (ms) for MUP Identification
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Figure 10: Pattern Classification

on original tables). Therefore, we constructed bitmaps for
the join table in memory to optimize the conjunctive COUNT
execution. For the baseline relying on group-by queries, we
observed that the time to add up leaf pattern counts is pro-
hibitive and used the inverted index in [6] to further optimize
it. As is shown in Fig. 9, for the largest IMDB dataset, the
time to execute the conjunctive COUNT query bursts as the
number of COUNT operation needed for MUP identifica-
tion increases. Pattern Combiner algorithm fails in IMDB
dataset because of the long computation time for all leaf
nodes. The performance of the group-by solution for the
IMDB dataset is acceptable, but for the UKRoad dataset
where the number of nodes in the pattern graph is large, the
execution time for group-by solution bursts. The bottom-up
Pattern Combiner fails for the UKRoad dataset because the
large number of leaf nodes causes an OutOfMemoryError.

6.2.3 Approximate Method

(3) Approzimate - MUP Identification and Data Pattern
Classification Accuracy. We follow the insertion criteria in
Sec. 5 to insert distinct sampler for many-to-one joins and
apply correlated sampling method for many-to-many joins
for the two largest datasets: SF' Bike Share and IMDB, with
more than 62 million and 135 million records, respectively.
For the correlated sampling method, we consider the sam-
pling rate p. ranging from 0.1 to 107°. For the distinct
sampler, we consider the sampling rate py from 0.1 to 1073,
because we observe that due to the restriction of stratifica-
tion, the sample size does not change much when p < 1073,

Table 3 shows the performance of the distinct sampler
and the correlated sampling method. We consider the MUP
identification accuracy under varying sampling rates and
coverage threshold rates (¢t = 7/| X1). As expected, we
observe that the accuracy of MUP identification decreases
as the sampling rate decreases. For better illustration, we
show the minimum and average accuracy of different sample
sizes for each given threshold rate. As is shown in the result,
even with small samples, the accuracy of identifying MUPs
is always higher than 96%. There is a slight decrease in ac-
curacy when the threshold causes an increase of MUPs in

le-2 le-3 le-4
Sampling Rate

Figure 11: Approximate Efficiency

0.1 0.01 0.001 0.0001 le-05 le-06 le-07 le-08
Threshold Rate

Figure 12: MUP Distribution

Table 3: Accuracy of MUP Identification
Correlated Sampling

Distinct sampling

SF' Bike Share IMDB
Threshold min(acc) avg(acce) min(acc) avg(ace)
t=10"1 99.99% 100% 99.99% 99.99%
t=10"2 99.93% 99.97% 99.44% 99.51%
t=10"3 99.74%  99.99% 98.45% 98.60%
t=10"% 99.52%  99.89% 97.25% 97.53%
t=10"° 99.45% 99.73% 96.62% 96.97%
t =106 99.67% 99.81% 96.78% 97.11%
t=10""7 99.82% 99.89% 97.02% 97.11%
t=10"8 - - 97.63% 98.13%

middle layers. Although the accuracy of the correlated sam-
pling method is slightly lower, it successfully reduces data
size to 107° of the original data.

To further evaluate the effectiveness of the samplers, we
regard the pattern coverage analysis task as a binary classi-
fication problem. For each pattern, based on the estimated
COUNT result of samples, we classify it as a covered or an
uncovered pattern. Figure 10 shows the minimum and av-
erage classification accuracy over different sampling rates of
the distinct sampler, the correlated sampling method, and
the baseline Bernoulli sampling. We observe that both the
distinct sampler and the correlated sampling method out-
perform Bernoulli sampling. The distinct sampler maintains
high accuracy as the coverage threshold decreases, which in-
dicates the distinct sampler improves the estimation accu-
racy for small groups. The discrepancy in accuracy between
Bernoulli sampling and correlated sampling can be easily ex-
plained by the performance of sample-then-join of these two
methods. We find that the correlated sampling method has
a good approximation to join-then-sample, while Bernoulli
sampling outputs a much smaller join size.

(4) Approximate - MUP Identification Efficiency. To val-
idate the time efficiency of sampling method, Fig. 11 shows
the running time of approximate MUP identification of dis-
tinct sampler and correlated sampling method under varying
sampling rates (x-axis) and coverage threshold rates (labels)
on the two largest datasets: IMDB and SF' Bike Share. We
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observe a drastic decrease in running time when the data
size shrinks to the tenth of the original size, under which
a high MUP identification accuracy is maintained. Based
on this result, we suggest sampling rates below p = 0.1 and
considering the trade-off between accuracy and efficiency.

6.2.4 MUP Analysis

The distribution of MUPs differs across datasets under
different coverage thresholds. This variation affects the per-
formance of search algorithms and the accuracy of the sam-
pling methods. Figure 12 shows the MUP distribution in
different layers with varying threshold rates. In all three
datasets, we observe that for a given threshold, most MUPs
appear in the middle layers. As the coverage threshold de-
creases, the percentage of MUPs that are closer to the bot-
tom layer increases, while the total number of MUPs has a
“bell-curve” shape as the threshold rate varies. The “moving-
down” tendency of MUPs with the decrease of threshold
explains the reason why top-down MUP identification al-
gorithms have an increasing number of COUNT operations
while the bottom-up algorithms have the opposite tendency
as the threshold goes down.

6.3 Setting Threshold Value

The algorithms we have developed work for any specified
threshold value. The user can set the threshold as a certain
percentage of the total number of records, or the user can
refer to the number of predicate restrictions to tailor dif-
ferent thresholds for groups in different granularity. For a
user with no special knowledge, we recommend they use the
rule-of-thumb statistic in the central limit theorem. For ex-
ample, Sudman [48] suggests that each “minority subgroup”
requiring a minimum of 20-50 samples.

For the motivating example in Sec. 1 to predict the risks of
drivers, using this rule-of-thumb, we set the coverage thresh-
old as 7 = 30. Below, we interpret some representative
MUPs founded by our proposed method. For value combi-
nations in the first layer, which only consider one attribute,
we observe that with 7 = 30, there are no MUPs in this
layer. In the second layer ¢ = 2, we found that there is not
enough data for drivers with vehicle_age > 30 having ac-
cidents in weekdays or drivers age < 65 having vehicle_age
> 30. When ¢ = 3, we found that there are not enough
records for female from the rural area involved in accidents
in sunny days. Besides, the dataset contains not enough in-
stances for male drivers aged over 65 who are involved in
fatal accidents. Our coverage analysis provides the dataset
user all maximal empty spaces not covered adequately by
the data. Without the traversal algorithm and the index
structures, the execution time would be prohibitive as the
size of the database and the set of value combinations grows.

7. RELATED WORK

The diversity and representativeness of data collection are
essential topics for algorithmic fairness in data science, and
have been widely discussed in fields such as sociology [9, 15],
biology [24], information retrieval [3], and data ethics [7,
16]. Many efforts focus on identifying inadequate data cov-
erage in datasets. [12] analyzes the training set coverage
of the protected attribute contributing to machine learn-
ing discrimination. There are also data mining works [33,
32, 34] that aim to identify the largest empty regions in
datasets. [6] defines the coverage over multiple categorical
attributes and developed techniques for identifying empty
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spots in datasets. However, all these methods are limited to
single table scenarios and never consider the increasing time
complexity as the data volume grows.

Relational databases typically distribute the information
across multiple tables. Joins are frequently required, and
expensive. Optimization engines like [47] proposes methods
to compute large batches of aggregate queries efficiently. In
our proposed method, we use a variant of join indexes [49,
40, 41] proposed to materialized these joins of tables.

The traversal of the powerset lattice has been studied
in different contexts, such as frequent item-set mining [4],
combinatorial set enumeration [46]. Functional dependency
(FD) discovery [42] algorithms apply various traversal strate-
gies to enumerate FD candidates. [23, 38, 53| are level-wise
bottom-up algorithms using the apriori generation method.
DFED [1] applies a depth-first random walk for FD candi-
date generation. However, FD discovery algorithms only
enumerate attribute combinations instead of value combi-
nations. In the pattern graph for coverage analysis, the
number of neighbors and the pruning efficiency is different
for nodes even in the same layer. The priority search we pro-
posed heuristically prefers the nodes with higher pruning ef-
ficiency. In addition, recent work on data slicing [13] defines
a partial ordering to enumerate the lattice of attribute val-
ues for discovering the top-k data slices where the trained
model performs worse. However, it cannot be applied to
MUP identification since it only cares about the top-k slices
instead of pruning and exploring the entire lattice space.

For approximate coverage analysis, techniques include his-
togram [43], wavelet [14], online aggregation [22|, etc. The
first two methods fail to consider the coefficient of different
attributes, while online aggregation lacks an efficient way
to reduce the variance for small groups [31]. Therefore, we
adopt query samplers [26, 2, 28], and correlation-aware sam-
pling techniques [50] to reduce the data size. We would like
to distinguish our work from the aggregate query optimiza-
tion [35], because the coverage analysis explores the combi-
natorial set of value combinations for data resides in systems
which might not be optimized for this purpose.

8. FINAL REMARKS

In this paper, we address the problem of database cover-
age analysis with multiple relations — computing information
that data scientists ought to consider prior to engaging in
any data analysis and data users ought to consider before
accepting analysis results. Given a fixed coverage threshold
and a set of categorical attributes across tables, we propose
index techniques for efficient data pattern coverage analy-
sis; we also develop a lattice-based priority search to identify
all maximal empty regions. Since it is usually sufficient to
obtain an approximate assessment of coverage, we develop
approximate methods for further improvement. We hope
that the efficient algorithms we develop in this paper will
remove a barrier to adoption of coverage analysis as a nec-
essary data pre-processing step before data analysis, just as
data cleaning is a necessary pre-processing step. In addition,
the maintenance of the index structures in face of database
updates is a potential topic for future work.
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