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Abstract

Considering a class of gradient-based multi-

agent learning algorithms in non-cooperative

settings, we provide convergence guarantees to

a neighborhood of a stable Nash equilibrium.

In particular, we consider continuous games

where agents learn in 1) deterministic settings

with oracle access to their individual gradient

and 2) stochastic settings with an unbiased es-

timator of their individual gradient. We also

study the effects of non-uniform learning rates,

which cause a distortion of the vector field that

can alter the equilibrium to which the agents

converge and the learning path. We support the

analysis with numerical examples that provide

insight into how games may be synthesized to

achieve desirable equilibria.

1 INTRODUCTION

The characterization and computation of equilibria such

as Nash equilibria and its refinements constitutes a sig-

nificant focus in non-cooperative game theory. A natural

question that arises is ‘how do players find or learn such

equilibria and how should the grappling process that oc-

curs during learning be interpreted?’ With this question

in mind, a variety of fields have focused attention on the

problem of learning in games which has lead to a plethora

of learning algorithms including gradient play, fictitious

play, best response, and multi-agent reinforcement learn-

ing among others (Fudenberg and Levine, 1998). While

convergence has been studied for many of these algo-

rithms, the results largely tend to be asymptotic in nature;

questions of error bounds and convergence rates are often

less explored, particularly in the context of non-uniform

learning rates, a key feature of systems of autonomous

learning agents.

From an applications point of view, another recent trend

is in the adoption of game theoretic models of algorithm

interaction in machine learning applications. For instance,

game theoretic tools are being used to improve the ro-

bustness and generalizability of machine learning algo-

rithms; e.g., generative adversarial networks have become

a popular topic of study demanding the use of game theo-

retic ideas to provide performance guarantees (Daskalakis

et al., 2017). In other work from the learning community,

game theoretic concepts are being leveraged to analyze

the interaction of learning agents—see, e.g., (Balduzzi

et al., 2018; Heinrich and Silver, 2016; Mazumdar and

Ratliff, 2018; Mertikopoulos and Zhou, 2019; Tuyls et al.,

2018). Even more recently, the study of convergence to

Nash equilibria has been called into question (Papadim-

itriou and Piliouras, 2018); in its place is a proposal to

consider game dynamics as the meaning of the game. This

is an interesting perspective as it is well known that in gen-

eral learning dynamics do not obtain an Nash equilibrium

even asymptotically—see, e.g., (Hart and Mas-Colell,

2003)—and, perhaps more interestingly, many learning

dynamics exhibit very interesting limiting behaviors in-

cluding periodic orbits and chaos—see, e.g., (Benaı̈m

and Hirsch, 1999; Benaı̈m et al., 2012; Hofbauer, 1996;

Hommes and Ochea, 2012).

Despite this activity, we still lack a complete understand-

ing of the dynamics and limiting behaviors of coupled,

competing learning algorithms. One may imagine that

the myraid results on convergence of gradient descent in

optimization readily extend to the game setting. Yet, they

do not since gradient-based learning schemes in games do

not correspond to gradient flows, a class of flows that are

guaranteed to converge to local minimizers almost surely.

In particular, the gradient-based learning dynamics for

competitive, multi-agent settings have a non-symmetric

Jacobian and, as a consequence, their dynamics may ad-

mit complex eigenvalues and non-equilibrium limiting

behavior such as periodic orbits. In short, this fact makes

it difficut to extend many of the optimization approaches



to convergence in single-agent optimization settings to

multi-agent settings primarily due to the fact that steps

in the direction of a player’s individual gradient does

not guarantee that the player’s cost decreases. In fact,

in games, as our examples highlight, a player’s cost can

increase when they follow the gradient of their own cost.

This behavior is due to the coupling between the agents.

Some of the questions that remain unaddress, and to

which we provide at least partial answers, include the

derivation of error bounds and convergence rates which

are important for ensuring certain performance guarantees

on the collective behavior and can be used to provide guar-

antees on subsequent control or incentive policy synthesis.

We also investigate the question of how naturally arising

features of the learning process for autonomous agents,

such as their learning rates, impact the learning path and

limiting behavior. This further exposes interesting ques-

tions about the overall quality of the limiting behavior

and the cost accumulated along the learning path—e.g.,

is it better to be a slow or fast learner both in terms of the

cost of learning and the learned behavior?

Contributions. We use state of the art tools and tech-

niques from dynamical systems theory and numerical

methods to make new contributions to the field of multi-

agent learning, the theory of continuous games, and learn-

ing in games. In particular, we study convergence of a

class of gradient-based multi-agent learning algorithms in

non-cooperative settings where agents have non-uniform

learning rates by leveraging the framework of n-player

continuous games. That is, we consider a class of learn-

ing algorithms x+
i = xi � γigi(xi, x�i) in which gi is

derived from the gradient of a function that abstractly

represents the cost function of player i. This class en-

compases a wide variety of approaches to learning in

games including multi-agent policy gradient and multi-

agent gradient-based online optimization. We consider

two settings: (i) agents have oracle access to gi and (ii)

agents have an unbiased estimator for gi.

To our knowledge finite time guarantees for either the

stochastic or deterministic setting given non-uniform

learning rates have not been provided; we provide both.

Towards this end, we characterize the local structure of

the game around the equilibria and exploit this local struc-

ture to obtain finite time rates by combining it with dy-

namical systems theory results thereby leading to con-

vergence guarantees for settings not currently covered by

the state of the art. The analysis combines insights about

games and the structure of the learning dynamics near

equilibria with results from numerical methods to obtain

finite time bounds in the deterministic setting and very

recent advancements in concentration bounds for stochas-

tic approximation in the stochastic setting. The setting of

non-uniform learning rates complicates the analysis and

is well motivated, particularly for applications in which

the agents are autonomous and learning their strategies

through repeated interaction, as opposed to a setting in

which an external entity has the goal of computing the

Nash equilibria of a game.

2 PRELIMINARIES

Consider a setting in which at iteration k, each agent

i 2 I = {1, . . . , n} updates their choice variable xi 2
Xi = R

di by the process

xi,k+1 = xi,k � γi,kgi(xi,k, x�i,k) (1)

where γi,k is the learning rate, x�i,k = (xj,k)j2I/{i} 2Q
j2I/{i} Xj denotes the choices of all agents excluding

the i–th agent, and (xi,k, x�i,k) 2 X =
Q

i2I Xi. For

each i 2 I, there exists a sufficiently smooth function

fi 2 Cq(X,R), q � 2 such that gi is either Difi where

Di(·) denotes the derivative of fi with respect to xi or

an unbiased estimator of Difi—i.e., gi ⌘ dDifi where

E[ dDifi] = Difi.

The collection of costs (f1, . . . , fn) on X where fi :
X ! R is agent i’s cost function and Xi is their ac-

tion space defines a continuous game. In this continuous

game abstraction, each player i 2 I aims to selection

an action xi 2 Xi that minimizes their cost fi(xi, x�i)
given the actions of all other agents, x�i 2 X�i. From

this perspective, the learning algorithm in (1) can be inter-

preted as follows: players myopically update their actions

by following the gradient of their cost with respect to their

own choice variable.

Assumption 1. For each i 2 I , fi 2 Cq(X,R) for q � 2
and ω(x) = (D1f1(x) · · · Dnfn(x)) is L–Lipschitz.

Let D2
i fi denote the second partial derivative of fi with

respect to xi and Djifi denote the partial derivative of

Difi with respect to xj . The game Jacobian—i.e., the

Jacobian of ω—is given by

J(x) =

2
64
D2

1f1(x) · · · D1nf1(x)
...

. . .
...

Dn1fn(x) · · · D2
nfn(x)

3
75 .

The entries of the above matrix are dependent on x, how-

ever, we drop this dependence where obvious. Note that

each D2
i fi is symmetric under Assumption 1, yet J is

not. This is an important point and causes the subsequent

analysis to deviate from the typical analysis of (stochastic)

gradient descent.

The most common characterization of limiting behavior

in games is that of a Nash equilibrium. The following

definitions are useful for our analysis.



Definition 1. A strategy x 2 X is a local Nash equilib-

rium for the game (f1, . . . , fn) if for each i 2 I there

exists an open set Wi ⇢ Xi such that xi 2 Wi and

fi(xi, x�i)  fi(x
0
i, x�i) for all x0

i 2 Wi. If the above

inequalities are strict, x is a strict local Nash equilibrium.

Definition 2. A point x 2 X is said to be a critical point

for the game if ω(x) = 0.

We denote the set of critical points of a game G =
(f1, . . . , fn) as C(G) = {x 2 X| ω(x) = 0}. Anal-

ogous to single-player optimization, viewing all other

players’ actions as fixed, there are necessary and suffi-

cient conditions which characterize local optimality for

each player.

Proposition 1 (Ratliff et al. (2016)). If x is a local Nash

equilibrium of the game (f1, . . . , fn), then ω(x) = 0
and D2

i fi(x) � 0. On the other hand, if ω(x) = 0 and

D2
i fi(x) > 0, then x 2 X is a local Nash equilibrium.

The sufficient conditions in the above result give rise to

the following definition of a differential Nash equilibrium.

Definition 3 (Ratliff et al. (2013); Ratliff et al. (2016)).

A strategy x 2 X is a differential Nash equilibrium if

ω(x) = 0 and D2
i fi(x) > 0 for each i 2 I.

Differential Nash need not be isolated. However, if J(x)
is non-degenerate—meaning that det J(x) 6= 0—for a

differential Nash x, then x is an isolated strict local Nash

equilibrium. Non-degenerate differential Nash are generic

amongst local Nash equilibria and they are structurally

stable (Ratliff et al., 2014) which ensures they persist un-

der small perturbations. This also implies an asymptotic

convergence result: if the spectrum of J is strictly in the

right-half plane (i.e. spec(J(x)) ⇢ C
�
+), then a differen-

tial Nash equilibrium x is (exponentially) attracting under

the flow of �ω (Ratliff et al., 2016, Prop. 2). We say such

equilibria are stable.

3 DETERMINISTIC SETTING

Let us first consider the setting in which each agent i
has oracle access to gi and their learning rates are non-

uniform, but constant—i.e., γi,k ⌘ γi. The learning

dynamics are given by

xk+1 = xk � Γω(xk) (2)

where Γ = blockdiag(γ1Id1
, . . . , γnIdn

) with Idi
denot-

ing the di ⇥ di identity matrix.

3.1 ASYMPTOTIC ANALYSIS

For a stable differential Nash x⇤, let R(x⇤) denote the

region of attraction for x⇤. Denote by ρ(A) the spectral

radius of the matrix A.

Proposition 2. Consider an n–player game G =
(f1, . . . , fn) satisfying Assumption 1. Let x⇤ 2 X be a

stable differential Nash equilibrium. Suppose agents use

the gradient-based learning rule xk+1 = xk � Γω(xk)
with learning rates γi such that ρ(I �ΓJ(x)) < 1 for all

x 2 R(x⇤). Then, for x0 2 R(x⇤), xk ! x⇤ exponen-

tially.

The proof is a direct application of Ostrowski’s theo-

rem (Ostrowski, 1966).

Remark 1. If all the agents have the same learning

rate—i.e., for each i 2 I, γi = γ—then the condi-

tion that ρ(I � ΓJ(x)) < 1 on R(x⇤) can be written

as 0 < γ < γ̃ where γ̃ is the smallest positive h such

that maxj |1 � hλj(J(x
⇤))| = 1. If the game is a po-

tential game—i.e., there exists a function φ such that

Difi = Diφ for each i which occurs if and only if

Dijfi = Djifj—then convergence analysis coincides

with gradient descent so that any γ < 1/L where L is

the Lipschitz constant of ω results in local asymptotic

convergence.

Mazumdar and Ratliff (2018) show that (2) will almost

surely avoid strict saddle points of the dynamics, some of

which are Nash equilibria in non-zero sum games. More-

over, except on a set of measure zero, (2) will converge

to a stable attractor of ẋ = �ω(x) which includes stable

local non-Nash critical points. Since ω is not a gradient

flow, the set of attractors may also include limit cycles.

3.2 FINITE SAMPLE ANALYSIS

Throughout this subsection we need the following no-

tation. For a symmetric matrix A 2 R
d⇥d, let

λd(A)  · · ·  λ1(A) be its eigenvalues. Let

S(x) = 1
2 (J(x) + J(x)T ) be the symmetric part of

J(x). Define α = minx2Br(x∗) λd

�
S(x)TS(x)

�
and

β = maxx2Br(x∗) λ1(J(x)
TJ(x)) where Br(x

⇤) is a

r–radius ball around x⇤. Let Br0(x
⇤) with 0 < r0 < 1

be the largest ball contained in the region of attraction of

x⇤—i.e. Br0(x
⇤) ⇢ R(x⇤).

Letting g(x) = x � Γω(x), since ω 2 Cq for some

q � 1, g 2 Cq, the expansion g(x) = g(x⇤) + (I �
ΓJ(x))(x � x⇤) + R(x � x⇤) holds, where R satisfies

limx!x∗ kR(x�x⇤)k/kx�x⇤k = 0 so that given c > 0,

there exists an r > 0 such that kR(x�x⇤)k  ckx�x⇤k,

8 x 2 Br(x
⇤).

Proposition 3. Suppose that kI � ΓJ(x)k < 1 for all

x 2 Br0(x
⇤) ⇢ R(x⇤) so that there exists r0, r00 such

that kI � ΓJ(x)k  r0 < r00 < 1 for all x 2 Br0(x
⇤).

For 1� r00 > 0, let 0 < r < 1 be the largest r such that

kR(x � x⇤)k  (1 � r00)kx � x⇤k for all x 2 Br(x
⇤).

Furthermore, let x0 2 Br∗(x
⇤) where r⇤ = min{r, r0}



be arbitrary. Then, given ε > 0, gradient-based learn-

ing with learning rates Γ obtains an ε–differential Nash

equilibrium in finite time—i.e., xt 2 Bε(x
⇤) for all

t � T = d 1
δ
log (r⇤/ε)e where δ = r00 � r0.

With some modification, the proof follows the proof of

Theorem 1 in (Argyros, 1999); we provide it in Ap-

pendix A.1 for completeness.

Remark 2. We note that the proposition can be more

generally stated with the assumption that ρ(I�ΓJ(x)) <
1, in which case there exists some δ defined in terms of

bounds on powers of I �ΓJ . We provide the proof of this

in Appendix A.1. We also note that these results hold even

if Γ is not a diagonal matrix as we have assumed as long

as ρ(I � ΓJ(x)) < 1.

A perhaps more interpretable finite bound stated in terms

of the game structure can also be obtained. Consider the

case in which players adopt learning rates γi =
p
α/(βki)

with ki � 1. Given a stable differential Nash equilibrium

x⇤, let Br(x
⇤) be the largest ball of radius r contained

in the region of attraction on which S̃ ⌘ 1
2 (J̃

T + J̃) is

positive definite where ω̃ = (Difi/ki)i2I so that J̃ ⌘
Dω̃, and define α̃ = minx2Br(x∗) λd

�
S̃(x)T S̃(x)

�
and

β̃ = maxx2Br(x∗) λ1(J̃(x)
T J̃(x)).

Theorem 1. Suppose that Assumption 1 holds and that

x⇤ 2 X is a stable differential Nash equilibrium. Let

x0 2 Br(x
⇤), α < kminβ,

p
α/kmin 

p
α̃, and for

each i, γi =
p
α/(βki) with ki � 1. Then, given ε > 0,

the gradient-based learning dynamics with learning rates

γi obtain an ε–differential Nash such that xt 2 Bε(x
⇤)

for all t � d2βkmin

α
log( r

ε
)e.

Proof First, note that kxk+1 � x⇤k = kg(xk) �
g(x⇤)k where g(x) = x � Γω(x). Now, x0 2
Br(x

⇤) so that by the mean value theorem, kg(x0) �
g(x⇤)k = k

R 1

0
Dg(τx0 + (1 � τ)x⇤)(x0 � x⇤)dτk 

supx2Br(x∗) kDg(x)kkx0 � x⇤k. Hence, it suffices to

show that for the choice of Γ, the eigenvalues of I�ΓJ(x)
live in the unit circle, and then use an inductive argu-

ment. Let Λ = diag (1/k1, . . . , 1/kn) so that we need

to show that I � γΛDω has eigenvalues in the unit cir-

cle. Since ω(x⇤) = 0, we have that kxk+1 � x⇤k2 =
kxk � x⇤ � γΛ(ω(xk)� ω(x⇤))k2  supx2Br(x∗) kI �
γΛJ(x)k2kxk � x⇤k2 If supx2Br(x∗) kI � γΛJ(x)k2 is

less than one, where the norm is the operator 2–norm, then

the dynamics are contracting. Indeed, observe that the sin-

gular values of ΛJTJΛ are the same as those of JT
Λ
2J

since the latter is positive-definite symmetric. By noting

that kAk2 = σmax(A) and employing Cauchy-Schwartz,

we get that kΛk22kJTJk2 � kΛJTJΛk2. Thus,

(I � γΛJ)T (I � γΛJ)  (1� 2γλd(S̃) +
γ2λ1(J

T J)
k2
min

)I

 (1� 2γ
p
α/kmin + α/(βkmin))I

= (1� α/(βkmin))I.

Using the above to bound supx2Br(x∗) kI � γΛJ(x)k2,

we have kxk+1 � x⇤k2  (1 � α
βkmin

)1/2kxk � x⇤k2.

Since α < kminβ, (1 � α/(βkmin)) < e�α/(βkmin) so

that kxk+1 � x⇤k2  e�Tα/(2kminβ)kx0 � x⇤k2. This,

in turn, implies that for alls t � d2βkmin

α
log(r/ε)e, xt 2

Bε(x
⇤).

Multiple learning rates lead to a scaling rows which can

have a significant effect on the eigenstructure of the ma-

trix, thereby making it difficult to reason about the re-

lationship between ΓJ and J . None-the-less, there are

numerous approaches to solving nonlinear systems of

equations that employ preconditioning (i.e., coordinate

scaling). The purpose of using a preconditioning ma-

trix is to rescale the problem and achieve more stable or

faster convergence. In games, however, the interpretation

is slightly different since each of the coordinates of the

dynamics corresponds to minimizing a different cost func-

tion along the respective coordinate axis. The resultant

effect is a distortion of the vector field in such a way that

it has the effect of leading the joint action to a point which

has a lower value in general for the slower player rela-

tive to the flow of the dynamics given a uniform learning

rate and the same initialization. In this sense, it seems

that it is most beneficial for an agent to have the slower

learning rate, which is suggestive of desirable qualities

for synthesized algorithms. In the case of autonomous

learning agents, perhaps this reveals an interesting direc-

tion of future research in terms of synthesizing games or

learning rules via incentivization (Ratliff and Fiez, 2018)

or reward shaping (Ng et al., 1999) for either coordinating

agents or improving the learning process.

4 STOCHASTIC SETTING

Consider the setting where agents no longer have oracle

access to their individual gradients, but rather have an

unbiased estimator gi ⌘ dDifi and a timevarying learning

rate γi,k. For the sake of brevity, we show the convergence

result in detail for the two agent case—that is, where

I = {1, 2}. We note that the extension to n agents is

straightforward.



The gradient-based learning rules are given by

xi,k+1 = xi,k � γi,k(ω(xk) + wi,k+1) (3)

so that within γ2,k = o(γ1,k), in the limit τ ! 0, the

above system can be thought of as approximating the

singularly perturbed system defined as follows:

ẋ1(t) = �D1f1(x1(t), x2(t)) (4)

ẋ2(t) = �τD2f2(x1(t), x2(t)) (5)

Indeed, since limk!1 γ2,k/γ1,k ! 0—i.e., γ2,k ! 0
at a faster rate than γ1,k—updates to x1 appear to be

equilibriated for the current quasi-static x2.

We require some modified assumptions in this section on

the learning process structure.

Assumption 2. For the gradient-based learning rule (3),

suppose that the following hold:

A2a. Given the filtration Fk = σ(xs, w1,s, w2,s, s 
k), {wi,k+1}i2I are conditionally independent,

E[wi,k+1| Fk] = 0 almost surely (a.s.), and

E[kwi,k+1k| Fk]  ci(1 + kxkk) a.s. for some

constants ci � 0, i 2 I.

A2b. The stepsize sequences {γi,k}t, i 2 I are posi-

tive scalars satisfying: (i)
P

i

P
k γ

2
i,k < 1; (ii)P

k γi,k = 1, i 2 I; (iii) γ2,k = o(γ1,k).

A2c. Each fi 2 Cq(Rd,R) for some q � 3 and each fi
and ω are Li– and Lω–Lipschitz, respectively.

Assumption 3. For fixed x2, ẋ1(t) = �D1f1(x1(t), x2)
has a globally asymptotically stable equilibrium λ(x2).

4.1 ASYMPTOTIC GUARANTEES

The following lemma follows from classical analy-

sis (see, e.g., Borkar (2008, Chap. 6) or Bhatnagar

and Prasad (2013, Chap. 3)). Define the event E =
{supk

P
i kxi,kk2 < 1}.

Lemma 1. Under Assumptions 2 and 3, conditioned on

the event E , (x1,k, x2,k) ! {(λ(x2), x2)| x2 2 R
d2} a.s.

Let tk =
Pk�1

l=0 γ2,k be the continuous time accumulated

after k samples of x2. Define x2(t, s, xs) for t � s to be

the trajectory of ẋ2 = �D2f2(λ(x2), x2).

Theorem 2. Under Assumptions 2 and 3 hold,

for any K > 0, limk!1 sup0hK kx2,k+h �
x2(tk+h, tk, xk)k2 = 0 conditioned on E .

Proof The proof invokes Lemma 1 above and (Benaı̈m,

1999, Prop. 4.1 and 4.2). Indeed, by Lemma 1, (λ(x2,k)�
x2,k) ! 0 a.s. Hence, we can study the sample path gen-

erated by x2,k+1 = x2,k � γ2,k(D2f2(λ(x2,k), x2,k) +
w2,k+1). Since D2f2 2 Cq�1 for some q � 3, it is

locally Lipschitz and, on the event E , it is bounded.

It thus induces a continuous globally integrable vector

field, and therefore satisfies the assumptions of Prop. 4.1

of (Benaı̈m, 1999). Moreover, under Assumption 2, the

assumptions of Prop. 4.2 of (Benaı̈m, 1999) are satisfied.

Invoking said propositions gives the desired result.

This result essentially says that the slow player’s sam-

ple path asymptotically tracks the flow of ẋ2 =
�D2f2(λ(x2), x2). If we additionally assume that the

slow component also has a global attractor, then the above

theorem gives rise to a stronger convergence result.

Assumption 4. Given λ(·) as in Assumption 3, ẋ2(t) =
�τD2f2(λ(x2(t)), x2(t)) has a globally asymptotically

stable equilibrium x⇤
2.

Corollary 1. Under the assumptions of Theorem 2 and

Assumption 4, conditioned on E , gradient-based learning

converges a.s. to a stable attractor (x⇤
1, x

⇤
2) where x⇤

1 =
λ(x⇤

2), the set of which contains the stable differential

Nash equilibria.

More generally, the process (x1,k, x2,k) will converge

almost surely to the internally chain transitive set of the

limiting dynamics (5) and this set contains the stable Nash

equilibria. If the only internally chain transitive sets for

(5) are isolated equilibria (this occurs, e.g., if the game

is a potential game), then xk converges almost surely to

a stationary point of the dynamics, a subset of which are

stable local Nash equilibria. It is also worth commenting

on what types of games will satisfy these assumptions. To

satisfy Assumption 3, it is sufficient that the fastest player

has a convex cost in their choice variable.

Proposition 4. Suppose Assumption 2 and 4 hold and

that f1(·, x2) is convex. Conditioned on E , the sample

points of gradient-based learning satisfy (x1,k, x2,k) !
{(λ(x2), x2)| x2 2 R

d2} a.s. Moreover, (x1,k, x2,k) !
(x⇤

1, x
⇤
2) a.s., where x⇤

1 = λ(x⇤
2).

Note that (x⇤
1, x

⇤
2) could still be a spurious sta-

ble non-Nash point still since the above implies

D(D2f2(λ(·), ·))|x∗

2
> 0 which does not imply that nec-

essarily D2
2f2(λ(x

⇤
2), x

⇤
2) > 0.

Remark 3 (Relaxing Assumptions: Local Asymptotical

Stability). Under relaxed assumptions on global asymp-

totic stability (i.e., if Assumptions 3 and 4 are relaxed to

local asymptotic stability), we can obtain high-probability

results on convergence to locally asymptotically stable

attractors. However, this requires conditioning on an un-

verifiable event—i.e. the high-probability bound in this

case is conditioned on the event {{x1,k} belongs to a

compact set B, which depends on the sample point, of

\x2
R(λ(x2))} where R(λ(x2)) is the region of attrac-

tion of λ(x2). None-the-less, it is possible to leverage

results from stochastic approximation (Karmakar and



Bhatnagar, 2018), (Borkar, 2008, Chap. 2) to prove lo-

cal versions of the results for non-uniform learning rates.

Further investigation is required to provide concentration

bounds for not only games but stochastic approximation

in general.

4.2 CONCENTRATION BOUNDS

In the stochastic setting, the learning dynamics are

stochastic approximation updates, and non-uniform learn-

ing rates lead to a multi-timescale setting. The concen-

tration bounds we derive leverage very recent results—

e.g., (Borkar and Pattathil, 2018)—from stochastic ap-

proximation and we note that our objective here is to

show that they apply to games and provide commentary

on the interpretation of the results in this context.

For a stable differential Nash equilibrium x⇤ =
(λ(x⇤

2), x
⇤
2), using the bounds in Lemma 1 and Lemma 2

in Appendix A.2, we can provide a high-probability guar-

antee that (x1,k, x2,k) gets locked in to a ball around

(λ(x⇤
2), x

⇤
2).

Let x̄i(·) denote the linear interpolates between sam-

ple points xi,k and, as in the preceding sub-section, let

xi(·, ti,k, xk) denote the continuous time flow of ẋi with

initial data (ti,k, xk) where ti,k =
Pk�1

l=0 γi,k. Define

also τk = γ2,k/γ1,k. Alekseev’s formula is a nonlinear

variation of constants formula that provides solutions to

perturbations of differential equations using a local lin-

ear approximation. We can apply this to the asymptotic

pseudo-trajectories x̄i(·) in each timescale. For these

local approximations, linear systems theory let’s us find

growth rate bounds for the perturbations, which can, in

turn, be used to bound the normed difference between

the continuous time flow and the asymptotic pseudo-

trajectories. More detail is provided in Appendix A.2.

Towards this end, fix ε 2 [0, 1) and let N be such that

γ1,n  ε/(8K), τn  ε/(8K) for all n � N . De-

fine t1,k = t̃k and t2,k = t̂k. Let n0 � N and with

K as in Lemma 1 (Appendix A.2), let T be such that

e�κ1(t̃n�t̃n0
)Hn0

 ε/(8K) for all n � n0 + T where

κ1 > 0 is a constant derived from Alekseev’s formula

applied to x̄1(·). Moreover, with K̄ as in Lemma 2 (Ap-

pendix A.2), let e�κ2(t̂n�t̂n0
)(kx̄2(t̂n0

) � x2(t̂n0
)k 

ε/(8K̄), 8n � n0 + T where κ2 > 0 is a constant de-

rived from Alekseev’s formula applied to x̄2(·).

Theorem 3. Suppose that Assumptions 2–4 hold and let

γ2,k = o(γ1,k). Given a stable differential Nash equi-

librium x⇤ = (λ(x⇤
2), x

⇤
2), the player 2’s sample path

generated by (3) for i = 1 will asymptotically track

zk = λ(x2,k), and given ε 2 [0, 1), xk will get ‘locked in’

to a ε–neighborhood with high probability conditioned

on reaching Br0(x
⇤) by iteration n0. That is, letting

n̄ = n0 + T + 1, for some C1, C2 > 0,

P(kx1,n � znk  ε, 8n � n̄|x1,n0
, zn0

2 Br0)

� 1�P1
n=n0

C1 exp
�
� C2

p
ε/
p
γ1,n

�

�P1
n=n0

C2 exp
�
� C2

p
ε/
p
τn
�

�P1
n=n0

C1 exp
�
� C2ε

2/βn

�
. (6)

with βn = maxn0kn�1 e
�κ1(

Pn−1

i=k+1
γ1,i)γ1,k. More-

over, for some constants C̃1, C̃2 > 0,

P(kx2,n � x2(t̂n)k  ε, 8n � n̄|xn0
, zn0

2 Br0)

� 1 +
P1

n=n0
C̃1 exp

�
� C̃2

p
ε/
p
γ1,n

�

�P1
n=n0

C̃1 exp
�
� C̃2

p
ε/
p
τn
�

�P1
n=n0

C̃1 exp
�
� C̃2ε

2/βn

�

�P1
n=n0

C̃1 exp
�
� C̃2ε

2/ηn
�

(7)

with ηn = maxn0kn�1

�
e�κ2(

Pn−1

i=k+1
γ2,i)γ2,k

�
.

Corollary 2. Fix ε 2 [0, 1) and suppose that γ1,n 
ε/(8K) for all n � 0. With K as in Lemma 1 (Ap-

pendix A.2), let T be such that e�κ1(t̃n�t̃0)H0  ε/(8K)
for all n � T . Furthermore, with K̄ as in Lemma 2

(Appendix A.2), let e�κ2(t̂n�t̂0)(kx̄2(t̂0) � x2(t̂0)k 
ε/(8K̄), 8n � T . Under the assumptions of Theorem 3,

xk will will get ‘locked in’ to a ε–neighborhood with

high probability conditioned on x0 2 Br0(x
⇤) where the

high-probability bounds in (6) holds with n0 = 0.

The key technique in proving the above theorem (which is

done in detail in Borkar and Pattathil (2018) which is, in

turn, leveraging results from Thoppe and Borkar (2018)),

is first to compute the errors between the sample points

from the stochastic learning rules and the continuous time

flow generated by initializing the continuous time limiting

dynamics at each sample point and flowing it forward

for time tn+1 � tn, doing this for each x1,k and x2,k

separately and in their own timescale, and then take a

union bound over all the continuous time intervals defined

for n � n0.

In Appendix A.3, we specialize to the case of uniform

learning rates for which we can tighter bounds leveraging

the results of (Thoppe and Borkar, 2018).

5 NUMERICAL EXAMPLES

We consider several examples that illustrate the effect that

non-uniform learning rates have on the stability of the

learning dynamics, its vector field and resulting equilibria

of continuous games. These examples highlight the im-

portance of studying the convergence properties of game

dynamics in non-cooperative continuous games where

agents may learn at different rates. Additional examples

are provided in Appendix B.







where

A =


I hI
0 I

�
2 R

4⇥4, B =


h2I
hI

�
2 R

4⇥2,

I is the identity matrix and h = 0.1. These dynamics

represent a typical discretized version of the continuous

dynamics r̈ = u in which u represents a R
2 force vector

used to accelerate the particle, and the state z = [r, ṙ]
represents its position and velocity. Let u = (u1, · · · , un)
and ui be the concatenated vector of control vectors for

all time, i.e ui = (ui(1), · · · , ui(N)) Each particle has

cost

Ji(ui, u�i) =
PN

t=1 kui(t)k2R +
PN+1

t=1 kzi(t)� z̄ik2Q
+
P

j 6=i

PN+1
t=1 ρe�σkzi(t)�zj(t)k

2
S

where the norm k · kP is defined for positive semi-definite

P by kzk2P = zTPz. The first two terms of the cost

correspond to the minimum fuel objective and quadratic

cost from desired final state z̄i, a typical setup for optimal

control problems. We use R = diag(0.1, 0.1) and Q =
diag(1, 1, 0, 0). The final term of the cost function is

the sum of all pairwise interaction terms between the

particles, modeled after the shape of a Gaussian which

encodes smooth boundaries around the particles. We use

constants ρ = 10 and σ = 100.

Figure 2(a) is a visualization of the problem setup. Each

particles’ initial position zi(0) is located on the left side of

a unit circle, separated by π/5, and their desired final posi-

tions z̄i are located directly opposite. The particles begin

with zero velocity and must solve for a minimum control

solution that also avoids collision with other particles.

We first initialize the problem with the optimal solution for

each agent ignoring the pairwise interaction terms, shown

in Figure 2(b) . This can be computed using classical

discrete-time LQR methods or by gradient descent. Then

each agent descends their own gradient of the full cost,

ui,k+1 = ui,k � γiDiJi(ui,k, u�i,k),

with different learning rates γi to converge to the differ-

ential Nash equilibrium. These equilibria are shown in

Figure 2(c) and 2(d).

6 DISCUSSION

We analyze the convergence of gradient-based learning

for non-cooperative agents with continuous costs and

non-uniform learning rates. In the deterministic setting

where agents have oracle gradient access, we provide

non-asymptotic rates of convergence. In the stochastic

setting where agents have unbiased gradient estimates,

we leverage dynamical systems theory and stochastic ap-

proximation analysis techniques to provide concentration

bounds.

By preconditioning the gradient dynamics by Γ, a diago-

nal matrix composed o the agents’ learning rates, we can

begin to understand how changing a learning rate relative

to others can alter the properties of the fixed points of the

dynamics. Different learning rates amongst agents also

affect the region of attraction of the game, hence starting

from the same initial condition one may converge to a

different equilibria. Agents may use this to their bene-

fit, as shown in the last example. Such insights into the

learning behavior of agents will be useful for providing

guarantees on the design of control or incentive policies

to coordinate agents.

While we present the work in the context of gradient-

based learning in games, there is nothing that precludes

the results from applying to update rules in other frame-

works. Our results will apply to many other settings where

agents myopically update their decision using a process

of the form xk+1 = xk � Γg(xk). In this paper, we con-

sider the special case where g ⌘ [D1f1 · · ·Dnfn]. In

the stochastic setting, variants of multi-agent Q-learning

conform to this setting since Q-learning can be written as

a stochastic approximation update.

As pointed out in (Mazumdar and Ratliff, 2018), not all

critical points of the dyanamics ẋ = �ω(x) that are at-

tracting are necessarily Nash equilibria; one can see this

simply by constructing a Jacobian with positive eigenval-

ues with at least one D2
i fi with a non-positive eigenvalue.

Understanding this phenomena will help us develop com-

putational techniques to avoid them. Recent work has ex-

plored this in the context of zero-sum games (Mazumdar

et al., 2019), requiring coordination amongst the learn-

ing agents. However, when our objective is to study the

learning behavior of autonomous agents seeking an equi-

librium, an alternative perspective is needed.
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A PROOFS

A.1 Deterministic Setting

The following proof follows nearly the same proof as the

main result in Argyros (1999) with a few minor modifi-

cations in the conclusion; we provide it here for posterity.

Proof [Proof Proposition 3] Since kI�ΓD!(x)k < 1 for

each x 2 Br0(x
⇤), as stated in the proposition statement,

there exists 0 < r0 < r00 < 1 such that kI�ΓD!(x)k 
r0 < r00 < 1 for all x 2 Br(x

⇤). Since

lim
x!x∗

kR(x� x⇤)k/kx� x⇤k = 0,

for 0 < 1� r00 < 1, there exists r̃ > 0 such that

kR(x� x⇤)k  (1� r00)kx� x⇤k, 8 x 2 Br̃(x
⇤).

As in the proposition statement, let r be the largest, finite

such r̃. Note that for arbitrary c > 0, there exists r̃ > 0
such that the bound on kR(x � x⇤)k holds; hence, we

choose c = 1 � r00 and find the largest such r̃ for which

the bound holds. Combining the above bounds with the

definition of g, we have that

kg(x)� g(x⇤)k  (1� �)kx� x⇤k, 8 x 2 Br∗(x
⇤)

where � = r00 � r0 and r⇤ = min{r0, r}. Hence, apply-

ing the result iteratively, we have that

kxt � x⇤k  (1� �)tkx0 � x⇤k, 8 x0 2 Br∗(x
⇤).

Note that 0 < 1 � � < 1. Using the approximation

1� � < exp(��), we have that

kxT � x⇤k  exp(�T �)kx0 � x⇤k

so that xt 2 B"(x
⇤) for all t � T = d��1 log(r⇤/")e.

As noted in the remark, a similar result holds under the

relaxed assumption that ⇢(I � ΓD!(x)) < 1 for all x 2
Br0(x

⇤). To see this, we first note that ⇢(I�ΓD!(x)) <
1 implies there exists c > 0 such that ⇢(I � ΓD!(x)) 
c < 1. Hence, given any ✏ > 0, there is a norm on R

d

and a c > 0 such that kI � ΓD!k  c + ✏ < 1 on

Br0(x
⇤) (Ortega and Rheinboldt, 1970, 2.2.8). Then, we

can apply the same argument as above using r0 = c+ ".

A.2 Stochastic Setting

A key tool used in the finite-time two-timescale analysis

is the nonlinear variation of constants formula of Alek-

seev Alekseev (1961), Borkar and Pattathil (2018).

Theorem 1. Consider a differential equation

u̇(t) = f(t, u(t)), t � 0,

and its perturbation

ṗ(t) = f(t, p(t)) + g(t, p(t)), t � 0

where f, g : R ⇥ R
d ! R

d, f 2 C1, and g 2
C. Let u(t, t0, p0) and p(t, t0, p0) denote the solutions

of the above nonlinear systems for t � t0 satisfying

u(t0, t0, p0) = p(t0, t0, p0) = p0, respectively. Then,

p(t, t0, p0) = u(t, t0, p0) +

Z t

t0

Φ(t, s, p(s, t0, p0))

· g(s, p(s, t0, p0)) ds, t � t0

where Φ(t, s, u0), for u0 2 R
d, is the fundamental ma-

trix of the linear system

v̇(t) =
@f

@u
(t, u(t, s, u0))v(t), t � s (1)

with Φ(s, s, u0) = Id, the d–dimensional identity matrix.

Consider a locally asymptotically stable differential

Nash equilibrium x⇤ = (�(x⇤
2), x

⇤
2) 2 X and let

Br0(x
⇤) be an r0 > 0 radius ball around x⇤ con-

tained in the region of attraction. Stability implies that

the Jacobian JS(�(x
⇤
2), x

⇤
2) is positive definite and by

the converse Lyapunov theorem (Sastry, 1999, Chap. 5)

there exists local Lyapunov functions for the dynam-

ics ẋ2(t) = �⌧D2f2(�(x2(t)), x2(t)) and for the dy-

namics ẋ1(t) = �D1f1(x1(t), x2), for each fixed

x2. In particular, there exists a local Lyapunov func-

tion V 2 C1(Rd1) with limkx2k"1 V (x2) = 1, and

hrV (x2), D2f2(�(x2), x2)i < 0 for x2 6= x⇤
2. For

r > 0, let V r = {x 2 dom(V ) : V (x)  r}. Then,

there is also r > r0 > 0 and ✏0 > 0 such that for ✏ < ✏0,

{x2 2 R
d2 | kx2 � x⇤

2k  ✏} ✓ V r0 ⇢ N✏0
(V r0) ✓

V r ⇢ dom(V ) where N✏0
(V r0) = {x 2 R

d2 | 9x0 2
V r0 s.t.kx0 � xk  ✏0}. An analogously defined Ṽ ex-

ists for the dynamics ẋ1 for each fixed x2.

For now, fix n0 sufficiently large; we specify this a bit

further down. Define the event En = {x̄1(t) 2 V r 8t 2

[t̃n0
, t̃n]} where x̄1(t) = x1,k + t�t̃k

�1,k
(x1,k+1 � x1,k)

are linear interpolates defined for t 2 (t̃k, t̃k+1) with

t̃k+1 = t̃k + �1,k and t̃0 = 0. The basic idea of the proof

is to leverage Alekseev’s formula (Theorem 1) to bound

the difference between the linearly interpolated trajecto-

ries (i.e., asymptotic psuedo-trajectories) and the flow of

the corresponding limiting differential equation on each

continuous time interval between each of the successive

iterates k and k + 1 by a number that decays asymptot-

ically. Then, for large enough n, a union bound is used



over all the remaining time intervals to construct a con-

centration bound. This is done first for fast player (i.e.

player 1), to show that x1,k tracks �(x2,k), and then for

the slow player (i.e. player 2).

Following Borkar and Pattathil (2018), we can express

the linear interpolates for any n � n0 as x̄1(t̃n+1) =
x̄1(t̃n0

)�
Pn

k=n0
�1,k(D1f1(xk) + w1,k+1) where

�1,kD1f1(xk) =
R t̃k+1

t̃k
D1f1(x̄1(t̃k), x2,k)

and similarly for the w1,k+1 term. Adding and subtract-

ing
R t̃n+1

t̃n0

D1f1(x̄1(s), x2(s), ), Alekseev’s formula can

be applied to get

x̄1(t) = x1(t) + Φ1(t, s, x̄1(t̃n0
), x2(t̃n0

))(x̄1(t̃n0
)

� x1(t̃n0
)) +

R t

t̃n0

Φ2(t, s, x̄1(s), x2(s))⇣1(s) ds

where x2(t) ⌘ x2 is constant (since ẋ2 = 0),

x1(t) = �(x2), ⇣1(s) = �D1f1(x̄1(t̃k), x2(t̃k)) +
D1f1(x̄1(s), x2(s))+w1,k+1, and where for t � s, Φ1(·)
satisfies linear system

Φ̇1(t, s, x0) = J1(x1(t), x2(t))Φ1(t, s, x0),

with initial data Φ1(t, s, x0) = I and x0 = (x1,0, x2,0)
and where J1 the Jacobian of �D1f1(·, x2).

Given that x⇤ = (�(x⇤
2), x

⇤
2) is a stable differential

Nash equilibrium, J1(x
⇤) is positive definite. Hence,

as in (Thoppe and Borkar, 2018, Lem. 5.3), we can

find M , 1 > 0 such that for t � s, x1,0 2 V r,

kΦ1(t, s, x1,0, x2,0)k  Me�1(t�s); this result fol-

lows from standard results on stability of linear systems

(see, e.g., Callier and Desoer (1991, §7.2, Thm. 33))

along with a bound on
R t

s
kD2

1f1(x1, x2(⌧, s, x̃0)) �
D2

1f1(x
⇤)kd⌧ for x̃0 2 V r (see, e.g., (Thoppe and

Borkar, 2018, Lem 5.2)).

Consider zk = �(x2,k)—i.e., where D1f1(x1,k, x2,k) =
0. Then, using a Taylor expansion of the implicitly de-

fined �, we get

zk+1 = zk +D�(x2,k)(x2,k+1 � x2,k) + �k+1 (2)

where k�k+1k  Lrkx2,k+1 � x2,kk
2 is the error from

the remainder terms. Plugging in x2,k+1,

zk+1 = zk + �1,k(�D1f1(zk, x2,k) + ⌧k�(x2,k)

· (w2,k+1 �D2f2(x1,k, x2,k)) + ��1
1,k�k+1)

The terms after �D1f1 are o(1), and hence asymptoti-

cally negligible, so that this z sequence tracks dynamics

as x1,k. We show that with high probability, they asymp-

totically contract to one another.

Now, let us bound the normed difference between x1,k

and zk.

Define constant Hn0
= (kx̄1(t̃n0

�x1(t̃n0
)k+kz̄(t̃n0

)�
x1(t̃n0

)k) and

S1,n =
Pn�1

k=n0

� R t̃k+1

t̃k
Φ1(t̃n, s, x̄1(t̃k), x2(t̃k))ds)

· w2,k+1.

Let ⌧k = �2,k/�1,k.

Lemma 1. For any n � n0, there exists K > 0 such that

kx1,n � znk  K
�

kS1,nk+ e�1(t̃n�t̃n0
)Hn0

+ supn0kn�1 �1,k + supn0kn�1 �1,kkw1,k+1k
2

+ supn0kn�1 ⌧k + supn0kn�1 ⌧kkw2,k+1k
2
�

conditioned on En.

In order to construct a high-probability bound for x2,k,

we need a similar bound as in Lemma 1 can be con-

structed for x2,k.

Define the event Ên = {x̄2(t) 2 V r 8t 2 [t̂n0
, t̂n]}

where x̄2(t) = x2,k + t�t̂k
�2,k

(x2,k+1 � x2,k) is the linear

interpolated points between the samples {x2,k}, t̂k+1 =
t̂k+�1,k, and t̂0 = 0. Then as above, Alekseev’s formula

can again be applied to get

x̄2(t) = x2(t, t̂n0
, x2(t̂n0

)) + Φ2(t, t̂n0
, x̄2(t̂n0

))

· (x̄2(t̂n0
)� x2(t̂n0

)) +
R t

t̂n0

Φ2(t, s, x̄2(s))⇣1(s) ds

where x2(t) ⌘ x⇤
2,

⇣1(s) = D2f2(�(x2,k), x2,k)�D2f2(�(x̄2(s)), x̄2(s))

+D2f2(xk)�D2f2(�(x2,k), x2,k) + w2,k+1,

and Φ2 is the solution to a linear system with dynam-

ics J2(�(x
⇤
2), x

⇤
2), the Jacobian of �D2f2(�(·), ·), and

with initial data Φ2(s, s, x2,0) = I . This linear system,

as above, has bound kΦ2(t, s, x2,0)k  M2e
2(t�1) for

some M2,2 > 0. Define

S2,n =
Pn�1

k=n0

R t̂k+1

t̂k
Φ2(t̂n, s, x̄2(t̂k))ds

· w2,k+1.

Lemma 2. For any n � n0, there exists K̄ > 0 such that

kx̄2(t̂n)� x2(t̂n)k  K̄
�

kS2,nk+ supn0kn�1 kS1,kk

+ supn0kn�1 �1,k + supn0kn�1 �1,kkw1,k+1k
2

+ supn0kn�1 ⌧k + supn0kn�1 ⌧kkw2,k+1k
2

+ e2(t̂n�t̂n0
)kx̄2(t̂n0

)� x2(t̂n0
)k

+ supn0kn�1 ⌧kHn0

�

conditioned on Ẽn.

Using this lemma, we can get the desired guarantees on

x1,k.
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