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Abstract

Actor-critic methods solve reinforcement learning problems
by updating a critic to approximate the expected return of the
actor and simultaneously updating actor in a direction based
on the critic’s estimation. The interaction between the actor
and critic has an intrinsic hierarchical structure from a game-
theoretic perspective. In this work, to take into account the
interaction structure between the players, we formulate the
actor-critic method as a two-player general-sum Stackelberg
game. We propose a Stackelberg actor-critic algorithm that
leverages the Stackelberg gradient update following the total
derivative, where the actor optimizes utilizing the knowledge
that the critic responds near-optimally to the update by the
actor. Through experiments we validate that our proposed al-
gorithms outperform the normal actor-critic method. We be-
lieve this game-theoretic perspective can be extended to gen-
eral actor-critic based methods and provide more insights on
a broader class of reinforcement learning algorithms.

1 Introduction
The goal of reinforcement learning is to learn an optimal
policy under which an agent maximizes the obtainable cu-
mulative reward.1 Reinforcement learning has proven to be
successful problem solving framework in a variety of do-
mains such as video games (Mnih et al. 2015; Silver et al.
2016), robotics (Lillicrap et al. 2015; Levine et al. 2016), au-
tonomous vehicles (Sallab et al. 2017), among many others.

The algorithmic techniques for reinforcement learning
can be classified into policy-based, value-based, and actor-
critic methods. Policy-based methods directly optimize a
policy to maximize the sample approximation of the ex-
pected return. Value-based methods instead learn a value
function that estimates the expected return, and they then
infer an optimal policy by selecting actions that maximize
the learned value function. However, there are disadvan-
tages of pure policy-based and value-based methods when
applied to continuous control problems (Duan et al. 2016).
Indeed, policy-based methods are known to be sample in-
efficient and suffer from high variance, while value-based
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1Following common terminology (Sutton and Barto 2018), we
refer to the discounted cumulative reward as the return in this work.

methods face a computational bottleneck in solving for the
value-maximizing action.

Actor-critic methods combine the advantages of policy-
based and value-based methods. In such methods, the pa-
rameterized policy is called the actor and the learned value
function is called the critic. By learning both the actor and
the critic simultaneously, actor-critic methods manage to re-
duce the return estimation variance (Konda and Tsitsiklis
2000; Grondman et al. 2012), and bypass the maximization
problem by instead querying the actor (Silver et al. 2014;
Lillicrap et al. 2015).

At a high level, actor-critic methods learn a critic that
approximates the expected return of the actor, while at the
same time learn an actor to optimize the expected return
based on the critic’s estimation. The interaction between
the actor and critic has an intrinsic hierarchical structure in
which the critic seeks to be at an optimum given the param-
eters of the actor, while the actor aims to be at an optimum
knowing that the critic responds near-optimally to the pa-
rameters selected by the actor. The interaction structure be-
tween actor and critic can be viewed as a Stackelberg game.

Stackelberg games characterize the interaction between
a leader and a follower. The leader in the game is distin-
guished by the ability to act before the follower. As a result
of this structure, the leader optimizes accounting for how
the follower responds, while the follower selects a best re-
sponse to the action of the leader. The typical equilibrium
concept studied in this class of games is known as a Stack-
elberg equilibrium. The importance of the order of play in
optimization problems present in machine learning applica-
tions such as generative adversarial networks has spurred the
development of local refinements of the Stackelberg equi-
librium notion (Fiez, Chasnov, and Ratliff 2020; Jin, Ne-
trapalli, and Jordan 2020) along with the design and anal-
ysis of iterative algorithms seeking to compute local Stack-
elberg equilibrium in nonconvex-nonconcave games (Fiez,
Chasnov, and Ratliff 2020; Jin, Netrapalli, and Jordan 2020;
Wang, Zhang, and Ba 2019; Fiez and Ratliff 2020).

We formulate the actor-critic method as a two-player
general-sum Stackelberg game toward solving reinforce-
ment learning problems. In this formulation, the actor seeks
to solve a bilevel optimization problem in which the ac-
tor objective is a function of the critic’s parameters and the
critic responds optimally with respect to its own parameters.



For general Stackelberg games, Fiez, Chasnov, and Ratliff
(2020) proposed a learning algorithm with a number of the-
oretical properties in which the leader updates by follow-
ing the total derivative of its cost function defined using the
implicit function theorem, while the follower descends its
cost using the derivative with respect to its own parame-
ters. We tailor this learning algorithm to the reinforcement
learning problem and design a novel Stackelberg actor-critic
algorithm that explicitly takes into account the interaction
structure between the players. This is in contrast to exist-
ing actor-critic methods that do not explicitly consider the
interactions between the players and only perform standard
gradient descent-ascent. We demonstrate via experiments on
several reinforcement learning tasks that our algorithm out-
performs the normal actor-critic method. This behavior is
an outcome of the careful consideration of the interaction
structure. Moreover, our viewpoint has the advantage that
game-theoretic equilibria are more robust to local deviations
by the the follower or inner optimization problem, which is
important in reinforcement learning to ensure robustness to
errors from sampling bias and variance and approximations
and derivatives.

1.1 Related Work
Game-theoretic frameworks have been studied extensively
in multi-agent reinforcement learning (Zhang, Yang, and
Başar 2019). Recently, Prajapat et al. (2020) proposed a
competitive policy optimization method for multi-agent re-
inforcement learning that exploits the game-theoretic na-
ture of competitive games and performs recursive reason-
ing about the behavior of an opponent in two-player zero-
sum games. In contrast, in our Stackelberg game formula-
tion between the actor and critic, the actor is reasoning about
how the critic responds to its own update in a single agent
reinforcement learning problem. The past research taking
a game-theoretic viewpoint of single-agent reinforcement
learning is limited despite the fact that there are often mul-
tiple players (e.g., actor and critic) in reinforcement learn-
ing algorithms. Rajeswaran, Mordatch, and Kumar (2020)
propose a framework that casts model-based reinforcement
learning as a game between a policy player and a model
player. They construct a Stackelberg game between the two
players and study different order of players. However, in-
stead of leveraging the Stackelberg gradient update using
the implicit function theorem, they only consider gradient
descent-ascent to approximate the Stackelberg dynamics.

In single-agent reinforcement learning methods, algo-
rithms using second-order information as we do in this
work traces back to natural policy gradient methods (Kakade
2001) and the natural actor-critic algorithm (Peters and
Schaal 2008; Bhatnagar et al. 2009). Recently, second-order
methods have been proposed for both policy-based and
actor-critic methods (Schulman et al. 2015a, 2017; Shen
et al. 2019; Tangkaratt, Abdolmaleki, and Sugiyama 2017).
The actor-critic based methods among those often use lo-
cal second-order information to construct a constrained op-
timization problem. On the contrary, we construct a bilevel
optimization, which allows us to consider the interaction be-
tween actor and critic in a Stackelberg game.

2 Preliminaries
In this section, we provide background on the actor-critic
algorithm and Stackelberg games.

2.1 Actor-Critic
We consider discrete-time Markov decision processes
(MDPs) with continuous state space S and continuous ac-
tion space A. We denote the state and action at time step t
by st and at, respectively. The initial state s0 is determined
by the initial state density s0 ∼ ρ(s). At time step t, the
agent in state st takes an action at according to a policy
at ∼ π(a|st) and obtains a reward rt = r(st, at). Then,
the agent is transited into the next state st+1 determined
by the transition function st+1 ∼ P (s′|st, at). A trajectory
τ = (s0, a0, . . . , sT , aT ) gives us the cumulative rewards or
return defined as R(τ) =

∑T
t=0 γ

tr(st, at), where the dis-
count factor 0 < τ ≤ 1 assigns weights to rewards received
at different time steps. The expected return of π after execut-
ing at in state st can be expressed by the Q function defined
as

Qπ(st, at) = Eτ∼π

[
T∑
t′=t

γt
′−tr(st′ , at′)|st, at

]
. (1)

Correspondingly, the expected return of π in state st can be
expressed by the V function defined as

V π(st) = Eτ∼π

[
T∑
t′=t

γt
′−tr(st′ , at′)|st

]
. (2)

The goal of reinforcement learning is to find an optimal pol-
icy that maximizes the expected return:

J(π) = Eτ∼π

[
T∑
t=0

γtr(st, at)

]
=

∫
τ

p(τ |π)R(τ)dτ

= Es∼ρ,a∼π(·|s) [Q
π(s, a)] ,

(3)

where p(τ |π) = ρ(s0)
∏T
t=0 π(at|st)P (st+1|st, at).

The policy-based approach (Williams 1992) parameter-
izes π by parameter θ and finds the optimal θ∗ by maxi-
mizing the expected return:

max
θ
J(θ) = Es∼ρ,a∼πθ(·|s) [Q

π(s, a)] . (4)

According to the policy gradient theorem (Sutton et al.
2000)

∇θJ(θ) = Es∼ρ,a∼πθ(·|s) [∇θ log πθ(a|s)Q
π(s, a)] , (5)

and the optimization problem can be solved by gradient as-
cent. One way to approximate theQπ(s, a) in the gradient is
by sampling trajectories and averaging returns. Such method
is known as REINFORCE (Williams 1992).

The actor-critic method (Konda and Tsitsiklis 2000;
Grondman et al. 2012) leverages another critic function
Qw(s, a), parameterized by w, to approximate Qπ(s, a). By
replacing the value function in Eq. (4), we obtain the follow-
ing optimization problem

max
θ
J(θ) = Es∼ρ,a∼πθ(·|s) [Qw(s, a)] . (6)



Similarly, the optimization is solved by gradient ascent and
the gradient now is

∇θJ(θ) = Es∼ρ,a∼πθ(·|s) [∇θ log πθ(a|s)Qw(s, a)] . (7)

The critic is optimized by minimizing the error between true
value functions

min
w
L(w) = Es∼ρ,a∼πθ(·|s)

[
(Qw(s, a)−Qπ(s, a))2

]
,

(8)
where the true value function is approximated by Monte
Carlo estimation or bootstrapping (Sutton and Barto 2018).
Actor-critic method typically performs direct gradient
descent-ascent on critic and actor, respectively (Peters and
Schaal 2008; Mnih et al. 2016):

θ ← θ + αθ∇θJ(θ), (9)
w ← w − αw∇wL(w), (10)

where αθ and αw are the learning rate of actor and critic.

2.2 Stackelberg Game
Stackelberg game is a game between two agents where one
agent is deemed the leader and the other the follower. Each
agent has an objective they want to optimize that depends
on not only their own actions but also on the actions of
their competitor. Specifically, the leader optimizes its objec-
tive knowing that the follower will respond optimally. Let
f1(x1, x2) and f2(x1, x2) be the objective functions that the
leader and follower want to minimize, respectively, where
x1 and x2 are their decision variables. The leader aims to
solve the bilevel optimization problem given by

min
x1

{
f1(x1, x2)|x2 = argmin

y
f2(x1, y)

}
. (11)

Since the follower chooses the best response x∗2(x1) =
argminy f2(x1, y), the follower’s decision variables are im-
plicitly a function of the leader’s. The leader utilizes this in-
formation by the total derivative of its cost function:

df1(x1, x
∗
2(x1))

dx1
=
∂f1(x1, x2)

∂x1
+

dx∗2(x1)

dx1

∂f1(x1, x2)

∂x2
.

(12)
The implicit Jacobian term can be obtained using the im-
plicit function theorem (Krantz and Parks 2012):

dx∗2(x1)

dx1
= −

(
∂2f2(x1, x2)

∂x1∂x2

)(
∂2f2(x1, x2)

∂x22

)−1
.

(13)

3 Stackelberg Actor-Critic
In this section, in order to capture the hierarchical interac-
tions between value learning and policy optimization, we
formulate actor-critic as a two-player general sum Stackel-
berg game. In this game, the actor and critic can only pick
their own parameters while their objectives depend on the
parameters of both. We propose Stackelberg Actor-Critic
(STAC) algorithm, where the actor optimizes its objective
knowing the critic responds optimally to its update.

In a two-player Stackelberg game setting of actor-critic,
the critic objective is now a function of both players’ param-
eters:
L(θ, w) = Es∼ρ,a∼πθ(·|s)

[
(Qw(s, a)−Qπ(s, a))2

]
.

(14)
The critic assists to compute the policy gradient by approx-
imating the value function of the current policy. To give an
accurate approximation, the critic should be selecting a best
response w∗(θ) = argminφ L(θ, φ). Thus, the actor natu-
rally plays the role of leader and the critic plays follower.
Utilizing the knowledge that the critic will always choose
best response while actor updates, the actor aims to solve
the bilevel optimization problem given by

max
θ

J(θ, w∗(θ)) (15)

s.t. w∗(θ) = argmin
φ
L(θ, φ), (16)

where the actor objective is also a function of both actor and
critic parameters:

J(θ, w) = Es∼ρ,a∼πθ(·|s)[Qw(s, a)]. (17)
According to Eq. (12) and (13), the total derivative of
J(θ, w∗(θ)) is computed by
dJ(θ, w∗(θ))

dθ
=
∂J(θ, w)

∂θ
+

dw∗(θ)

dθ

∂J(θ, w)

∂w
(18)

=
∂J(θ, w)

∂θ
−
(
∂2L(θ, w)

∂θ∂w

)(
∂2L(θ, w)

∂w2

)−1
∂J(θ, w)

∂w
.

(19)

For the terms in Eq. (19), ∂J(θ,w)
∂θ can be computed by

policy gradient theorem in Eq. (7); ∂J(θ,w)
∂w and ∂2L(θ,w)

∂w2 can
be computed by taking the direct derivative

∂J(θ, w)

∂w
= Es∼ρ,a∼πθ(·|s)

[
dQw(s, a)

dw

]
, (20)

and
∂2L(θ, w)

∂w2
= Es∼ρ,a∼πθ(·|s)

[
∂

∂w2
(Qw(s, a)−Qπ(s, a))2

]
(21)

= Es∼ρ,a∼πθ(·|s)

[
2
dQw(s, a)

dw

dQw(s, a)

dw

>

+2(Qw(s, a)−Qπ(s, a))
d2Qw(s, a)

dw2

]
. (22)

To compute ∂2L(θ,w)
∂w∂θ in Eq. (19), we first compute ∂L(θ,w)

∂θ
by the following theorem:
Theorem 1. Given a MDP and actor critic parameters θ, w,

∂L(θ, w)

∂θ
=

∫
τ

(
p(τ0|θ)∇θ log πθ(a0|s0)(Qw(s0, a0)

−Qπ(s0, a0))2 + 2
T∑
t=1

γtp(τ0:t|θ)∇θ log πθ(at|st)

(Qπ(s0, a0)−Qw(s0, a0))Qπ(st, at)

)
dτ. (23)



The proof of Theorem 1 is in Appendix A.1. With this the-
orem, we can compute ∂2L(θ,w)

∂w∂θ by further taking the deriva-
tive of ∂L(θ,w)

∂θ with respect to w. Note that if value function
Vw(s) is used as the critic, ∂L(θ,w)

∂θ can be computed by the
following proposition.
Proposition 1. If the objective of critic is L(θ, w) =

Es∼ρ

[
(Vw(s)− V π(s))2

]
, then

∂L(θ, w)

∂θ
= 2

∫
τ

(
T∑
t=0

γtp(τ0:t|θ)∇θ log πθ(at|st)

(V π(s0)− Vw(s0))Qπ(st)

)
dτ.

(24)

The proof of Proposition 1 is in Appendix A.2.
Once each term in Eq. (19) are computed, STAC performs

the following Stackelberg gradient update (Fiez, Chasnov,
and Ratliff 2020):

θ ← θ + αθ
dJ(θ, w∗(θ))

dθ
, (25)

w ← w − αw
∂L(θ, w)

∂w
. (26)

Note that the actor’s update in Eq. (25) differs from that in
(9) as the actor is reasoning critic’s response of its owner
update. In practice, in order to maintain best response in the
inner level with an iterative optimization algorithm, a num-
ber of unrolling gradient steps of critic update in Eq. (26)
and (10) are performed.

3.1 Hessian Regularization
In Eq. (19), we compute the inverse of critic Hessian
∂2L(θ,w)
∂w2 . However, when the critic parameter w is not in

a neighborhood of critical points, the Hessian matrix might
be ill-conditioned. Depending on the structure of critic ob-
jective L(θ, w) and critic function class Qw(s, a), the Hes-
sian matrix might not be invertible or it may have eigen-
values very close to zero. In STAC, instead of computing
the inverse of the Hessian matrix directly, we compute the
inverse of a regularized Hessian ∂2L(θ,w)

∂w2 + λI . The regu-
larization hyperparameter λ controls the trade-off between
Stackelberg and normal gradient update. When λ → ∞,

the eigenvalues of
(
∂2L(θ,w)
∂w2 + λI

)−1
becomes zero and

the second term in Eq. (19) is erased. Thus, the update in
Eq. (25) becomes equivalent to that in Eq. (9), and STAC
resumes normal actor-critic. When λ = 0, STAC performs
pure Stackelberg gradient update, and when λ takes a posi-
tive number, STAC is a mixture of Stackelberg and normal
gradient update.

4 Experiments
In this section, we evaluate the performance of the STAC
method on OpenAI gym platform (Brockman et al. 2016)

with the Mujoco Physics simulator (Todorov, Erez, and
Tassa 2012). The normal actor-critic (AC in Fig. 1) method
is used as the baseline, where the actor is updated by
GAE (Schulman et al. 2015b) and critic by Monte Carlo
method. For fair comparison, all the hyperparameters in-
cluding actor and critic neural network architectures are set
the same for STAC and AC in all experiments. The actor and
critic are neural networks with two hidden layers of 64× 64
with tanh nonlinear activation functions follows. The only
difference between STAC and AC are the update rules they
adopted as defined in Eq. (25), (26) and Eq. (9) and (10).

The performance is evaluated by average episode return
versus the time steps. The time steps are the number of state
transitions after taking an action according to the policy. One
learning epoch contains a fixed number of time steps, which
may consist of several episodes depending on the environ-
ment. One step actor update and k steps unrolling critic up-
dates are executed after each epoch. Fig. 1 shows the learn-
ing performance on several different environment tasks.

In our experiments, we compare the the performance of
STAC with AC on different tasks as well as different settings
of actor and critic learning rate αθ, αw and critic unrolling
steps k. In CartPole, comparing Fig. 1(a) with 1(b), the actor
learning rate αθ has a significant influence on the conver-
gence speed for both STAC and AC. However, the optimal
actor learning rate is highly dependent on the environment
and if the learning rate is too fast it results in a unstable pol-
icy. The critic learning rate has a smaller effect on the per-
formance comparing Fig. 1(b) with 1(c). Among those three
learning rate settings, 80 steps unrolling overall has better
performance then only one steps critic update. This is due
to the fact that better value function approximation provides
the actor with more accurate policy gradient estimation. In
fact, the small critic learning rate with 1 step update has the
worst performance as shown by the red curve in 1(c).

The performance in Reacher, Hopper, and Walker2d en-
vironments as shown in Fig. 1(d), 1(e), and 1(f) share the
same trend with CartPole that STAC has overall better per-
formance than AC. In all those settings, the overall best per-
formance is achieved by STAC with multiple critic unrolling
steps in all the experiments.

Note that in CartPole environment, we set the regulariza-
tion hyperparameter λ = 0, and in Reacher, Hopper, and
Walker2d, λ = 500. The critic Hessian matrices are not in-
vertible without setting such regularization in the later three
environments. We believe this is due to the fact that the tasks
are more complicated and initial actor and critic parameters
are not in a neighborhood of a critical point. In fact, by set-
ting such regularization, the implicit gradient term of the
Stackelberg gradient is tempered and the performance dif-
ference between STAC and AC are not that significant com-
paring to that without regularization in CartPole.

5 Discussion and Future Work
In this paper we revisit the standard actor-critic algorithm
from a game-theoretic perspective and formulate the prob-
lem as a Stackelberg game to capture the hierarchical in-
teraction structure. This formulation is characterized by the
actor seeking to solve a bilevel optimization problem in
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(a) CartPole, αθ = 0.1, αw = 0.01
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(b) CartPole, αθ = 0.05, αw = 0.01
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(c) CartPole, αθ = 0.05, αw = 0.001

0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Time Stpes 1e6

50

45

40

35

30

25

20

15

10

A
ve

ra
ge

 R
et

ur
n

(d) Reacher

0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Time Stpes 1e6

0

20

40

60

80

100

120

140

160
A

ve
ra

ge
 R

et
ur

n

(e) Hopper

0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Time Stpes 1e6

0

20

40

60

80

100

120

140

A
ve

ra
ge

 R
et

ur
n

(f) Walker2d

Figure 1: Comparison of STAC with normal actor-critic (AC) method on different tasks and learning rate settings. k represents
the unrolling gradient update steps of the follower (critic).

which the objective is a function of the critic’s parameters
and the critic responds optimally with respect to its own pa-
rameters. To solve this problem with a gradient-based learn-
ing method, we extend the Stackelberg gradient update pro-
posed by Fiez, Chasnov, and Ratliff (2020) to the reinforce-
ment learning framework for the actor to follow, whereas
the critic employs a standard gradient update. The novel
Stackelberg actor-critic algorithm we propose outperforms
the standard actor-critic algorithm in a number of environ-
ments as demonstrated in our experiments.

We believe the game-theoretic perspective of reinforce-
ment learning presented in this paper can be extended to a
broader range of algorithms and in future work we aim to
provide a general Stackelberg learning meta-framework for
any actor-critic based method. This will enable us to com-
bine the Stackelberg gradient update with more advanced
actor-critic methods such as DDPG (Lillicrap et al. 2015)
and soft actor-critic (Haarnoja et al. 2018).

Another future direction we are pursuing is to switch the
order of the leader and follower in general actor-critic based
methods. When the actor is the leader such as in this paper,
the learning procedure is in the form of a generalized policy
iteration procedure (Sutton and Barto 2018). The critic is in-
tended to perform policy evaluation and provide guidance
for policy improvement. On the other hand, if the critic is
the leader, the learning leans toward value-based methods,
where the actor is intended to take actions that maximize

the Q function in each iteration. We believe the comparison
between the choice of roles for the actor and critic can pro-
vide insights into the trade-off between policy-based meth-
ods and value-based methods in reinforcement learning.

In future work, we plan to explore methods for decaying
the amount of regularization in the Stackelberg gradient up-
date. As shown in Section 4, regularization is necessary in
some tasks where the critic problem is ill-conditioned and
this often occurs when learning begins and the algorithm
is far from the neighborhood of an equilibrium. However,
the regularization erases the power of Stackelberg gradient
update and as it grows the performance of the Stackelberg
actor-critic algorithm is closer to that of the normal actor-
critic algorithm. As the learning approaches the neighbor-
hood of an equilibrium, we expect that the regularization
can be decayed as the conditioning of the critic problem
improves. Properly decaying the amount of regularization
has the potential to significantly boost the performance of
the Stackelberg gradient update. From a theoretical perspec-
tive, an interesting direction is to investigate the meaning of
interpolating between equilibrium of the game with that of
the regularized game. We believe a path to understand such
connections is is the proximal equilibrium concept proposed
by Farnia and Ozdaglar (2020), which interpolates between
the set of Nash and Stackelberg equilibrium as a function of
the regularization. We aim to design heuristics for decaying
the regularization based on this theory.



A Appendix

A.1 Proof of Theorem 1

Proof. We derive ∂L(θ,w)
∂θ here. According to the definition of L(θ, w) in Eq. (14),

∂L(θ, w)

∂θ
=

∂

∂θ

∫
s0

ρ(s0)

∫
a0

πθ(a0|s0) (Qw(s0, a0)−Qπ(s0, a0))2 da0ds0 (27)

=

∫
s0

ρ(s0)

∫
a0

dπθ(a0|s0)
dθ

(Qw(s0, a0)−Qπ(s0, a0))2 da0ds0

+

∫
s0

ρ(s0)

∫
a0

πθ(a0|s0)
d

dθ
(Qw(s0, a0)−Qπ(s0, a0))2 da0ds0 (28)

=

∫
s0

ρ(s0)

∫
a0

πθ(a0|s0)∇θ log πθ(a0|s0) (Qw(s0, a0)−Qπ(s0, a0))2 da0ds0

+ 2

∫
s0

ρ(s0)

∫
a0

πθ(a0|s0) (Qπ(s0, a0)−Qw(s0, a0))
dQπ(s0, a0)

dθ
da0ds0. (29)

Now we compute dQπ(s0,a0)
dθ in Eq. (29). Using Eq. (1) and (2), which define Qπ(s, a) and V π(s), we have

Qπ(s, a) = r(s, a) + γ

∫
s′
P (s′|s, a)V π(s′)ds′, (30)

V π(s) =

∫
a

πθ(a|s)Qπ(s, a)da. (31)

Hence, the gradient of the value function is

dQπ(s0, a0)

dθ
= γ

∫
s1

P (s1|s0, a0)
dV π(s1)

dθ
ds1 (32)

= γ

∫
s1

P (s1|s0, a0)
∫
a1

(
dπθ(a1|s1)

dθ
Qπ(s1, a1) + πθ(a1|s1)

dQπ(s1, a1)

dθ

)
da1ds1 (33)

= γ

∫
s1

P (s1|s0, a0)
∫
a1

πθ(a1|s1)∇θ log πθ(a1|s1)Qπ(s1, a1)da1ds1

+ γ2
∫
s1

P (s1|s0, a0)
∫
a1

πθ(a1|s1)
∫
s2

P (s2|s1, a1)
dV π(s2)

dθ
ds2da1ds1 (34)

= γ

∫
s1

P (s1|s0, a0)
∫
a1

πθ(a1|s1)∇θ log πθ(a1|s1)Qπ(s1, a1)da1ds1

+ γ2
∫
s1

P (s1|s0, a0)
∫
a1

πθ(a1|s1)
∫
s2

P (s2|s1, a1)
∫
a2

πθ(a2|s2)∇θ log πθ(a2|s2)Qπ(s2, a2)da2ds2da1ds1

+ γ3
∫
s1

P (s1|s0, a0)
∫
a1

πθ(a1|s1)
∫
s2

P (s2|s1, a1)
∫
a2

πθ(a2|s2)
∫
s3

P (s3|s2, a2)
dV π(s3)

dθ
ds3da2ds2da1ds1 (35)

= γ

∫
τ

p(τ1:1|θ)∇θ log πθ(a1|s1)Qπ(s1, a1)dτ1:1

+ γ2
∫
τ

p(τ1:2|θ)∇θ log πθ(a2|s2)Qπ(s2, a2)dτ1:2

+ . . . (36)

=

∫
τ

T∑
t=1

γtp(τ1:t|θ)∇θ log πθ(at|st)Qπ(st, at)dτ. (37)



The result in Eq. (37) is obtained by unrolling and marginalisation for the entire length of the trajectory. Substitute Eq. (37) into
Eq. (29), we have

∂L(θ, w)

∂θ
=

∫
s0

ρ(s0)

∫
a0

πθ(a0|s0)∇θ log πθ(a0|s0) (Qw(s0, a0)−Qπ(s0, a0))2 da0ds0

+ 2

∫
s0

ρ(s0)

∫
a0

πθ(a0|s0) (Qπ(s0, a0)−Qw(s0, a0))
dQπ(s0, a0)

dθ
da0ds0 (38)

=

∫
τ

p(τ0|θ)∇θ log πθ(a0|s0) (Qw(s0, a0)−Qπ(s0, a0))2

+ 2
T∑
t=1

γtp(τ0:t|θ)∇θ log πθ(at|st) (Qπ(s0, a0)−Qw(s0, a0))Qπ(st, at)dτ. (39)

A.2 Proof of Proposition 1
Proof. According to the critic objective definition L(θ, w) = Es∼ρ

[
(Vw(s)− V π(s))2

]
,

∂L(θ, w)

∂θ
=

∫
s0

ρ(s0)
∂

∂θ
(Vw(s0)− V π(s0))2ds0 (40)

= 2

∫
s0

ρ(s0)(V
π(s0)− Vw(s0))

dV π(s0)

dθ
ds0. (41)

Now we compute dV π(s0)
dθ in Eq. (41). Use the result of Eq. (37), we have

dV π(s0)

dθ
=

∫
a0

dπθ(a0|s0)
dθ

Qπ(s0, a0) + πθ(a0|s0)
dQπ(s0, a0)

dθ
da0 (42)

=

∫
τ

πθ(a0|s0)

(
∇θ log πθ(a0|s0)Qπ(s0, a0) +

T∑
t=1

γtp(τ1:t|θ)∇θ log πθ(at|st)Qπ(st, at)

)
dτ. (43)

Substitute Eq. (43) into Eq. (41), we have

∂L(θ, w)

∂θ
= 2

∫
τ

T∑
t=0

γtp(τ0:t|θ)∇θ log πθ(at|st) (V π(s0)− Vw(s0))Qπ(st)dτ. (44)
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