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Abstract

Contemporary work on learning in continuous
games has commonly overlooked the hierarchi-
cal decision-making structure present in machine
learning problems formulated as games, instead
treating them as simultaneous play games and
adopting the Nash equilibrium solution concept.
We deviate from this paradigm and provide a com-
prehensive study of learning in Stackelberg games.
This work provides insights into the optimization
landscape of zero-sum games by establishing con-
nections between Nash and Stackelberg equilibria
along with the limit points of simultaneous gra-
dient descent. We derive novel gradient-based
learning dynamics emulating the natural structure
of a Stackelberg game using the implicit function
theorem and provide convergence analysis for de-
terministic and stochastic updates for zero-sum
and general-sum games. Notably, in zero-sum
games using deterministic updates, we show the
only critical points the dynamics converge to are
Stackelberg equilibria and provide a local conver-
gence rate. Empirically, our learning dynamics
mitigate rotational behavior and exhibit benefits
for training generative adversarial networks com-
pared to simultaneous gradient descent.

1. Introduction

The emerging coupling between game theory and machine
learning can be credited to the formulation of learning
problems as interactions between competing objectives and
strategic agents. Indeed, generative adversarial networks
(GANS) (Goodfellow et al., 2014), robust supervised learn-
ing (Madry et al., 2018), reinforcement and multi-agent
reinforcement learning (Dai et al., 2018; Zhang et al., 2019),
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and hyperparameter optimization (Maclaurin et al., 2015)
problems can be cast as zero-sum or general-sum continu-
ous action games. To obtain solutions in a tractable manner,
gradient-based algorithms have gained attention.

Given the motivating applications, much of the contem-
porary work on learning in games has focused on zero-
sum games with non-convex, non-concave objective func-
tions and seeking stable critical points or local equilib-
ria. A number of techniques have been proposed includ-
ing optimistic and extra-gradient algorithms (Daskalakis
et al., 2018; Daskalakis & Panageas, 2018; Mertikopoulos
et al., 2019), gradient adjustments (Balduzzi et al., 2018;
Mescheder et al., 2017), and opponent modeling meth-
ods (Zhang & Lesser, 2010; Foerster et al., 2018; Letcher
et al., 2019; Schifer & Anandkumar, 2019). However, only
a select number of algorithms can guarantee convergence
to stable critical points satisfying sufficient conditions for
a local Nash equilibrium (LNE) (Mazumdar et al., 2019;
Adolphs et al., 2019).

The dominant perspective in machine learning applications
of game theory has been focused on simultaneous play.
However, there are many problems exhibiting a hierarchical
order of play, and in a game theoretic context, such problems
are known as Stackelberg games. The Stackelberg equilib-
rium (Von Stackelberg, 2010) solution concept generalizes
the min-max solution to general-sum games. In the simplest
formulation, one player acts as the leader who is endowed
with the power to select an action knowing the other player
(follower) plays a best-response. This viewpoint has long
been researched from a control perspective on games (Basar
& Olsder, 1998) and in the bilevel optimization commu-
nity (Danskin, 1967; 1966; Zaslavski, 2012).

The work from a machine learning perspective on games
with a hierarchical decision-making structure is sparse and
exclusively focuses on zero-sum games. In the most relevant
theoretical work, Jin et al. (2019) show that all stable critical
points of simultaneous gradient descent with a timescale
separation between players approaching infinity satisfy suf-
ficient conditions for a local Stackelberg equilibrium (LSE).
The closest empirical work we are aware of is on unrolled
GANSs (Metz et al., 2017), where the leader (generator) opti-
mizes a surrogate cost function that depends on parameters



Implicit Learning Dynamics in Stackelberg Games

of the follower (discriminator) that have been ‘rolled out’
until an approximate local optimum is reached. This behav-
ior intuitively approximates a hierarchical order of play and
consequently the success of the unrolling method as a train-
ing mechanism provides some evidence supporting the LSE
solution concept. In this paper, we provide a step toward
bridging the gap between theory and practice along this
perspective by developing implementable learning dynam-
ics with convergence guarantees to critical points satisfying
sufficient conditions for a LSE.

Contributions. Motivated by the lack of algorithms focus-
ing on games exhibiting an order of play, we provide a study
of learning in Stackelberg games including equilibria char-
acterization, novel learning dynamics and convergence anal-
ysis, and an illustrative empirical study. The primary bene-
fits of this work to the community include an enlightened
perspective on the consideration of equilibrium concepts
reflecting the underlying optimization problems present in
machine learning applications formulated as games and an
algorithm that provably converges to critical points satisfy-
ing sufficient conditions for a LSE in zero-sum games.

We provide a characterization of LSE via sufficient condi-
tions on the players objectives and term points satisfying
the conditions differential Stackelberg equilibria (DSE). We
show DSE are generic amongst LSE in zero-sum games. This
means except on a set of measure zero in the class of zero-
sum continuous games, DSE and LSE are equivalent. While
the placement of differential Nash equilibria (DNE) amongst
critical points in continuous games is reasonably well un-
derstood, an equivalent statement cannot be made regarding
DSE. Accordingly, we draw connections between the so-
lution concepts in the class of zero-sum games. We show
that DNE are DSE, which indicates the solution concept in
hierarchical play games is not as restrictive as the solution
concept in simultaneous play games. Furthermore, we re-
veal that there exist stable critical points of simultaneous
gradient descent dynamics that are DSE and not DNE. This
insight gives meaning to a broad class of critical points pre-
viously thought to lack game-theoretic meaning and may
give some explanation for the adequacy of solutions not
satisfying sufficient conditions for LNE in GANs. To charac-
terize this phenomenon, we provide necessary and sufficient
conditions for when such points exist.

We derive novel gradient-based learning dynamics emulat-
ing the natural structure of a Stackelberg game from the
sufficient conditions for a LSE and the implicit function
theorem. The dynamics can be viewed as an analogue to
simultaneous gradient descent incorporating the structure
of hierarchical play games. In stark contrast to the simul-
taneous play counterpart, we show in zero-sum games the
only stable critical points of the dynamics are DSE and such
equilibria must be stable critical points of the dynamics. Us-

ing this fact and saddle avoidance results, we show the only
critical points the discrete time algorithm converges to given
deterministic gradients are DSE and provide a local conver-
gence rate. In general-sum games, we cannot guarantee the
only critical point attractors of the deterministic learning
algorithms are DSE. However, we give a local convergence
rate to critical points which are DSE. For stochastic gradi-
ent updates, we obtain analogous convergence guarantees
asymptotically for each game class.

Empirically, we show that our dynamics result in stable
learning compared to simultaneous gradient dynamics when
training GANs. To gain insights into the placement of DNE
and DSE in the optimization landscape, we analyze the eigen-
values of relevant game objects and observe convergence
to neighborhoods of equilibria. Finally, we show that our
dynamics can scale to computationally intensive problems.

2. Preliminaries

We now formalize the games we study, present equilibrium
concepts accompanied by sufficient condition characteriza-
tions, and formulate Stackelberg learning dynamics.

2.1. Game Formalisms

Consider a non-cooperative game between two agents where
player 1 is deemed the leader and player 2 the follower. The
leader has cost f; : X — R and the follower has cost
fo: X — R, where X = X; x Xo € R™ with X; € R™
and X, € R™2 denoting the action spaces of the leader
and follower, respectively.! We assume throughout that
each f; is sufficiently smooth: f; € C9(X,R) for some
q > 2. For zero-sum games, the game is defined by costs
(f1, f2) = (f,—f)- In words, we consider the class of two-
player smooth games on continuous, unconstrained actions
spaces. The designation of ‘leader’ and ‘follower’ indicates
the order of play between the agents, meaning the leader
plays first and the follower second.

In a Stackelberg game, the leader and follower aim to solve
the following optimization problems, respectively:

. . L
mllrg)rgl{ﬁ(thz)\ T2 € arg min fo(z1,9)}, (L)

min fo(x1,x2). (F)

T2 €Xo

This contrasts with a simultaneous play game in which
each player 7 is faced with the optimization problem
ming,ex, fi(zi,2_;). The learning algorithms we formu-
late are such that the agents follow myopic update rules
which take steps in the direction of steepest descent for the
respective optimizations problems.

'Our results hold more generally for action spaces that are
precompact subsets of the Euclidean space since they are local.
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2.2. Equilibria Concepts and Characterizations

Before formalizing learning rules, let us first discuss the
equilibrium concept studied for simultaneous play games
and contrast it with that which is studied in the hierarchi-
cal play counterpart. The typical equilibrium notion in
continuous games is the pure strategy Nash equilibrium in
simultaneous play games and the Stackelberg equilibrium
in hierarchical play games. Each notion of equilibria can
be characterized as the intersection points of the reaction
curves of the players (Basar & Olsder, 1998). We focus our
attention on local notions of the equilibrium concepts as is
standard in learning in games since the objective functions
we consider need not be convex or concave.

Definition 1 (Local Nash (LNE)). The joint strategy z* € X
is a local Nash equilibrium on Uy x Us C X1 X Xo if for
eachi € {1,2}, fi(z*) < fi(xs,2*,), Vo, € U; C X,

K2

Definition 2 (Local Stackelberg (LSE)). Consider U; C
X; for each i € {1,2}. The strategy x; € U, is a local
Stackelberg solution for the leader if, Vx, € Uy,

SupmgGRUz (IT) f1 (‘rik’ xQ) S Supr’QeRUz (971) fl (x17 1'2),

where Ry, (x1) = {y € Us|fo(x1,y) < fa(x1,22), VX €
Us}. Moreover, (x7,x%) for any x5 € Ry, (x7) is a local
Stackelberg equilibrium on Uy x Us,.

While characterizing existence of equilibria is outside
the scope of this work, we remark that Nash equilibria
exist for convex costs on compact and convex strategy
spaces and Stackelberg equilibria exist on compact strategy
spaces (Basar & Olsder, 1998, Thm. 4.3, Thm. 4.8, & §4.9).
This means the class of games on which Stackelberg equi-
libria exist is broader than on which Nash equilibria exist.
Existence of local equilibria is guaranteed if the neighbor-
hoods and cost functions restricted to those neighborhoods
satisfy the assumptions of the cited results.

Predicated on existence, equilibria can be characterized in
terms of sufficient conditions on player costs. We denote
D; f; as the derivative of f; with respect to z;, D;; f; as the
partial derivative of D; f; with respect to x;, and D(-) as the
total derivative.> The following gives sufficient conditions
for a LNE as given in Definition 1.

Definition 3 (Differential Nash (DNE) Ratliff et al. (2016)).
The joint strategy x* € X is a differential Nash equilibrium
if D; fi(x*) = 0 and D? f;(z*) > 0 for each i € {1,2}.

Analogous sufficient conditions can be stated to character-
ize a LSE from Definition 2. Towards this end, given a
point z* at which Dy fo(2*) = 0 and det(D3 fo(z*)) # 0,
the implicit function theorem (Abraham et al., 1988, Thm.
2.5.7) implies that there exists a neighborhood U; and

2Example: given f(x,7(x)), Df = D1f 4+ Dr' Daf.

an implicit map r : x; — x2 defined on U;. Further,
Dr = —(D3f3)~! o Doy f2. Note that det(D3 f2(z)) # 0
is a generic condition (cf. Lemma C.3). Let D f1(x1,7(z1))
be the total derivative of f; and analogously, let D? f; be
the second-order total derivative.

Definition 4 (Differential Stackelberg (DSE)). The joint
strategy x* = (x%,x3) € X is a differential Stackelberg
equilibrium if D fi(z*) = 0, Dafao(z*) = 0, D2 f1(z*) >
0, and D3 fa(z*) > 0.

Game Jacobians play a key role in determining stability of
critical points. For simultaneous play, let

w(z) = (D1f1(x), D2 fa(7))

be the vector of individual gradients and

ws () = (Df1(x), Dy fa(x))

as the equivalent for the Stackelberg game. Observe that
D f; is the total derivative of f; with respect to x1 given
x9 is implicitly a function of x1, capturing the fact that the
leader operates under the assumption that the follower will
play a (local) best response to x;. The reaction curve of the
follower may not be unique. However, sufficient conditions
on a local Stackelberg solution x—i.e., D fo(x) = 0 and
det(D3fa(z)) # O—guarantee that D f; is well defined
(cf. implicit mapping theorem).

The vector field w(x) forms the basis of the well-studied
simultaneous gradient learning dynamics and the Jacobian
of the dynamics is given by

_[Difi(z)  Diafi(x)
(@) = {D211f2(5€) D%h(@} ’

Similarly, the vector field ws(x) serves as the foundation
of the learning dynamics we formulate in Section 2.4 and
analyze throughout. The Jacobian of the Stackelberg vector
field ws(x) is given by

JS(I) _ {Dl(Dfl(w))

Da(D fi(x))
Doy fa() ] ' M

D3 fa(x)

A critical point is called non-degenerate if the determinant of
the vector field Jacobian is non-zero. We denote by C° and
CS the open left and right half complex planes. Moreover, a
critical point z* of & = —w(x) is stable if spec(—J (z*)) C
C? or equivalently spec(J(x*)) C C%.. Similarly, a critical
point z* of & = —wg(x) is stable if spec(—Js(x*)) C C
or equivalently spec(Js(z*)) C C3.

Noting that the Schur complement of Js(z) with respect to
D3 fo(z) is identically D? f(z1,r(21)), we give alternative
but equivalent sufficient conditions as those in Definition 4
in terms of Js(x). For a two-by-two block matrix such as
Js, we denote by S;(Js) the Schur complement of Js with
respect to D3 fo. The proof of the following result is in
Appendix B.
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Proposition 1. Consider a game (f1, f2) defined by f; €
CUX,R), i = 1,2 with ¢ > 2 and player 1 (without
loss of generality) taken to be the leader. Let x* satisfy
Do fo(z*) = 0 and D3 fo(x*) > 0. Then Dfi(z*) = 0
and 31(Js(x*)) > 0 if and only if x* is a DSE. Moreover,
in zero-sum games, S1(Js(x)) = S1(J(z)).

2.3. Genericity and Structural Stability

A natural question is how common is it for local equilibria to
satisfy sufficient conditions, meaning in a formal mathemat-
ical sense, what is the gap between necessary and sufficient
conditions in games. Towards addressing this, it has been
shown that DNE are generic amongst LNE and structurally
stable in the classes of zero-sum and general-sum contin-
uous games, respectively (Ratliff et al., 2016; Mazumdar
& Ratliff, 2019). The results say that except on a set of
measure zero in each class of games, DNE = LNE and the
equilibria persist under sufficiently smooth perturbations to
the costs. We give analogous results for DSE in the class
of zero-sum games in this section and provide proofs in
Appendix C. The following result allows us to conclude that
for a generic zero-sum game, DSE = LSE.

Theorem 1. For the class of two-player, zero-sum contin-
uous games (f,—f) where f € C1(R™,R) with q > 2,
DSE are generic amongst LSE. That is, given a generic
f € CY(R™,R), all LSE of the game (f, —f) are DSE.

A critical point z* of the vector field ws(z) is hyperbolic
if there are no eigenvalues of Js(z*) with zero real part.
We now show that in generic zero-sum games, LSE are
hyperbolic critical points of the vector field ws (), which is
desirable property owing to the convergence implications.

Corollary 1. For the class of two-player, zero-sum continu-
ous games (f, —f) where f € C1(R™, R) with ¢ > 2, LSE
are generically non-degenerate, hyperbolic critical points
of the vector field ws(x).

As a final result in this section, we show that DSE are struc-
tural stable in the class of zero-sum games. Structural stabil-
ity ensures that differential Stackelberg equilibria are robust
and persist under smooth perturbations.

Theorem 2. For the class of two-player, zero-sum contin-
uous games (f,—f) where f € C1(R™,R) with q > 2,
DSE are structurally stable: given f € C1(R™* x R™2 R),
¢ € C1R™ xR™2 R), and a DSE (21, x2) € R™ xR™2,
there exists neighborhoods U C R of zero and V. C
R™1 x R™2 such that V' t € U there exists a unique DSE
(Z1,Z2) € V for the zero-sum game (f + t(, —f — tC).

Before moving on, we remark that important classes of
non-generic games certainly exist. In games where the cost
function of the follower is bilinear, LSE can exist which do
not satisfy the sufficient conditions outlined in Definition 4.

Algorithm 1 Deterministic Stackelberg Learning Dynamics

1: Imput: z9 € X, learning rates y;,vy2 > 0
:fork=0,1,... do
ws,1 4 D1fi(zx) — Da1 fowx) " (D3 fo(x)) " D2 fi(xk)
ws,2 < Dafa(zy)
T1,k+1 € T1,k — Y1WS,1
T2 k+1 € T2,k — Y2WS,2
end for

AR A R

As a simple example, 2* = (0, 0) is a LSE for the zero-sum
game defined by f(x1,22) = x122 and not a DSE since
D3fs(z) = 0V o € X. Since such games belong to a
degenerate class in the context of the genericity result we
provide, they naturally deserve special attention and algo-
rithmic methods. While we do not focus our attention on
this class of games, we do propose some remedies to allow
our proposed learning algorithm to successfully seek out
equilibria in them. In the experiments section, we discuss
a regularized version of our dynamics that injects a small
perturbation to cure degeneracy problems leveraging the
fact that DSE are structurally stable. Further details can be
found in Appendix H.1. Finally, for bimatrix games with
finite actions it is common to reparameterize the problem
using a softmax function to obtain mixed policies on the
simplex (Fudenberg et al., 1998). We explore this viewpoint
in Appendix H.3 on a parameterized bilinear game.

2.4. Stackelberg Learning Dynamics

Recall that ws(z) = (D f1(x), D2 fo(x)) is the vector field
for Stackelberg games and it, along with its Jacobian Js(x),
characterize sufficient conditions for a DSE. Letting ws
be the i—th component of wg, the leader total derivative is
ws1(x) = Difi(x) — Dayfa(x) " (D3 fa(x)) " Dafi(x).
The Stackelberg learning rule we study for each player in
discrete time is given by

Ti k1 = Tisk — Vi khs,i(Tk)- ()

In deterministic learning players have oracle gradient access
so that hs ;(x) = ws ;(x). We study convergence for deter-
ministic learning in Section 4.1 and Algorithm 1 provides ex-
ample pseudocode. In stochastic learning players have unbi-
ased gradient estimates and hs ;(zx) = ws,i(Tk) + Wet1,i
where {w; 1} is player i’s noise process. We provide con-
vergence analysis for stochastic learning in Section 4.2.

3. Implications for Zero-Sum Settings

Before presenting convergence analysis of the update in
(2), we draw connections between Nash and Stackelberg
equilibria in zero-sum games and discuss the relevance to
applications such as adversarial learning. To do so, we evalu-
ate the limiting behavior of the dynamics from a continuous
time viewpoint since the discrete time system closely ap-
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proximates this behavior for suitably selected learning rates.
While we provide the intuition behind the results here, the
formal proofs of the results are in Appendix D.

Let us first show that for zero-sum games, all stable critical
points of & = —wgs(z) are DSE and vice versa.

Proposition 2. In zero-sum games (f,—f) with [ €
C1UX,R) for g > 2, a joint strategy © € X is a stable
critical point of © = —ws(x) if and only if x is a DSE.
Moreover, if f is generic, a point x is a stable critical point
of t = —ws(x) if and only if it is a LSE.

The result follows from the structure of the Jacobian of
ws(x), which is lower block triangular with player 1 and
2 as the leader and follower, respectively. Proposition 2
implies that with appropriate stepsizes the update rule in (2)
will only converge to Stackelberg equilibria and thus, unlike
simultaneous gradient descent, will not converge to spurious
locally asymptotically stable points that lack game-theoretic
meaning (see, e.g., Mazumdar et al. (2020)).

This previous result begs the question of which stable critical
points of the dynamics & = —w(x) are DSE? The following
gives a partial answer to the question and also indicates that
recent works seeking DNE are also seeking DSE.

Proposition 3. In zero-sum games (f,—f) with [ €
C(X,R) for g > 2, DNE are DSE. Moreover; if f is generic,
LNE are LSE.

This result follows from the facts that the conditions of
a DNE imply S;(J(z)) > 0 and that non-degenerate DNE
are generic amongst LNE within the class of zero-sum
games (Mazumdar & Ratliff, 2019). In the zero-sum set-
ting, the fact that Nash equilibria are a subset of Stackelberg
equilibria for finite games is well-known (Basar & Olsder,
1998). We extend this result locally to continuous action
space games. Similar to our work and concurrently, Jin et al.
(2019) show that LNE are local min-max solutions.

In Proposition D.1 of Appendix D, we show the previous
results imply all DNE are stable critical points of both & =
—w(x) and & = —wg(x). This leaves the question of the
meaning of stable points of & = —w(x) which are not DNE.

Finding Meaning in Spurious Stable Critical Points. We
focus on the question of when stable fixed points of & =
—w(x) are DSE and not DNE. It was shown by Jin et al.
(2019) that not all stable points of & = —w(z) are local
min-max or local max-min equilibria since one can con-
struct a function such that D? f(x) and — D3 f(z) are both
not positive definite but the real parts of the eigenvalues
of J(x) are positive. It appears to be much harder to char-
acterize when a stable critical point of & = —w(x) is not
a DNE but is a DSE since it requires the follower’s individ-
ual Hessian to be positive definite. Indeed, it reduces to a
fundamental problem in linear algebra in which the relation-

—
2 —— simgrad
o Tstack
0 - DSE/Non-Nash
DSE & DNE

x> (player 2's action)

-10

“12i5 10 -5 0 5

5 10 15
X1 (player 1's action)

Figure 1. Example demonstrating existence of DSE and DSE that
are not DNE: G = (f, —f) where f is defined in (3) with a =
0.15,b = 0.25. There are two stable points of simultaneous
gradient descent which are DSE, but not DNE.

ship between the eigenvalues of the sum of two matrices is
largely unknown without assumptions on the structure of
the matrices (Knutson & Tao, 2001).

In Appendix E, we provide necessary and sufficient condi-
tions for attractors at which the follower’s Hessian is positive

definite to be DSE. Taking intuition from the expression

S1(J(x)) = Dif(x) — Darf(w) " (D3f(2)) " Dar f (),
the conditions are derived from relating spec(D?f) to

spec(D3 f) via Dy, f. To illustrate this fact, consider the fol-
lowing example in which stable points are DSE and not DNE—
meaning points x € X at which D? f(x) # 0, —D3 f(z) >

0 and spec(—J(z*)) C C2 and S;(J(x)) > 0.

Example: Non-Nash Attractors are Stackelberg. Con-
sider the zero-sum game defined by

fz) =

Let player 1 be the leader who aims to minimize f with re-
spect to x; taking into consideration that player 2 (follower)
aims to minimize — f with respect to zo. In Fig. 1, we show
the trajectories for different initializations for this game; it
can be seen that simultaneous gradient descent can lead to
stable critical points which are DSE and not DNE. In fact, it
is the case that all stable critical points with —D3 f(z) > 0
are DSE in games on R? (see Corollary E.1, Appendix E).

—e D (a0} 4 )’ + (b2 + 1)) B)

This example, along with Propositions E.1 and E.2 in Ap-
pendix E, implies some stable critical points of & = —w(x)
which are not DNE are in fact DSE. This is a meaningful
result since recent works have proposed schemes to avoid
stable critical points which are not DNE as they have been
thought to lack game-theoretic meaning (Adolphs et al.,
2019; Mazumdar et al., 2019). Moreover, some recent em-
pirical studies show a number of successful approaches to
training GANSs do not converge to DNE, but rather to stable
fixed points of the dynamics at which the follower is at
a local optimum (Berard et al., 2020). This may suggest
reaching DSE is desirable in GANS.

The ‘realizable’ assumption in the GAN literature says the
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discriminator network is zero near an equilibrium parameter
configuration (Nagarajan & Kolter, 2017). The assumption
implies the Jacobian of & = —w(x) is such that D? f(x) =
0. Under this assumption, we show stable critical points
which are not DNE are DSE given —D3 f(x) > 0.

Proposition 4. Consider a zero-sum GAN satisfying the
realizable assumption. Any stable critical point of © =
—w(z) at which —D3 f (x) > 0 is a DSE and a stable critical
point of & = —ws(x).

4. Convergence Analysis

In this section, we provide convergence guarantees for both
the deterministic and stochastic settings. In the former, play-
ers have oracle access to their gradients at each step while in
the latter, players are assumed to have an unbiased estimator
of the gradient appearing in their update rule. Proofs of the
deterministic results can be found in Appendix F and the
stochastic results in Appendix G.

4.1. Deterministic Setting

Consider the deterministic Stackelberg update

Tpy1 = Tp — NWs, (Tr) 4

where ws_(xy) is the m-dimensional vector with entries
Dy fi(xx) — D3y fa(ak) (D3 fa(wr)) ' Dafizr) € R™
and 7Ds fo(x)) € R™2, and 7 = 72/71 is the “timescale”
separation. We refer to (4) as the 7-Stackelberg update. The
Jacobian of ws_(x) is denoted Js_(x); it is equivalent to
Js with the mo X m block row multiplied by 7.

To get convergence guarantees, we apply well known results
from discrete time dynamical systems. For a dynamical sys-
tem x,11 = F(xy), when the spectral radius p(DF (z*)) of
the Jacobian at fixed point is less than one, F'is a contraction
at z* so that z* is locally asymptotically stable (cf. Propo-
sition F.1, Appendix F). In particular, p(DF(z*)) < c < 1
implies that |[DF|| < ¢+ & < 1fore > 0 on a neigh-
borhood of z* (Ortega & Rheinboldt, 1970, 2.2.8). Hence,
Proposition F.1 implies that if p(DF(z*)) =1 -k < 1
for some &, then there exists a ball B, (z*) of radius p > 0
such that for any z¢ € B,(z*), and some constant & > 0,
ok — a*[la < K(1 = §)*||zo — a*[|2 using e = §.

For a zero-sum setting defined by cost function f €
CY(X,R) with ¢ > 2, recall that $1(J(x)) = Dif(z) —
Doy f(z) T (D2 f(x)) "1 Dy f(x) is the first Schur comple-
ment of the Jacobian J(z).

Theorem 3 (Zero-Sum Rate of Convergence.). Con-
sider a zero-sum game defined by f € CI(X,R)
with ¢ > 2. For a DSE x* with a =
min{Amin (S1(J(2%))), Amin (—=7D3 f(2*))} and B =
max{ Amax (S1(J (%)), Amax (=7 D3 f(z*))} and learn-

ing rate v1 = 1/(2f3), the T—Stackelberg update converges
locally with a rate of O((1 — &)k).

Corollary 2 (Zero-Sum Finite Time Guarantee). Given
€ > 0, under the assumptions of Theorem 3, T-Stackelberg
learning obtains an €-DSE in [% log(||zo — x*||/€)] itera-
tions for any xog € Bs(x*) with § = «/(4LB) where L is
the local Lipschitz constant of I — 1 Js_(x*).

The proofs leverage the structure of the Jacobian Js_, which
is lower block diagonal, along with the above noted result
from dynamical systems theory. The key insight is that at a
given z, the spectrum of Js_(x) is the union of the spectrum
of 81(J(z)) and —7 D3 f(z) for zero-sum settings.

We now show a discrete-time analogue to Proposition 2.

Proposition 5. Consider a zero-sum game defined by
f € CUX,R), ¢ > 2. Suppose that v, < 1/L where
max{spec(S1(J(x))) Uspec(—7D3f(x))} < L. Then, ©
is a stable critical point of T—Stackelberg update if and only
if x is a DSE.

The next result shows that 7-Stackelberg avoids saddle
points almost surely in general-sum games. We remark
that DSE are never saddle points in zero-sum games.

Theorem 4 (Almost Sure Avoidance of Saddles). Consider
a general sum game defined by f; € C1(X,R), ¢ > 2 for
1 = 1,2 and where, without loss of generality, player 1 is the
leader. Suppose that ws_ is L-Lipschitz and that v; < 1/L.
The T—Stackelberg learning dynamics converge to saddle
points of & = —ws_(x) on a set of measure zero.

In the zero-sum setting, ws_ being Lipschitz is equivalent
to max{spec(S1(J(x))) Uspec(—7D3f(x))} < L. The
only critical points of 7-Stackelberg learning in the zero-
sum case are either saddles, unstable points, or DSE which
comprise all the stable critical points due to the structure of
the Jacobian Js_. Consequently, the previous pair of results
imply that the only critical points 7-Stackelberg learning
converges to in zero-sum games are DSE almost surely.

We now provide a convergence guarantee for deterministic
general-sum games. However, the convergence guarantee is
no longer a global guarantee to the set of attractors of which
critical points are DSE since there is potentially stable critical
points which are not DSE. This can be seen by examining
the Jacobian which is no longer lower block triangular.

Given a critical point z*, let o = A2 (3(J4 (a%) +
Js_ (z%))) and B = Aax(Js. (%) T Js. (z%)).

Theorem 5 (General Sum Rate of Convergence). Consider
a general sum game (f1, f2) with f; € C1(X,R), ¢ > 2 for
1 = 1,2 and where, without loss of generality, player 1 is
the leader. For a DSE x* such that J§ (z*) + Js, (x*) > 0,
the T-Stackelberg update with learning rate v1 = \/a /8
converges locally with a rate of O((1 — %)k/z).
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Corollary 3 (General Sum Finite Time Guarantee). Given
€ > 0, under the assumptions of Theorem 5, T—Stackelberg
learning obtains an e-DSE in f% log (||zo — z*|| /)] iter-
ations for any xg € Bs(x*) with § = «/(2LJ3) where L is
the local Lipschitz constant of I — y1Js_ ().

4.2. Stochastic Setting
In the stochastic setting, players use updates of the form

Tikt1 = Tik — Vik(Ws,i(Tk) + Wi g41) (5

where 1, = o(y2,5) and {w; 11} is a stochastic pro-
cess for each ¢ = 1,2. The results in this section as-
sume the following. The maps Df; : R™ — R™1,
Dy fy : R™ — R™2 are Lipschitz, and || D f1]| < oco. For
each i € {1,2}, the learning rates satisfy >, v, x = o0,
>k Vix < co. The noise processes {w  } are zero mean,
martingale difference sequences: given the filtration F;, =
o(zs, w5, w2 s, s < k), {w; i }icz are conditionally inde-
pendent, E[w; 41| Fix] = 0 a.s., and E[||w; 41| Fr] <
¢i(1 + ||zx||) a.s. for some constants ¢; > 0,4 € Z.

The primary technical machinery we use in this section is
stochastic approximation theory (Borkar, 2008) and tools
from dynamical systems. The convergence guarantees in
this section are analogous to that for deterministic learn-
ing but asymptotic in nature. We first provide a non-
convergence guarantee: the dynamics avoid saddle points in
the stochastic learning regime.

Theorem 6 (Almost Sure Avoidance of Saddles.). Consider
a game (f1, f2) with f; € C1{(R™ x R™2,R), ¢ > 2 for
i = 1,2 and where without loss of generality, player 1 is
the leader. Suppose that for each i = 1,2, there exists a
constant b; > 0 such that E[(w; ¢ - v)T|F; +] > b; for every
unit vector v € R™:. Then, Stackelberg learning converges
to strict saddle points of the game on a set of measure zero.

We also give asymptotic convergence results. These re-
sults, combined with the non-convergence guarantee in The-
orem 6, provide a broad convergence analysis for this class
of learning dynamics. Theorem G.3 in Appendix G.3 pro-
vides a global convergence guarantee in general-sum games
to the stable critical point, which may or may not be a
DSE, under assumptions on the global asymptotic stability
of critical points of the continuous time limiting singularly
perturbed dynamical system. In zero-sum games, we know
that the only critical points of the continuous time limiting
system are DSE. Hence, Corollary G.2 in Appendix G.3
gives a global convergence guarantee in zero-sum games to
the DSE under identical assumptions.

Relaxing these assumptions, the following proposition pro-
vides a local convergence result which ensures that sample
points asymptotically converge to locally asymptotic trajec-
tories of the continuous time limiting singularly perturbed
system, and thus to stable DSE.

Theorem 7. Consider a general sum game (f1, f2) with
fi € CUX,R), ¢ > 2 fori = 1,2 and where, without loss
of generality, player 1 is the leader and 1 j, = o(y2,x). Con-
sider a differential Stackelberg equilibrium x* = (x7,x3).
There exists a neighborhood U = Uy x U of x* = (7, x3)
such that for any xo € U, xy converges almost surely to x*.

5. Experiments

We now present experiments showing the role of DSE in the
optimization landscape of GANs and the empirical bene-
fits of training GANSs with Stackelberg learning compared
to simultaneous gradient descent (simgrad). All detailed
experiment information is given in Appendix H.

Example 1: Learning a Covariance Matrix. We consider
a data generating process of x ~ N'(0, ), where the co-
variance X is unknown and the objective is to learn it using
a Wasserstein GAN. The discriminator is configured to be
the set of quadratic functions defined as Dy, (z) = 2" Wz
and the generator is a linear function of random input noise
z ~ N(0,I) defined by Gy (z) = Vz. The matrices W €
R™*™ and V' € R™*™ are the parameters of the discrimi-
nator and the generator, respectively. The Wasserstein GAN
cost for the problem f(V, W) = >, 377 Wi;(3; —
Z;nzl Vit Vji). We consider the generator to be the leader
minimizing f(V,W). The discriminator is the follower
and it minimizes a regularized cost function defined by
—f(V,W) + 2 Te(W W), where n > 0 is a tunable regu-
larization parameter. The game is formally defined by the
costs (f1, f2) = (F(V.W), —f(V,W) + 4 Te(WTW)),
where player 1 is the leader and player 2 is the follower. In
equilibrium, the generator picks V* such that V*(V*) T =
Y and the discriminator selects W* = 0. Further details are
given in Appendix C from Daskalakis et al. (2018).

We compare the deterministic gradient update for Stack-
elberg learning with simultaneous learning, and analyze
the distance from equilibrium as a function of time. We
plot || — V'V ||y for the generator’s performance and
|W + W ||z for the discriminator’s performance in Fig. 2
for varying dimensions m with learning rates y; = v2/4 =
0.01 and a fixed regularization of = 0.5. The covariance
matrix is chosen to be ¥ = UUT + I where U ~ N(0, 1).
We observe that Stackelberg learning converges to an equi-
librium in fewer iterations. For zero-sum games, our theory
provides reasoning for this behavior since at any critical
point the eigenvalues of the game Jacobian are purely real.
This is in contrast to simultaneous gradient descent, whose
Jacobian can admit complex eigenvalues, known to cause
rotational forces in the dynamics.

GAN training details. We now train GANs in which each
player is parameterized by a neural network. The genera-
tor is always taken to be the leader and the discriminator
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the follower in this set of experiments. Moreover, for both
Stackelberg learning and simultaneous gradient descent we
pass the gradient information of each player into the Adam
optimizer (Kingma & Ba, 2015). To ensure the follower’s
Hessian is well-conditioned in the leader update, we regular-
ize the implicit map of the follower so that the leader gradi-
entis given by ws 1 = D1 f1(x)+ Dry(z) " Dy f1(x) where
Dry(z)" = —Day fo(z) " (D3fa(z) + 7][)_1 and 7 is the
regularization parameter. We also employ regularization in
the follower’s implicit map when computing eigenvalues
of D?f,(z) to determine whether an approximate critical
point is in a neighborhood of a DSE. We provide details on
the derivation of the regularized leader update along with a
notion of a regularized DSE and specifics on the eigenvalue
computation in Appendix H.1 and H.2.

Example 2: Learning a Mixture of Gaussians. We train
a GAN to learn a mixture of Gaussian distribution. The
generator and discriminator networks have two and one hid-
den layers, respectively; each hidden layer has 32 neurons.
We train using a batch size of 256, a latent dimension of
16, with decaying learning rates. For both the diamond and
circle configurations, 10 initial seeds were simulated for
each set of learning dynamics and behavior was generally
consistent across them for both algorithms. The experiments
were run for 60,000 batches and the eigenvalues evaluated

at that stopping point. We show detailed information for the
best run of each algorithm in terms of KL-divergence and
in Appendix H.4.1 examine all runs.

Diamond configuration. This experiment uses the satu-
rating GAN objective and Tanh activations. In Fig. 3a-3b
and Fig. 3g-3h we show a sample of the generator and the
discriminator for simgrad and the Stackelberg dynamics at
the end of training. Each learning rule converges so that the
generator can create a distribution that is close to the ground
truth and the discriminator is nearly at the optimal probabil-
ity throughout the input space. In Fig. 3c—3f and Fig. 3i-3I,
we show eigenvalues from the game that present a deeper
view of the convergence behavior. We observe from the
eigenvalues of J that both sets of dynamics converge to
neighborhoods of points that are stable for the simultaneous
dynamics and they appear to be in a neighborhood of a DSE
since the eigenvalues of D? f; and D3 f are nearly all posi-
tive. Interestingly, however, since the eigenvalues of D% f
are nearly all zero and not all positive and this was consis-
tent across the runs, it appears that the result may reflect the
realizable assumption (cf. Sec. 3) as well as convergence
to a DSE that is not a DNE. Given the good generator and
discriminator performance, it is worth further empirical in-
vestigation to determine if DSE that are not DNE are desirable
in GANs and if successful methods reach them.
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Figure 5. Stackelberg learning on the MNIST dataset.

Circle configuration. We demonstrate improved perfor-
mance and stability when using Stackelberg learning dy-
namics in this example. We use ReLU activation functions
and the non-saturating objective and show the performance
in Fig. 4 along the learning path for the simgrad and Stack-
elberg learning dynamics. The former cycles and performs
poorly until the learning rates have decayed enough to sta-
bilize the training process. The latter converges quickly to
a solution that nearly matches the ground truth distribution.
We observed this behavior consistently across the runs. In
a similar fashion as in the covariance example, the leader
update is able to reduce rotations. We show the eigenvalues
after training and see that for this configuration, simgrad
converges to a neighborhood of a DNE and the Stackelberg
dynamics converge again to the neighborhood of a DSE that
is not a DNE. This provides further evidence that DSE may
be easier to reach, and can provide suitable performance.

Example 3: MNIST GAN. To demonstrate that the Stack-
elberg learning dynamics can scale to high dimensional
problems, we train a GAN on the MNIST dataset using
the DCGAN architecture (Radford et al., 2015) adapted to
handle 28 x 28 images. We simulate 10 random seeds and
in Fig. 5¢ show the mean Inception score along the training

process along with the standard error of the mean. The
Inception score is calculated using a LeNet classifier follow-
ing (Berard et al., 2020). We show a real sample in Fig. Sa
and a fake sample in Fig. 5a after 7500 batches from the
run with the fifth highest inception score. The Stackelberg
learning dynamics are able to converge to a solution that
generates realistic handwritten digits and get close to the
maximum inception score in a stable manner. The primary
purpose of this example is to show that the learning dynam-
ics including second order information and an inverse is
not an insurmountable problem for training with millions
of parameters. We detail how the update can be computed
efficiently using Jacobian-vector products and the conjugate
gradient algorithm in Appendix H.2.

6. Conclusion

We study learning dynamics in Stackelberg games. This
class of games pertains to any application in which there
is an order of play. However, the problem has not been
extensively analyzed in the way the learning dynamics of
simultaneous play games have been. Consequently, we are
able to give novel convergence results and draw connections
to existing work focused on learning Nash equilibria.
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