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Abstract: A DRL-based uplink resource allocation algorithm with channel condition and latency awareness
is demonstrated for multi-user RAN. The algorithm is verified experimentally with dynamic RoF-mmWave
channels, achieving 19% reward improvement compared to conventional scheduling schemes.

1. Introduction

5G new radio access network (RAN) is envisioned to support multiple users with applications such as video streaming,
low-latency gaming, and for real-time services including robotics, intelligent factory, telehealth care, etc. 5G is a
service-oriented system, therefore the RAN is anticipated to fulfill the quality-of-service (QoS) requirements of
various applications [1-2]. This will add more challenges to the scheduling and radio resource management (RRM),
with stringent latency requirements and complex QoS objectives. Moreover, millimeter wave (mmWave) links are
implemented for 5G RAN, which can result in dynamic channel conditions that add to the RRM complexity [3]. For
example, mmWave in Frequency Range 2 (FR2, 24.25 to 52.6 GHz) can be more susceptible to line-of-sight (LoS)
blockage with high path loss, as indicated in Fig. 1(a). As a result, resource block (RB) allocation and flow-RB
mapping are required to be adaptive to the dynamically changing channels. In this work, photonic-assisted mmWave
generation is utilized to achieve wide-bandwidth transmission and experimentally verified channel variations.

In RAN, a scheduler can be deployed at the central unit or distributed unit (CU/DU). In each Transmission Time
Interval (TTI), the scheduler must solve a decision-making problem to decide radio resource allocation. In the presence
of multiple UEs, complicated QoS requirements, and dynamic wireless environment in 5G RAN, it is challenging to
obtain an optimal and adaptive solution using the existing rule-based scheduling schemes with a single objective.
Recently, deep reinforcement learning (DRL) has made breakthroughs in fiber-wireless communication systems. In
time-varying networks, DRL has proved to be effective in tackling real-time decision-making problems [4].

In this paper, we incorporate DRL to address the problem of delay and channel condition aware packet scheduling
and RB allocation in the uplinks of service-oriented mmWave RAN. As shown in Fig. 1(a), the system will consider
multi-user multi-service scenarios with different QoS requirements. In contrast to most of the previous DRL-related
works with only simulation validated results, the mmWave channel characteristics utilized in the proposed system are
experimentally investigated and verified via radio-over-fiber (RoF) mobile fronthaul. In this paper, the channel
environment parameters are determined by following 3GPP 5G standards, the implementation of request-grant
scheduling cycle, and dynamic mmWave channels, etc. The proposed DRL-based system can achieve improved QoS
performance when latency and bit-error-rate (BER) are considered simultaneously.
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Fig. 1 (a) System architecture. (b) Uplink scheduling process. (c) An example of flow packet and queue status.

2. System Architecture, DRL Design, and Experimentally Verified mmWave Channels

We consider the uplink transmission of a mmWave remote radio unit (RRU) supported by RoF mobile fronthaul as
shown in Fig. 1(a). The system is flow-oriented and involves multiple users that are using applications with different
QoS requirements. One UE can have multiple active services/flows simultaneously. The packet arrival pattern, QoS
priority, latency budget, and other key flow-specific parameters are summarized in Table 1. The parameter design is
based on [1,3,5]. At each TTI, UEs will firstly request transmission opportunities before data transmission. The
scheduler will process the request and then distribute the grants. Not all requests can be satisfied especially when the
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traffic load is heavy, which may cost additional queuing delay. The UEs will then prepare and send the data packets
in the allocated RBs. Upon receiving the uplink data, the scheduler will check the BER of the received data which
determines whether re-transmission is required. For simplicity, the queuing delay is considered only for the original
data transmission while not for the re-transmission. Guaranteed re-transmission channels are assumed. The request-
grant process is visualized in Fig. 2(b) and the delays of different stages are summarized in Table II. The delay
parameters are based on [6], where 2km standard single-mode fiber (SMF) and 50m wireless distance is assumed.

Table I: Flow Characteristics Table II: Delay Components
Service Type | Priority |UE| Pkt Size | Pkt Interval | Speed (Mbps) | Delay Bdgt. Propagation Delay 9.59us b,d, g i,k
Robotics 30 1 Rand Cont. 300-350 Ims UE Processing 0.32ms ae,j
Video Streaming 56 1 | Log Norm. Poisson 10 Sms Scheduler Processing | 62.98us (14 sym.) c
Gaming/Factory 30 2 | Gaussian Fixed 3 Ims Re-tran Procssing 0.21ms h
Health Care 56 2 Poisson Cont. 300 2ms Queuing Delay Traffic-based f
Table III: Scheduling Policies (Actions) Table IV: OFDM and RG Numerologies
Policy Feature Objective Numerology, u 4 TTI Duration 0.0354ms
Max-SINR Channel Best BER Subc. spacing 240kHz RB size 12 subcs.
Propotional Fair (PF) Channel & Speed Aware Fairness & Throughput Effective subc. # | 840 (/2048) | RG size in freq. | 5RB/60 subc.
LOG Rule (LOG) Channel-Speed-Delay Aware | Fairness & Bounded Delay Effective BW 201.6MHz | RG size intime | 2 sym. dur.
Exponential Rule (EXP) | Channel-Speed-Delay Aware | Fairness & Bounded Delay Sym. # per TTI 8 Modulation QPSK/16Q0AM

At each TTI, the requests of flows, the head-of-line (HoL) latency of queues, the priority level of the flows, and
the channel quality parameters of UEs constitute the states/input features of the DRL agent. The action of the DRL-
based scheduler is to select the optimal scheduling and RB allocation policy for the current TTI. The candidate action
policies are summarized in Table III. Different policies can achieve different scheduling objectives [7]. By choosing
different policies TTI-by-TTI adaptively with respect to the channel and traffic conditions, improved QoS
performance can be achieved, as opposed to using a single policy over the entire process. Note that the action in the
proposed system is not specific RB-flow mapping. In fact, in one of our previous works the DRL action is through
direct RB allocation and mapping, which can lead to extreme computational complexity if used in the complicated
multi-user high-speed mmWave RAN [4]. The reward of the DRL system is designed as follows: at each TTI for each
flow, all packets that have been requested will be categorized to four types as depicted in Fig. 1(c). The reward of

flow m at TT1iis 7(i,m) = 1 — ]]\\;f EZ:Z; - zx:fi(jq’gl), in which N; is the number of scheduled packets whose overall

latency satisfy the delay budget requirements, Ny is the number of scheduled packets whose overall latency exceeds

the delay budget, while N,ris the number of packets in queue waiting to be scheduled with their current latency already

Ny (t,m . . .
exceeding the delay budget. In r(i,m), the second term *% reflects negative feedback if the current scheduling

method results in too large latency, whereas the third term with the weight factor 2 indicates more significant negative
feedback, to prevent latency-failure packets from queuing up and leading to large queuing delay. The overall reward
per TTI will be the weighted sum of all flows: (i) = > w(m)r(i,m), where >, w(m) = 1.
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Fig. 2 (a) Experimental setup. (b) Testbed BER performance versus ROP. (c) SNR per subcarrier of both UEs with I6QAM in different scenarios.

The experimental setup to obtain the channel information is depicted in Fig. 2(a), in which two UEs are accessing
a remote radio unit (RRU) simultaneously. Due to the devices available in our lab, there are two UEs and four flows
in the system without loss of generality. In reality, more UEs can be implemented. UE-flow mapping is indicated in
Table I. For each UE, the signal-to-interference-and-noise ratio (SINR) of each RB will be measured and used as
channel quality parameter for the scheduling processing. For more efficient processing, RBs are grouped as a resource
group (RG) when being allocated. Subcarriers and symbols in one RG have the same QAM modulation. The OFDM
numerology and frame design are based on 3GPP 5G specification [8]. The OFDM and RG numerologies are
summarized in Table IV. The BER versus received optical power (ROP) performance of the testbed is shown in
Fig. 2(b). For the channel characteristics measurement, the testbed is set at the optimal operating condition (ROP
= -1.5dBm). To realize the dynamic channel conditions of mmWave links such as reflection, blockage, and reduced
transmission power, channel variation is introduced for UE2. The channel of UE2 is measured with three conditions:
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1) with LoS link; 2) the link is 1/4 blocked (slightly blocked); 3) the link is 1/2 blocked (severely blocked), while UE1
always has an LoS link. The experimentally measured channel SNR is shown in Fig. 2(c). In the scheduling process,
each channel condition will last for 50 TTIs and randomly switch to the next condition. Different channel conditions
and policy selection will lead to different flow BER performance. Upon decoding the received signals, the scheduler
will check the packet BER per flow. If the BER exceeds the pre-set threshold (6.9 x 10™* in this paper considering
forward error correction [9]), re-transmission will be triggered, and the overall packet latency will become longer.

3. Results and Discussions

We create a deep Q-network (DQN) agent with recurrent neural network (RNN). There are three hidden layers
between the input layer and the output layer: two dense layers and one long short-term memory (LSTM) layer, which
have 30, 20, 16 neurons, respectively. The training discount factor is 0.99. The experience replay length is 10°. The
DRL agent is trained over 1000 episodes with each episode consisting of 1000 TTIs. The convergence plot of the
training process is presented in Fig. 3(a). It can be seen that after around 600-episode training, the reward begins to
converge. The fluctuation of the converged reward is caused by the randomness of traffic pattern as indicated in Table 1.
Generally, the maximum average reward (1000) per episode can be achieved if the traffic is light. However, in that
case, the DRL agent can randomly choose any scheduling policy to fulfill the latency requirement. Therefore, the
traffic load in the paper is set to a heavier case to exploit the advantages of DRL.

The DRL system is tested over 1000 TTIs with randomly generated flow patterns. The reward results are shown
in Fig. 3(b). The case of randomly selecting policies TTI-by-TTI is also presented as a reference. A higher reward
value indicates higher percentages of latency-satisfied packets. It can be seen that the proposed DRL system can
achieve average 1— IX,— =0.87 , indicating the average ratio of latency-satisfied packets

Nf]iSNS = (Nf+11/s)/N5 = Ny /11\75+1 = (170.187)+1 =88.5% However, among single-policy cases, LOG-rule can
achieve the best reward of 0.73. In comparison, the proposed DRL algorithm can achieve 19% reward improvement.

Fig. 3(c) presents the policy selection per TTI with respect to the channel variation of UE2. The blue curve
indicates the SNR fluctuation of UE2, from which it is shown that each channel state lasts for 50 TTIs. As the policy
selection can be jointly affected by channel variation and flow request pattern, it can be seen that the pattern of policy
selection synchronizes well with the channel SNR variation. The results show that the DRL system can react

adaptively with channel condition variations.
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Fig. 3 (a) Reward convergence of the training. (b) Rewards of the test set. (c) UE2 SNR variation and the corresponding policy selection per TT1.
4. Conclusion

A DRL-based scheduler operating with both latency and channel condition awareness is proposed and verified for
service-oriented multi-user mmWave RAN. The DRL system is verified with experimental validation of RoF-
mmWave channel conditions and variations, as well as various service flows with different QoS requirements. Results
show that the proposed DRL system can operate adaptively with channel variations and achieve at least 19% reward
improvement compared to conventional single-rule schemes. The proposed DRL system provides a promising AI/ML-
based technique that are applicable to the upcoming 6G RAN systems.
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