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Abstract—The statistical characterization of the measurement
errors of a phasor measurement unit (PMU) is currently receiving
considerable interest in the power systems community. This paper
focuses on the characteristics of the errors in magnitude and
angle measurements introduced only by the PMU device (called
random errors in this paper), during ambient conditions, using a
high-precision calibrator. The experimental results indicate that
the random errors follow a non-Gaussian distribution. They also
show that the M-class and P-class PMUs have distinct error
characteristics. The results of this analysis will help researchers
design algorithms that account for the non-Gaussian nature of
the errors in synchrophasor measurements, thereby improving
the practical utility of the said-algorithms in addition to building
on precedence for using high-precision calibrators to perform
accurate error tests.

Index Terms—Dynamic tests, Error characterization, Hard-
ware testing, Phasor measurement unit (PMU), Random error.

I. INTRODUCTION

Phasor measurement units (PMUs) measure magnitude,
phase angle, frequency, and rate-of-change-of-frequency (RO-
COF) of electrical signals and play a critical role in real-time
monitoring, protection, and control of modern power systems.
The measurements obtained from PMUs are affected not only
by the PMU device mechanics, but also by other components
in the measurement chain, such as instrument transformers and
cables. As such, PMU errors can be of two types: systematic
and random [1]. Systematic errors occur due to the erratic
behavior of the components present in the measurement chain
(such as current transformer saturation), while random errors
occur due to the PMU device itself (e.g., components internal
to the PMU, response of the PMU to normal changes occurring
in the system). The focus of this paper is on the random errors
of a PMU.

PMUs are being adopted rapidly by utilities and more power
system applications are making use of them to achieve better
performance [2], [3]. Knowledge of the nature of the errors
in PMU measurements is extremely important because by
understanding their statistical characteristics, researchers can
design better algorithms that have more practical utility. The
scope of this research is limited to characterizing the random
errors that occur during ambient conditions (i.e., in absence
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of faults, oscillations, time-synchronization issues, or device
saturation), since a power system stays in this condition most
of the time.

Traditionally, PMU measurement noise was always assumed
to follow a Gaussian distribution. However, there has been
some recent interest in understanding the exact statistical
nature of PMU measurement noises. Brown et al. tried to
quantify the PMU measurement noises using field PMU data
[4]. They conditioned the data, segregated the steady state data,
and used filtering techniques to extract the errors. Studying the
nature of these errors they concluded that it has a zero mean
Gaussian distribution. Later, Wang et al., using redundant field
PMU measurements and employing the fact that the difference
of two random variables following a Gaussian distribution
is a necessary condition for the individual random variables
to be Gaussian, showed that PMU measurement errors do
not necessarily follow a Gaussian distribution [5]. Ahmad et
al. further verified this argument using data driven filtering
techniques [1]. In particular, they used an adaptive moving
window median absolute deviation method to extract the errors
from both synthetic data as well as field data. They concluded
from their analysis that the error followed a 3-component
Gaussian mixture model (GMM) distribution, primarily due
to device saturation.

In this paper, we have used a high precision Fluke calibrator
(Fluke 6135A) [6] to characterize the random errors found in
PMU measurements. Although very expensive, a high preci-
sion calibrator is the best way to extract PMU measurement
errors. This is because it precludes the assumption of presence
of a calibrated PMU at every substation, which is employed
in many state-of-the-art error extraction techniques [1], [5].

The focus of this paper is on discovering error distribu-
tions during ambient system conditions. Therefore, the slowly
changing dynamics of the power system as specified in the
IEEE C37.118.1-2011 Standard [7] were applied to the device-
under-test (DUT). The analysis was carried out for a P-class
PMU as well as an M-class PMU using normality tests as
well as more quantitative metrics (higher-order moments).
The results indicate that even under ambient conditions, the
random errors in P-class and M-class PMUs have a distinct
non-Gaussian error distribution.

The rest of the paper is structured as follows. Section II
describes the mathematical basis for this work. Sections III



and IV explain the test setup and results, respectively. The
conclusion and future scope are identified in Section V.

II. MATHEMATICAL BACKGROUND
A. Dynamic Tests

In this research, three dynamic tests described in the IEEE
C37.118.1-2011 Standard [7], namely, the amplitude modu-
lation (AM) test, the phase modulation (PM) test, and the
frequency ramp (FR) test, have been carried out, and the
statistical analysis of the extracted errors have been reported.

The signal for the AM and PM tests for the a-phase can be
mathematically represented as:

Xo = X[l + kycos(wt)|cos[wot + kqcos(wt — )] (1)

where, k. and k, represent the amplitude and phase modula-
tion factors, respectively. For the b and c¢ phases, the equation
would be similar except for the fact that the phase would be
lagging and leading by %’r, respectively. The positive sequence
signal can be obtained from the abc phases. If T is the
phasor reporting interval and n is any integer then the phasor
representation of the positive sequence measurement obtained
at t = nT is given by:

Xm H1+ kpcos(wnT)]| Z{kqcos(wnT —m)} (2)
V2

The electrical signals generated in accordance with (2), i.e.
the true values, are passed to the DUT. The values obtained
at the output of the DUT are saved as the measured values.
The relative magnitude error (RME) is calculated as:

X — Xm'meas (3)
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X

The phase angle error is given by:

PE = Xangtr,m - Xangmms (4)

For the FR tests, the positive sequence signal is written as:
X1 = X, cos(wot + 77th2) %)

where, Ry = Z—J;. At reporting time tags, t = nT, the phasor
measurements can be expressed as:

X(nT) = %z{wa(nT)Q} (6)
The relative magnitude error and phase angle error corre-
sponding to these tests are calculated for both P-class and
M-class PMUs. Note that the relative magnitude error is the
ratio of the magnitude error and the true value (reported as a
percentage value), while the phase angle error is the difference
between the measured value and the true value (reported in
degrees). Finally, the histograms of these errors are plotted
to draw inferences regarding the distribution of the random
errors, while numerical and statistical tests are performed to
quantify the parameters of the distribution.
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Fig. 1. Hardware Test Setup

B. Normality Tests

Normality tests are primarily used to verify if a data set can
be reasonably modeled by a Gaussian distribution or not. Two
normality tests that are used in this study are the Shapiro-Wilks
test and the Kolmogorov-Smirnov test.

The Shapiro-Wilks test operates by testing the data set
across a hypothesis of normality, creating a p-value that,
within a certain alpha significance level, indicates whether
the researchers can accept or reject the null hypothesis that the
data fits the normal distribution. The critical value of alpha is a
cut-off point where the experiment may reject a null hypothesis
in error. Common values of alpha used in practice are 0.1,
0.05, and 0.01, respectively [8]. For this experiment, the value
of alpha was set at 0.05, indicating that the probability of a
Type 1 error (falsely rejecting a null hypothesis that is actually
true) is less than 5%.

The Kolmogorov-Smirnov test is based on the empirical
cumulative distribution function (ECDF). The null hypothesis
in this case is that both sets of input data are coming from
the same distribution [9]. Thus, the Kolmogorov-Smirnov
test calculates the distance between ECDFs of the given
error distribution and corresponding Gaussian distribution to
determine the similarity between the two. The next section
describes the test setup created for this study.

III. HARDWARE TEST SETUP

In order to provide accurate time-synchronized instrument
transformer-level signals to the DUT, a Fluke 6135A PMU
calibration unit was employed. This hardware device generates
time-synchronized electrical waveforms of voltage and current
that are guaranteed to meet 0.007% accuracy for the tests
specified in [6]. Each DUT was connected to the Fluke 6135A
such that its voltage and current input terminals were wired to
the voltage and current output terminals of the Fluke 6135A.
Fig. 1 depicts one of the DUTs (an M-class PMU) connected
to the Fluke 6135A.



The Fluke 6135A PMU calibrator can be configured to
perform all the steady-state and dynamic performance tests
required by the IEEE C37.118-2011 [7]. When each test is
performed by the calibrator, a spreadsheet of synchrophasor
measurements and their respective nominal values (as pro-
duced by the calibrator at its output terminals) are reported
by the software suite provided with the calibrator. These test
report spreadsheets also include the errors in angle and mag-
nitude between the measured and the nominal synchrophasor,
and it is these error values that were extracted from each test
to characterize the errors in the DUT.

The goal of this characterization experiment is to determine
the behavior of the PMUs under dynamic conditions that are
reflective of the behavior of an actual power system during
ambient conditions. The IEEE C37.118.1a-2014 Standard [10]
specifies the parameters for the dynamic tests for sinusoidal
AM, sinusoidal PM, and linear frequency ramping. In the case
of the AM and PM tests, the minimum modulation frequency
was employed. For the FR tests, a gradually rising frequency
ramp test and a gradually falling frequency ramp test were
selected. In each case, the test parameters were selected as
specified in the IEEE C37.118.1a-2014 Standard [10]; the
numerical values of the parameters are given in Section IV-B.
In order to extract sufficient data to plot histograms of the
error distributions of interest for each test, the relevant tests
were performed repeatedly until a total of 18,000 samples
(10 minutes worth of test data at 30 samples per second)
were collected. These error values were concatenated together,
plotted, and checked for consistency. The latter was ensured
by repeating every test three times. Afterwards, the most
relevant trends and characteristics of the errors were noted
and conclusions were drawn on their basis.

IV. RESULTS
A. Observations

Some general observations made from the experiments are
summarized below:

o For the P-class PMU, when running the PM tests, the
phase angle errors were found to be continuous, while
the relative magnitude errors were found to be discrete
(here, discrete means that the error values were placed
into distinct bins rather than being continuously spread).

o For the P-class PMU, when running the AM tests, the
relative magnitude errors were found to be continuous,
while the phase angle errors were discrete.

e For both the P-class as well as the M-class PMU, the
error distributions appeared to have a constant bias (a
non zero mean value) for all the tests.

o The Shapiro-Wilks and the Kolmogorov-Smirnov tests
substantiated the hypothesis that the random errors in
both P-class and M-class PMU measurements have non-
Gaussian distributions.

B. Error Characteristics for the P-class PMU

The error characterization studies were conducted for each
of the three phases as well as the positive sequence. For

sake of brevity, only the results of positive sequence tests
corresponding to ambient power system operating conditions
(slowly changing system dynamics) are discussed here. The
following histograms correspond to the 0.1 Hz PM, 0.1 Hz
AM, up to +0.03 Hz/sec FR up, and up to -0.03 Hz/sec
FR down, tests [7]. Fig. 2 shows the phase angle error
distribution for the PM tests. By repeating the tests three
times it was confirmed that the shapes and ranges of the
histograms were consistent. Two distinct peaks are visible in
this error histogram, indicating that it can be more accurately
represented using a two-component GMM as opposed to a
Gaussian distribution.
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Fig. 2. P-class - phase angle error histogram - phase modulation

Fig. 3 shows the relative magnitude error histogram of the
same device for AM tests. The normality tests and the skew-
ness & kurtosis parameters (calculated during the quantitative
analysis in Section IV-D) reinforce the hypothesis that the
relative magnitude error distributions are non-Gaussian for this
case as well.
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Fig. 3. P-class - relative magnitude error histogram - amplitude modulation

Figs. 4 and 5 represent the relative magnitude error his-
togram and phase angle error histogram for the FR up test. The
relative magnitude error histogram shows discrete values with
change in frequencies. The phase angle error histogram has
error values distributed continuously. The normality tests and
the skewness and kurtosis values (see Section IV-D) further
validate the non-Gaussian nature of this error distribution.



Relative magnitude error histogram (PosSeq)
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Fig. 4. P-class - relative magnitude error histogram - frequency ramp up
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Fig. 5. P-class - phase angle error histogram - frequency ramp up

C. Error Characteristics for the M-Class PMU

The same set of tests (although with slightly different
sets of parameters as mentioned in the IEEE C37.118.1-2011
Standard [7]) when applied to the M-class PMU also resulted
in non-Gaussian histograms for the random errors. Fig. 6
represents the phase angle error histogram for the PM test.
From the histogram, five distinct peaks can be observed (as
opposed to two in the case of the P-class PMU). As expected,
the normality tests confirmed that the distribution was non-
Gaussian. It was found that this error distribution could be
best approximated by using a five-component GMM or a five-
component beta mixture model.
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Fig. 6. M-class - phase angle error histogram - phase modulation

The relative magnitude error histogram for AM test for the
same device is shown in Fig. 7. Even though visual inspection
of this histogram reveals that it is indeed a non-Gaussian

distribution with two-peaks, since the range is extremely small,
this distribution may not have much significance in practice.
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Fig. 7. M-class - relative magnitude error histogram - amplitude modulation

The relative magnitude error histogram for FR down test
is shown in Fig. 8. It can be observed that this histogram is
asymmetric with a heavier tail towards the left side. The phase
angle error histogram for the FR down test is shown in Fig.
9. The error histogram can be best modeled using a tri-modal
distribution as the individual components are distinct.
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Fig. 8. M-class - relative magnitude error histogram - frequency ramp down
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Fig. 9. M-class - phase angle error histogram - frequency ramp down

D. Quantitative analysis

In addition to the normality tests, some statistical quantities
which determine the features of a probability distribution
were also calculated and used to verify the non-Gaussian
nature of the random errors in PMU measurements. The
mean, standard deviation, skewness, and kurtosis are the first,



second, third, and fourth moments, respectively, and convey
specific attributes of a distribution. The mean and standard
deviation represent the average value and the range of the
distribution. The skewness of the distribution indicates if the
error distribution is asymmetric (either right-tailed or left-
tailed); i.e., for a Gaussian distribution the skewness value
is negligibly small (ideally zero). The kurtosis denotes the
amount of data present towards both ends relative to the center
of the distribution; this should also be negligible (ideally zero)
for a Gaussian distribution.

Tables T and II show the phase angle errors and the relative
magnitude errors for the P-class PMU, respectively. PM, AM,
and FR represent the three dynamic tests, namely, phase
modulation, amplitude modulation and frequency ramp. The
relatively large values of skewness and kurtosis in these tables
are proof of the non-Gaussian nature of the random errors in
PMU measurements during ambient conditions.

TABLE I
PHASE ANGLE ERROR - P-CLASS PMU

Mean Median Std. dev. | Skewness | Kurtosis
PM | 0.361392 | 0.36019 0.00779 0.077721 -1.426
AM | 0.344971 | 0.34570 0.00918 -0.01066 -1.26174
FR 0.342382 | 0.342188 | 0.00504 0.068226 | -0.31194

TABLE 11
RELATIVE MAGNITUDE ERROR - P-CLASS PMU

Mean Median Std. dev. Skewness | Kurtosis
PM | -0.00211 -0.00216 | 5.97E-05 | 0.43024 -1.79
AM | 0.342005 | 0.340205 | 0.00443 0.18960 -0.22678
FR -0.00201 -0.00204 | 5.45E-05 | 1.00192 -0.8246

Tables III and IV denote the phase angle errors and the
relative magnitude errors for the M-class PMU, respectively.
These tables validate the following observations: (a) the non-
Gaussian nature of the error distributions, and (b) the existence
of bias in the error values.

TABLE IIT
PHASE ANGLE ERROR - M-CLASS PMU
Mean Median Std. dev. | Skewness | Kurtosis
PM | -0.053 -0.053 0.00818 0.00592 -0.747
AM | -0.046 -0.046 0.00591 0.00724 -1.48
FR -0.04598 | -0.045986 | 0.00589 -0.00910 -1.47634
TABLE IV
RELATIVE MAGNITUDE ERROR - M-CLASS PMU
Mean Median Std. dev. Skewness | Kurtosis
PM 1.55E-05 | 1.55E-05 | 7.51E-06 | 0.0178 -0.0101
AM | 1.29E-05 | 1.78E-05 | 3.32E-05 | -0.152 -1.33
FR 1.15E-05 | 1.73E-05 | 2.56E-05 | -0.56436 -0.68725

E. Discussion

For the PM test on the M-Class PMU, the relative magnitude
errors were not only minuscule, but also across all relative
magnitude errors the error distributions did not have a large
variance (the standard deviation ranged from the order of 10~
to 10~%). This observation makes sense intuitively because M-
Class PMUs are expected to give highly precise measurements

of those quantities that are not varied (the amplitude is held
constant during the PM test).

The P-class PMU was found to be less accurate than the
M-class PMU. This is also expected because of the different
functions that the two devices serve; the P-class PMU is
primarily designed for protection, and hence values speed over
accuracy, while the M-class PMU is primarily designed for
high quality measurements, and hence values accuracy over
speed. Having said that, the errors in both PMU classes can
be significantly different even under similar system conditions.
Therefore, the impact that these errors can have on the
algorithms that use measurements from these two types of
PMUs must be carefully considered.

V. CONCLUSION

The statistical characterization of the random errors present
in the magnitude and angle measurements of P-Class and M-
Class PMUs showed that their distribution is not necessarily
Gaussian even during ambient system conditions. This was the
case when any of the quantities, namely, phase, amplitude, or
frequency, was varied individually. A non-zero bias was also
observed in the random errors. The most realistic scenario of
power system operation is one where amplitude, phase, and
frequency vary simultaneously (within specific bounds). This
scenario will be explored in the future. The errors in frequency
and ROCOF will also be explored in a future study. Another
topic for future research is the study of the systematic errors
in PMU measurements. The combined characterization of the
random errors and the systematic errors using a high-precision
calibrator will provide an even more realistic understanding of
the characteristics of PMU measurement errors.
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