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Abstract

Fake portrait video generation techniques have been

posing a new threat to the society with photorealistic deep

fakes for political propaganda, celebrity imitation, forged

evidences, and other identity related manipulations. Fol-

lowing these generation techniques, some detection ap-

proaches have also been proved useful due to their high

classification accuracy. Nevertheless, almost no effort was

spent to track down the source of deep fakes. We propose an

approach not only to separate deep fakes from real videos,

but also to discover the specific generative model behind

a deep fake. Some pure deep learning based approaches

try to classify deep fakes using CNNs where they actually

learn the residuals of the generator. We believe that these

residuals contain more information and we can reveal these

manipulation artifacts by disentangling them with biologi-

cal signals. Our key observation yields that the spatiotem-

poral patterns in biological signals can be conceived as a

representative projection of residuals. To justify this obser-

vation, we extract PPG cells from real and fake videos and

feed these to a state-of-the-art classification network for de-

tecting the generative model per video. Our results indicate

that our approach can detect fake videos with 97.29% ac-

curacy, and the source model with 93.39% accuracy.

1. Introduction

Artificial intelligence (AI) approaches to generate syn-

thetic videos [60, 35, 34] have reduced required level of skill

for realistic image manipulation [63, 7]. These advance-

ments precipitated the rise of deep fakes [5, 9], synthetic

portrait videos of real humans, photorealistic enough to be

used as fakes. Although this technology has been developed

with positive intent for movies [6, 10], advertisement [2],

virtual clothing [70], and entertainment [4]; unfortunately

this strong impact attracted malicious users to exploit deep

fakes for political misinformation [11] and pornography [3].
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This threat to information integrity has consequences in

privacy, law, politics, security, and policy, and has the po-

tential to form a social erosion of trust [22]. As a defense

mechanism, deep fake detection methods have been intro-

duced [67, 48, 40], which define the problem as a binary

classification. It is conceivable that, as more realistic and

complex generation methods are developed over time, de-

tection methods should also have a more profound develop-

ment and a deeper understanding. Deciding the authentic-

ity of a video is demanded, however finding the source is

even more important and challenging for tracking, preven-

tion, and combating their spread. We propose a deep fake

source detector that predicts the source generative model for

any given video. To our knowledge our approach is the first

to conduct a deeper analysis for source detection that inter-

prets residuals of generative models for deep fake videos.

Biological signals are present in all humans. Anatomical

actions such as heart beat, blood flow, or breathing, create

subtle changes that are not visible to the eye but still de-

tectable computationally. For example, when blood moves

through the veins, it changes the skin reflectance over time,

due to the hemoglobin content in the blood. Approaches to

extract photoplethysmography (PPG) signals are developed

to recognize such changes by image processing techniques.

As of now, no generative model is able to create deep

fakes with consistent PPG signals. Several previous ap-

proaches utilize similar biological signals to detect 3D syn-

thetic CG renders([24]) and deep fakes ([23, 40, 68]). [23]

in particular proves that spatiotemporal inconsistency of bi-

ological signals can be exploited to detect deep fakes. Our

key observation follows the fact that biological signals are

not yet preserved in deep fakes, and those signals produce

different signatures in terms of the generative noise. Thus,

we can interpret biological signals as a projection of the

residuals in a known dimension that we can explore to find

the unique signature per model. This motivates us to utilize

these signals for the recognition of the current and future

generative models behind all deep fake videos. More impor-

tantly, the source detection can also improve the overall fake

detection accuracy, because real videos with inconsistent bi-



Figure 1. Overview. From real videos (a), several generators (b) create deep fakes with residuals specific to each model (c). Our system

extracts face ROIs (d) and biological signals (e), to create PPG cells (f) where the residuals are reflected in spatial and frequency domains.

Then it classifies both the authenticity and the source of any video (c) by training on PPG cells and aggregating window predictions (g).

ological signals (due to occlusions, illumination changes,

etc.) can still be recognized as real videos as they do not

conform to the signature of any generative model.

In our work, we extract 32 raw PPG signals from differ-

ent locations in the face from a window of frames, from a

video of windows. We then encode the signals along with

their spectral density into a spatiotemporal block, which is

so-called PPG cell. We feed PPG cells into an off-the-shelf

neural network to recognise the signatures of the distinct

residuals of the source generative models. Lastly, we com-

bine per sequence predictions into a per video prediction

using average log of odds [32]. Our approach achieves the

prediction for the authenticity of the video by 97.29%, and

the generative model by 93.39% on FaceForensics++ [53]

dataset. We evaluate our approach on five datasets with

multiple [53], single [42, 68, 52], and unknown [23] gener-

ators, against five state of the art source models, and seven

backbones. We also conduct an ablation study on various

setups for comparison, and compel our approach towards

extension to new models and detecting unseen generators.

In summary, the contributions of this paper are listed as,

• a novel approach for deep fake source detection, lead-

ing deep fake detection research to a new perspective,
• a new discovery that the projection of generative noise

into biological signal space can create unique signa-

tures per model, and
• an advanced general deep fake detector that can out-

perform current approaches in fake/real classification,

while also predicting the source generative model.

2. Related Work

2.1. Generative Models for Deep Fakes

There exist various deep fake methods in the litera-

ture [5, 62, 60, 61, 9, 7, 35, 67]. We categorize these

methods broadly based on their face synthesis as (i) face

generation, (ii) face reenactment, and (iii) face manipu-

lation techniques. The first category for face generation

mostly consists of generative adversarial network (GAN)

based methods. For example, StyleGAN [35] and Pro-

GAN [34] are methods to create entire fake faces. The

second category for face reenactment includes the face re-

placement methods using model warping or swapping tech-

niques, for example using a 3D model of another person

such as [5, 62, 60, 7, 51, 61, 27, 66]. The third category

for face manipulation mostly focuses on facial expression

transfer or mouth shape and movement synthesis from lip

reading, while keeping the face identity intact [61].

2.2. Deep Fake Detectors

For fake image detection from the face generation cate-

gory, several typical signatures have been identified includ-

ing saturation cues [46], frequencies of generated images

for fingerprints of GAN models [69], and discrete cosine

transformation residuals [54].

For the facial reenactment, detection is usually per-

formed per frame, which also utilizes temporal informa-

tion. To search for some artifacts which may occur due to



the facial differences between the source and target faces,

Boulkenafet et al. [18] estimate distortions in the generated

faces, Barin et al. [15] investigate compression artifacts,

Yang et al. [68] recognize inconsistent head poses, Li et al.

[40] detect blinking effects, and Li and Lyu [41] search for

face warping artifacts in the generated faces successfully. In

addition, other markers such as biological signals [23] and

lighting inconsistency [57] have also been explored. Spe-

cific generative networks [12, 59, 29, 36, 71, 72, 50] have

been applied as the discriminators.

Similarly, above methods can be used for detection of

face manipulation tasks. Beyond that, motion and extra

modality can also be used as auxiliary components to fa-

cilitate detection, e.g., inconsistent mouth movements [45]

and [38], and audio/visual verification [37] and [39].

2.3. Source Detectors

To our knowledge, most existing deep fake source detec-

tors are image-based, and exploit various attributes of syn-

thetic imagery such as GAN model fingerprints [69, 25,

44, 28], camera patterns [43], or image attribution [13]. Yu

et al. [69] identify fully synthetic images that are gener-

ated with ProGAN [34], SNGAN [47], CramerGAN [16],

MMDGAN [17] and analyze their fingerprints through fre-

quency analysis. Lukas et al. [43] and Cozzolino et al. [25]

analyze camera sensor noise for natural images. Marra et

al. [44] find GAN residual fingerprints in final synthetic

image patterns. Albright and McCloskey [13] examine the

source camera attribution on GANs. Although all of those

approaches can be regarded as an interpretation of the gen-

erative noise in a specific GAN generated image domain,

they have not been evaluated on deep fake videos yet, nei-

ther have they been applied to any of following domains,

such as deep fake videos, or biological signals.

2.4. Deep Fake Datasets

With the increase of deep fake generation, the exigencies

of detecting such doctored data become essential. While

a large amount of such videos/images spread on internet

or social media, it is highly demanded to have benchmark

datasets specifically curated for research of deep fake de-

tection. With respect to the data source generation, we cat-

egorize the existing datasets by two types: (1) datasets with

single model generation and (2) datasets using multiple gen-

erative sources. Although there exist several synthetic face

image datasets [35, 1, 49], here we focus on video datasets

due to the absence of biological signals in single images.

The majority of existing deep fake video datasets con-

tain videos created by single, easy-access, and popular gen-

erative sources. For instances, UADFV [68] dataset con-

tains 48 real and 48 fake videos generated by FakeAPP [9].

DeepfakeTIMIT [39] dataset has 650 deep fake videos gen-

erated using faceswap-GAN [8] where vidtimit [55] videos

are used as originals. FaceForensics [52] dataset con-

gregates 1,004 videos from the internet with their deep

fake versions created by Face2Face [62], resulting in 2,008

videos. Celeb-DF [42] dataset collects 590 real videos of

famous actors, with 5,639 deep fake versions generated by

an improved synthesis process [42].

A typical dataset generated by multiple generative meth-

ods is the commonly used FaceForensics++ [53] (FF)

dataset, which includes 1,000 real videos and 4,000

fake videos, generated by four generative models –

FaceSwap [7], Face2Face [62], Deepfakes [5], and Neural

Textures [60]. Recently, an in-the-wild deep fake dataset

was created by Ciftci et al. [23], in which 140 videos are

collected online, and half of them are fake. However, source

models of those fake videos are unknown, thus posing a big

challenge for in-the-wild deep fake source detection.

3. PPG Cells

Biological signals have been proven as an authenticity

indicator for real videos, which have been used as a distin-

guishable biomarker for deep fake detection [23]. As we

know, a synthetic person shown in a fake video does not ex-

hibit a similar pattern of heart beat as the one shown in a real

video does [23]. Our key finding emerges from the fact that

we can interpret these biological signals as fake heart beats

that contain a signature transformation of the residuals per

model. Thus, it gives rise to a new exploration of these bi-

ological signals for not only determining the authenticity of

a video, but also classifying its source model that generates

the video. Our proposed system for detection of both deep

fakes and their sources is outlined in Figure 1.

In order to capture the characteristics of biological sig-

nals consistently, we define a novel spatiotemporal block,

called the PPG cell. The PPG cells combine several raw

PPG signals and their power spectra, extracted from a fixed

window. The generation of PPG cells starts with finding the

face in every frame using a face detector [14]. In case the

window contains multiple faces, we process signals individ-

ually and aggregate the results in the final step.

The second step is to extract regions of interests (ROI)

from the detected faces that have as much stable PPG sig-

nals as possible (Figure 1(d)). Biological signals are sensi-

tive to facial movements, illumination variations, and facial

occlusions. In order to extract these areas robustly, we use

the face region between eye and mouth regions, maximiz-

ing the skin exposure. As the PPG signals from different

face regions are correlated with each other [23], locating

the ROIs and measuring their correlation become a crucial

step to enhance the detection.

The third step involves aligning these nonlinear ROIs to a

rectangular image. We employ Delaunay triangulation [26],

followed by a nonlinear affine transformation per triangle to

transform each triangle into the rectified image.



Figure 2. PPG Cells. Example frames per ω = 64 window (top), and their PPG cells (bottom) consisting of raw PPG and PPG PSD, of a

real video (left) and its deep fakes per generative model (rest). Middle row represents an approximation to the accumulated residuals over

all videos, which correlates with the colors in the PPG spectra.

In the fourth step, we divide each image into 32 equal-

size squares and calculate the raw Chrom-PPG signal per

square in a fixed window with the size of ω frames, with-

out interruptions in face detection (Figure 1(e)). Then, we

calculate the Chrom-PPG in the rectified image [65] since

it produces more reliable PPG signals [64, 65]. For each

window we now have ω times 32 raw PPG values. We

reorganize these into a matrix of 32 rows and ω columns,

forming the base of the PPG cells as shown in Figure 1(f)

and Figure 2 top half of bottom rows. Note that the bright

columns correspond to significant motion or illumination

changes where the PPG signal deviates abruptly.

The final step adds the information from the frequency

domain to the PPG cells. We calculate the power spectral

density of each raw PPG value in the window and scale it

to ω size. We concatenate the power spectra to the bottom

to generate PPG cells with 64 rows and ω columns (Fig-

ure 1(f)). Figure 2 bottom row shows example PPG cells of

deep fakes generated from the same window, with an exam-

ple frame from each window at the top row. To analyze the

contribution of the spectral information, we conduct experi-

ments on PPG cells both with and without this last step and

compare their accuracies (Section 6.2).

Having defined PPG cells, now we can demonstrate a

claim for our main hypothesis: the projection of residuals

of deep fake generators into the biological signal domain

creates a unique pattern that can be utilized for source detec-

tion. As proposed by [49], GAN residuals can be approx-

imated by consistent noise in fake images. We apply tem-

poral non-local means denoising on the aligned face in one

frame from each video in FF. We then accumulate and nor-

malize the difference of original and denoised images, and

subtract the noise of the real images from each correspond-

ing fake residual to obtain the middle row in Figure 2, con-

taining the ”fingerprint” per generator. For the real class, we

demonstrate the overall noise accumulation. The colors of

PPG-PSD correspond to different frequencies in the spectra

of these residuals, and some of these frequencies are actu-

ally visible in the residual accumulation images. Our main

observation follows this correlation between the residuals

and our PPG cells: residuals create unique variations in the

“deep fake heart beats” per model.

4. Model Architecture

As introduced in the related work section, the state of the

art fake detection approaches employ binary classification

techniques. For this binary classification task, even shallow

CNNs are demonstrated to be useful with the addition of

biological signals [23] when compared to complex network

architectures without biological signals. However, as we



take one step further from these approaches and introduce

multiple classes for source detection, we need a more com-

plex feature space segmentation, thus we put more empha-

sis on the deep learning model architecture. We formulate

this as a multi-label classification task with equally proba-

ble classes of different generative sources and real videos.

Our learning setting is built on the FaceForensics++ (FF)

dataset with a 70%-vs-30% split, where we generate PPG

cells with a window size of ω = 128. FF dataset contains 4

different generative models, and we add real videos as the

fifth class. Using a simple CNN with 3 VGG [56] blocks,

we achieve 68.45% accuracy for PPG cell classification on

5 classes in the FF dataset, showing the need for a higher ca-

pacity model. Extending with another VGG block results in

75.49%, confirming our intuition. Both to follow this intu-

ition and also to keep our implementation simple, we exper-

iment with VGG16 [56], VGG19 [56], InceptionV3 [58],

Xception [20], ResNet50 [30], DenseNet201 [33], and Mo-

bileNet [31], training for 100 epochs, with ω = 128, using

the same 70%-vs-30% split. Table 1 lists the results of PPG

cell classification on the test set, where VGG19 achieves

the highest accuracy for differentiating the 4 different gen-

erative models and real videos of FF (Figure 1(f)). Complex

networks like DenseNet and MobileNet overfit, reaching a

very high training accuracy, but failing on the test set.

Backbone FD Accuracy SD Accuracy

ResNet50 19.31% 52.23%

MobileNet 27.26% 33.16%

Inception 52.81% 58.60%

DenseNet201 30.82% 37.04%

Xception 70.72% 68.54%

VGG16 71.83% 76.94%

VGG19 76.15% 81.06%
Table 1. PPG Cell Classification Accuracy. Overall accuracies

with different models for fake detection (FD) as binary classifica-

tion and source detection (SD) as multi-class classification with

ω = 128 on FF dataset.

5. Video Classification

Even though our ω-frames PPG cells can act as mini

videos, a full video consists of several windows of PPG

cells, depending on its length. Therefore we need to ag-

gregate per-cell predictions into per-video predictions. In-

stead of brute force majority voting, we exploit the pre-

diction confidences and employ log of odds to output the

final video accuracies (Figure 1(f)). We document differ-

ent voting schemes for this process in Table 2, where we

compare majority voting, highest average probabilities, two

highest average probabilities, and average of log odds on

our cell prediction results by VGG19 using ω = 128. Av-

erage logits increase the video source classification accu-

racy to 84.93%, 0.46% higher than majority voting, as it is

more robust against outliers by utilizing all predictions for

all classes of PPG cells for a given video. We would like to

conclude this section by noting that the longer the video is,

the more PPG cells we have, and the stronger predictions

our system will make, based on this aggregation process.

Aggregation Video SD Accuracy

majority voting 84.47%

〈ρ〉, where ρ > 50% 83.53%

ρmax 83.60%

〈{ρmax1
, ρmax2

}〉 83.19%

〈log ρ
1−ρ

〉 84.93%

Table 2. Prediction Aggregation from PPG Cell Classifica-

tion. Video source detection accuracies based on different voting

schemes for the prediction probabilities (ρ). 〈.〉 denotes the mean.

6. Results

Our system is implemented in python utilizing Open-

Face [14] library for face detection, OpenCV [19] for im-

age processing, and Keras [21] for neural network imple-

mentations. Most of the training and testing is performed

on a desktop with a single NVIDIA GTX 1060 GPU, with

tractable training times. The most computationally expen-

sive part of the system is the extraction of PPG cells from

large datasets, which is a one time process per video. In

this section we document our analysis, results, and some

ablation studies. Unless otherwise noted, we set our testbed

as the FF dataset with the same 70%-vs-30% split – 700

real videos and 4*700 deep fakes for training, and 300 real

videos and 4*300 deep fakes for testing.

6.1. Source Classification Accuracy

To better evaluate our video source classification, we an-

alyze how uniquely each generative model is detected us-

ing the biological signals as a modulator for residuals. This

analysis supports our claim of different generative models

having signature patterns projected to the biological sig-

nal space. As per Figure 3, our approach correctly detects

real videos with 97.3%, and generative models with at least

81.9% accuracy for five classes (1 real and 4 fakes) of FF.

6.2. Ablation Study

In this section, first we train and test on different setups,

namely (i) without real videos in the training set, (ii) with-

out the power spectrum in PPG cells, (iii) without biologi-

cal signals, and (iv) using full frames instead of face ROIs,

where ω = 64 and FF dataset split are set as constants. In

the second part, we analyze the effect of ω.

6.2.1 Different Setups

Comparing the first two columns in Table 3, overall accu-

racy very slightly increases, which may be expected when



Figure 3. Confusion Matrix for Class Accuracies. Video source

detection accuracies per 4 generative models and real videos with

ω = 64 on the FF test set, with an average of 93.39% accuracy.

there are less number of classes. Since there exist several

binary deep fake detectors, this test ensures that our method

can be used as a secondary step to detect the source, after a

video is determined to be fake.

Source All -real -PSD -PPG Full

DeepFakes 94.7 94.66 94.66 93.00 57.33

Face2Face 91.7 91.66 94.66 87.33 37.33

FaceSwap 92.3 94.00 94.66 92.66 45.66

NeuralTex 81.9 93.07 85.95 83.61 41.33

Real 97.3 NA 89.66 87.20 51.00

Total 93.39 93.57 92.11 88.77 46.53
Table 3. Ablation Study. Video source detection accuracies with-

out reals, without PSD part of PPG cells, without biological sig-

nals, and on full frames (not only faces).

Comparing the first column to the third column, overall

increase is only 1.28% in accuracy. However detection of

real videos has an increase of 7.64%, which confirms the

main contribution of the power spectrum: the spatiotem-

poral correlation of biological signals in real videos is not

preserved in deep fakes, so it is useful in authenticity de-

tection. The last two columns re-justify the contributions

of [23] that (i) biological signals are a crucial factor in fake

detection, and (ii) training on faces instead of full frames

improves the accuracy.

6.2.2 Window Length

The duration from which to extract PPG signals plays an

important role in the stability and representative power of

the PPG cells. Short windows may miss PPG frequencies

and long windows may include too much noise to over-

shadow the actual signal. We test our method with different

window sizes of ω = {64, 128, 256, 512} frames to balance

these ends, on the same setup discussed before (Table 4).

With an optimum of ω = 64, as we increase the window

length, PSNR decrease, and the accuracy drops.

Source ω = 64 ω = 128 ω = 256 ω = 512

DeepFakes 94.66 93.62 93.26 88.99

Face2Face 91.66 87.62 85.23 69.29

FaceSwap 92.33 90.96 83.94 78.26

NeuralTex 81.93 69.23 84.56 31.11

Real 97.29 83.27 82.88 78.89

Total 93.39 84.93 85.97 73.75
Table 4. Effect of Window Length. Video source detection with

varying ω frame windows.

6.3. Extending with New Models

Although we have detected four generative models, it is

still a challenging task as new deep fake sources emerge

rapidly. To justify that our approach can extend to new

models, we combine our FF setup with the single genera-

tor dataset CelebDF[42] and repeat the analysis. We ran-

domly select 1,000 fake videos from CelebDF and create

a sixth class for their generative model. Our approach

achieves 93.69% overall accuracy with 92.17% accuracy on

CelebDF, concluding that we can adapt to new models (Ta-

ble 5). We emphasize that we do not need real counterparts,

we only train on fake samples.

Source Video SD Accuracy

CelebDF 92.17%

DeepFakes 94.66%

Face2Face 91.66%

FaceSwap 92.66%

NeuralTex 86.62%

Real 96.89%

Total 93.69%
Table 5. New Model Extension. Video source detection accura-

cies with 1000 fakes from CelebDF added to FF, as a new class.

This experiment also amplifies our motivation of detect-

ing generative models from their residuals only. In contrast

to other source detection methods utilizing the generator ar-

chitecture or last layers for residual classification, we easily

extend to new models without the need for the model spec-

ification or the real counterparts of the fake samples.

6.4. Comparison

To our knowledge, this paper leads the deep fake de-

tection research towards source detection, utilizing biolog-

ical signals to classify the residuals of generative models.

Some image-based fake detection approaches have been

proposed, however, there is no previous work that classifies

deep fakes videos using biological signals that enables us

to perform a one-to-one comparison with. Thus, we per-

form experiments with existing approaches on the afore-

mentioned face ROIs, such as (i) the same architecture on

video frames (without biological signals), (ii) the same ar-

chitecture on face ROIs, and (iii) frame-based classification



approaches on face ROIs.

Table 6 lists the accuracies of different models on the test

set. The first row uses the same backbone (VGG19), but

only on frames, without biological signals. In order to keep

the training time tractable, we utilize every 20th frame. This

can be thought as a baseline for frame-based detection. The

second and third blocks are trained and tested on the same

dataset, but on segmented and aligned face images. As gen-

erators are only swapping or modifying the faces, this ap-

proach both makes the training more efficient and improves

the accuracies significantly. In this case, our method outper-

forms even the most complex network, Xception [20], with

more than 10% accuracy.

Models Video SD Accuracy

VGG19 (frames) 46.53%

VGG19 (faces) 76.67%

ResNet50 63.25%

ResNet152 68.92%

Inception 79.37%

DenseNet201 81.65%

Xception 83.50%

Ours 93.69%
Table 6. Comparison. Video source detection accuracies on FF

dataset, of several models with frame and face based training.

It is worth noting that our approach is advantageous in

computational efficiency. As compared to the frame-based

detection approach with the same architecture, which takes

29 hours 24 minutes and 43 seconds to train only one epoch

with 1.8 million frames in FF on a single GPU, our approach

takes only 2 hours and 35 minutes for training the system for

100 epochs. Such a computational efficiency in training and

testing with large datasets makes our approach much more

feasible to many application fields without demanding high-

end computation powers.

6.5. Unseen Generators

Previously, we discussed that removal of real class im-

proves the accuracy of finding the distinct residuals of the

generative models. This emerges from the fact that PPG

signals are affected not only by the generative model resid-

ual, but also environmental effects such as lighting, facial

movement, and occlusion. As such random artifacts cannot

create a pattern, all of those PPG deviations are classified

as real, as real is the “chaotic” state without an exact signa-

ture. In order to test this hypothesis, we congregate a new

test dataset from UADFV [68], FaceForensics [52], Deep

Fakes Dataset [23], and CelebDB [42] where we gather 48

real and fake video pairs from each (equal to the smallest

of these datasets). On this new collection of 384 videos, we

run our previous best model trained on FF with ω = 64,

with and without the real class.

In addition to the confusion matrix in Figure 3, we de-

pict these new classifications in Figure 4. To begin with,

true positives for reals are 100%, 93.61%, 97.82%, and

95.83% according to column 5, rows 1, 3, 5, and 7 respec-

tively. Confirming our hypothesis, UADFV and CelebDF

classifications are expected to tend towards the real class

(col 5, rows 2&4), because the model does not recognize

their signature yet. FaceForensics is expected to be clas-

sified as Face2Face [62] (col 2, row 6), as its generative

model is within FF. Deep Fake Datasets should have a vari-

ety of classification results (row 4) as it contains in-the-wild

videos with unknown generators.

Figure 4. Unseen Datasets. Fake and real classification of 96*4

videos from single and multi source unseen datasets.

7. Conclusion

In this paper, we present a deep fake source detection

technique via interpreting residuals with biological signals.

To our knowledge this is the first method to apply biologi-

cal signals to the task of deep fake source detection. In ad-

dition we experimentally validate our method through vari-

ous ablation studies. In our experiments we achieve 93.39%

accuracy on FaceForensics++ [53] dataset on source detec-

tion from four deep fake generators and real videos. More-

over, we demonstrate the adaptability of our approach to

new generative models, keeping the accuracy unchanged.

Following the study in biological signal analysis on deep

fake videos, the ground truth PPG data along with real and

fake videos can enable a novel direction in research on deep

fake analysis and detection. In the next stage of the work,

we plan to create a new dataset with ground truth PPG, with

certain source variations as well as distribution variations.

It is worth noting that our work looks for generator sig-

natures in deep fakes, while the existing work reported by

Ciftci et al. [23] looks for signatures in real videos. Theo-

retically, a holistic system combining these two perspectives

can be developed with a jointly trained model for detecting

signatures on both authentic and fake videos. We pose this

idea as our immediate future work.
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