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Abstract

We show in this work that reinforcement learning can be successfully applied to
decoding short to moderate length sparse graph-based channel codes. Specifi-
cally, we focus on low-density parity check (LDPC) codes, which for example
have been standardized in the context of 5G cellular communication systems due
to their excellent error correcting performance. These codes are typically decoded
via belief propagation iterative decoding on the corresponding bipartite (Tanner)
graph of the code via flooding, i.e., all check and variable nodes in the Tanner
graph are updated at once. In contrast, in this paper we utilize a sequential update
policy which selects the optimum check node (CN) scheduling in order to improve
decoding performance. In particular, we model the CN update process as a multi-
armed bandit process with dependent arms and employ a Q-learning scheme for
optimizing the CN scheduling policy. In order to reduce the learning complexity,
we propose a novel graph-induced CN clustering approach to partition the state
space in such a way that dependencies between clusters are minimized. Our re-
sults show that compared to other decoding approaches from the literature, the
proposed reinforcement learning scheme not only significantly improves the de-
coding performance, but also reduces the decoding complexity dramatically once
the scheduling policy is learned.

1 Introduction

Binary low-density parity-check (LDPC) codes [10] are sparse graph-based channel codes that have
recently been standardized for data communication in the 5G cellular new radio standard due to their
excellent error correcting performance [5, 15]. In practice, LDPC codes are iteratively decoded via
belief propagation (BP), an algorithm that operates on the Tanner graph of the code [26]. Tanner
graphs of LDPC codes are sparse bipartite graphs whose vertex sets are partitioned into two types:
check nodes (CNs) and variable nodes (VNs). Typically, iterative decoding on a Tanner graph is
carried out via flooding, i.e., all CNs and VNs are updated simultaneously [9]. However, in [4],
a sequential CN scheduling scheme, so-called node-wise scheduling (NS), was proposed. In this
scheme, messages are sent from a single CN at a time, and successive CNs are scheduled based on
their residuals, i.e., the magnitude of the difference between subsequent messages emanating from
the CN.

NS of an iterative decoder can lead to improved performance, as was shown in [4]. The implemen-
tation relies on the intuition that in loopy BP, the higher the residual of a CN, the further away that
portion of the graph is from convergence. Hence, scheduling CNs with higher residuals is expected
to lead to faster decoder convergence. Although the NS method converges faster than the flood-
ing scheme, the computation of provisional messages for updating the CN residuals in real-time is
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required, rendering it more computationally intensive than flooding for the same total number of
messages propagated.

To mitigate the computational complexity inherent in NS, we propose a multi-armed bandit-based
NS (MAB-NS) scheme for sequential iterative decoding of short LDPC codes.! Rather than com-
puting residuals, MAB-NS evaluates an action-value function prior to scheduling, which determines
how beneficial an action is for maximizing convergence speed and performance of the decoder. An
action is defined here as selecting a single CN to convey its outgoing messages to its adjacent vari-
able nodes. The NS algorithm is modeled as a Markov decision process (MDP) [25], where the
Tanner graph is viewed as an m-armed slot machine with m CNs (arms), and an agent learns to
schedule CNs that elicit the highest reward. Repeated scheduling in the learning phase enables the
agent to estimate the action-value function, where the optimal scheduling order is the one that yields
a codeword output by propagating the smallest number of CN to VN messages.

Neural network assisted decoding of linear codes codes has been addressed in, e.g., [19, 14, 13, 1],
aiming to learn the noise on the communication channel. However, these methods have not been
applied to sparse graph-based codes and, due to their high learning complexity, are suited only for
codes with short block lengths. Reinforcement learning (RL) has been applied recently for hard de-
cision based iterative decoding in [3]. Further, a deep learning framework based on hyper-networks
was used for BP decoding of short block length LDPC codes in [20], where the hidden layers of the
network unfold to represent factor graphs executing successive message passing iterations. How-
ever, to the best of our knowledge, reinforcement learning (RL) has not been successfully applied to
iterative decoding of LDPC codes in the open literature so far.

The main ingredient for the proposed RL decoder is Q-learning [28, 29]. Q-learning is a Monte Carlo
approach for estimating the action-value function without explicit assumptions on the distribution of
the bandit processes [7]. However, a major drawback of applying Q-learning to the sequential CN
scheduling problem at hand is that the learning complexity grows exponentially with the number of
CNs. A straightforward way to select the underlying state space of the Q-learning problem would be
to consider the vector of quantized CN values. However, for practical LDPC codes, the number of
CN s ranges in the hundreds, and even for a binary quantization of each CN value the cardinality of
the state space is not computationally manageable in the learning process. A multitude of methods
for reducing the learning complexity in RL have been proposed in the literature: for example, com-
plexity may be reduced by partitioning the state space (see, e.g., [24, 18]), imposing a state hierarchy
(see, e.g., [21]), or by dimensionality reduction (see, e.g., [2, 23]).

In this work, we follow a similar avenue, albeit tailored to the problem at hand. In extension of
our previous work [12], for Q-learning we propose grouping the CNs into clusters, each with a
separate state and action space. While this approach has the potential to make learning tractable,
it also assumes independence of the clusters; this assumption cannot hold due to the presence of
cycles in the Tanner graph. In order to mitigate the detrimental effect of clustering on the learning
performance, we propose to leverage the structure of the Tanner graph of the code. In particular, we
aim to optimize the clusters in such a way that dependencies between them are minimized. Note
that as NS follows a fixed greedy schedule, there exists a non-zero probability that initially correct,
but unreliable, bits are wrongly corrected into an error that is propagated in subsequent iterations. In
contrast, our proposed scheme based on Q-learning allows some room for exploration by scheduling
the CN with the highest expected long-term residual, mitigating such a potential error propagation.

To this end, we define novel graphical substructures in the Tanner graph termed cluster connect-
ing sets, which capture the connectivity between CN clusters, and analyze their graph-theoretic
properties. Numerical results show that RL in combination with sequential scheduling provides a
significant improvement in the performance of LDPC decoders for short codes, superior to existing
approaches in the literature.

"Note that, in recent literature such as [16, 30], MAB refers to a problem where actions do not change the
state of the environment. However, in this paper, we refer to MAB as the traditional bandit problem discussed
in [7, 11] where an agent’s action does indeed change the state of the environment.



2 Preliminaries

2.1 Low-density parity-check codes

An [n, k] binary linear code is a k-dimensional subspace of F%, and may be defined as the ker-
nel of a (non-unique) binary parity-check matrix H € Fy'*", where m > n — k. The Tan-
ner graph of a linear code with parity-check matrix H is the bipartite graph Gy = (V U C, E),
where V' = {vg,...,v,_1} is a set of variable nodes (VNs) corresponding to the columns of H,
C = {co,...,cm—1} is a set of check nodes (CNs) corresponding to the rows of H, and edges in
E correspond to the 1’s in H [26] (see an example in Fig. 1 below). That is, H is the (simplified)
adjacency matrix of Gyg. LDPC codes are a class of highly competitive linear codes defined via
sparse parity-check matrices or, equivalently, sparse Tanner graphs [10]. Due to this sparsity, LDPC
codes are amenable to low-complexity graph-based message-passing decoding algorithms, making
them ideal for practical applications. BP iterative decoding, considered here, is one such algorithm.

In this work, we present experimental results for two particular classes of LDPC codes: (j, k)-
regular and array-based (AB-) LDPC codes. A (j, k)-regular LDPC code is defined by a parity-
check matrix with constant column and row weights equal to j and k, respectively [10]. A (v, p)
AB-LDPC code, where p is prime, is a (-, p)-regular LDPC code with additional structure in its
parity-check matrix, H(~y, p) [8]. In particular,
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H(v,p) = : (1)
I o1 o20-D ... s(-De-1)

where 0% denotes the circulant matrix obtained by cyclically left-shifting the entries of the p x p
identity matrix I by z (mod p) positions. Notice that 0¥ = I. Each row (resp. column) of sub-
matrices of H(+y, p) forms a row (resp. column) group. Observe that there are a total of p (resp. p?)
column groups (resp. columns) and ~ (resp. yp) row groups (resp. rows) in H(~y, p).

2.2 Multi-armed bandits

The MAB problem is a special RL problem where in each time step, a gambler must decide which
arm of an m-armed slot machine to pull in order to maximize the total reward in a series of pulls.
We model the m-armed slot machine as a MDP. In an MDP, a learner must decide which action to
take at each time step by observing only the current state of its environment. This decision-making
process leads to a future state and expected reward that are contingent only on the current state and
action. For finite state and action spaces, the process is called a finite MDP [25], and the optimized
scheduling of arms (CNs in our case) is obtained by solving the MAB problem.

In the remainder of the paper, let [[z]] £ {0,...,2 — 1}, where x is a positive integer. In an m-
armed bandit problem, let S\, ..., 5™~
each random variable (r.v.) St(] ) j e [[m]], can take M possible real values. Let a state space
SM) contain all M™ possible realizations of the sequence St(o), cey S,Fm_l), and let the r.v. S,
with realization s € [[M™]] represent the index of realization sgo), ce sgm_l). Since each index
corresponds to a unique realization, we also refer to S; as the state of the m-armed slot machine at
time ¢. If the arms are modeled as independent bandit processes, we define a r.v. .S, with realization
§ € [[M™]], as the realization s of a particular arm j. Let A, represent an action, with realization
a € A := [[m]], indicating the index of an arm that has been pulled by the gambler at time ¢. Let
S¢11 represent the new state of the MDP after pulling arm A;, and let s’ denote its realization. Also,
letar.v. Ry(St, At, St11), with realization r be the reward yielded at time ¢ after playing arm Ay, in
state S; that yields state Sy 1.

2 represent m bandit processes (arms) at time ¢, where



2.3 MAB-NS scheme

In the following, we propose a MAB-NS scheme as a sequential BP decoding algorithm. Specif-
ically, a single message passing iteration is given by messages sent from a single CN to all its
neighboring VNs, and subsequent messages sent from these VNs to their remaining CN neigh-
bors. Sequential CN scheduling is carried out until a stopping condition is reached, or an iteration
threshold is exceeded. The MAB-NS decoder applies a scheduling policy, based on an action-value
function, avoiding the computationally costly real-time calculation of residuals.

The NS algorithm informs an imaginary agent of the current state of the decoder and the reward
obtained after performing an action (scheduling a CN). Based on these observations, the agent takes
future actions, to enhance the total reward earned, which alters the state of the environment as well
as the future reward. In MAB-NS, the reward R, obtained by the agent after scheduling CN a is
defined by R, = max,¢cny, (a) Ta—sv, Where the residual r,_,,, is computed according to

Ta—v £ |m;_>v - ma—>v|~ 2

Here, m,—,, is the message sent by CN a to its neighboring VN v in the previous iteration, and
m},_,, is the message that CN a would send to VN v in the current iteration, if scheduled.

In the proposed MAB problem, the decoder iteration ¢ is analogous to a time step t. Let x =
[0y ..., Zn—1] and y = [yo, ..., Yn—1] represent the transmitted and the received codeword, resp.,
where z; € {0,1}, and y; = (—1)% + z with 2 ~ N(0,02). Let X € F} be the reconstructed
codeword by the decoder. The posterior log-likelihood ratio (LLR) of x; is expressed as L; =

log Lf”y) The soft channel information input to the MAB-NS algorithm is a vector L =
Pr(z;=01y;)

[Lo,. .., Lp_1] compnsed of LLRs. In the MAB-NS scheme, the state of CN j at the end of iteration
¢ is given by 5 =3, ! H; L( "), where L( D= = D ceN(v;) Me—v; + Li is the posterior LLR

computed by VN v; at the end of iteration /, and Me_yy, 15 the message received by VN v; from
neighboring CN ¢. Let §; = S\, ..., 81 with realization 8, = 3\”,..., ™", represent a
soft syndrome vector of the MAB N S scheme obtained at the end of iteration ¢. This soft syndrome

vector represents the state of the decoder in each iteration.

It is necessary to quantize each CN state in order to obtain a finite-cardinality state space. Let ga(-)
denote an M -level scalar quantization function that maps a real number to any of the closest M
possible representation points set by the quantizer. Then, S, = Séo), oS ém_l)
syndrome vector, where a realization is given as séj ) = g M(§§J )).

The proposed MAB-NS scheme is shown in Algorithm 1, omitted here for space reasons, but stated
in the supplementary material Section S.2. The algorithm inputs are a soft channel information
vector L and a parity-check matrix H; the output is the estimated (decoded) codeword X. Note
that the time complexity for selecting a CN in line 12 of Algorithm 1 grows linearly with the total
number of CNs, as opposed to being zero for flooding BP.

is the quantized

We also note that the MAB-NS algorithm is dynamic and depends both on the graph structure and
on received channel values: thus, the scheduling order adapts with subsequent transmissions, and
will outperform a scheduling order which is fixed in advance.

2.4 Solving the MAB problem using clustered Q-learning

Q-learning is an adaptive algorithm for computing optimal policies for MDPs that does not rely on
explicit assumptions on the distribution of the bandit processes. As discussed above, in a traditional
Q-learning approach, the state space observed by the agent grows exponentially with the number of
arms, m. In order to reduce both the state space and the learning complexity, we propose a novel
clustering strategy in the following. A cluster is defined as a set of arms with its own state and action
spaces. Let z represent the size of (number of arms in) a cluster. The state of a cluster with index

u € [[[2]]] at 1terat10n { is a sub- syndrome S(u ) = S?LZ), e Séuz+z_1) of the syndrome S, =

S 50)7 oS ém , with a state space S& containing all possible M/ # sub-syndromes Stgu’z). Hence,



the total number of states that may be observed by the agent is upper-bounded by [%w |81(LM)|.

Notice that as long as z < m, \SﬁM)|<< |S(M)|. The action space of cluster u is defined as
A, = [[2]]- The action-value function for cluster u in the (¢ + 1)st iteration is given by

Qr41(8u,ay) = (1_Q)QZ(5u»au)"’a(Ré(suvauvf(suvau))+5 max Qe(f(su/,auf),au/)), (3)

where s, € [[M?]] and a,, € A, are the state and action indices, respectively, for cluster w,
f(Su,ay) represents the new cluster state s;, € [[M?]] as a function of s, and a,,, R;(sy, ay, s,,)
is the reward obtained after taking action a,, in state s,,, and 0 < « < 1 is the learning rate. In
clustered Q-learning, the action a,, in time step ¢ is selected via an e-greedy approach according to

{u and A, selected uniformly at random w.p. ¢,
Gy =

4
wg) selected w.p. 1 — e, @

where wg ) — argmax, ue([[ 2] Q¢(Sy, ay). The action-value function is recursively updated

limax times according to (3), where £y, is the maximum number of times a CN is scheduled. The
detailed proposed clustered Q-learning scheme is given in Algorithm 2 in the supplementary material
Section S.3.

The input to Algorithm 2 is a set & = {Lo, ..., L »|—1} containing |.Z| realizations of L over
which clustered Q-learning is performed, and a parity-check matrix H. This algorithm trains an
agent to learn the optimum CN scheduling policy for a given H. In each optimization step ¢, the
agent performs NS for a given L. As a result, clustered Q-learning can be viewed as a recursive
Monte Carlo estimation approach with L as the source of randomness.

3 Cluster-connecting Sets

In clustered Q-learning, the total number of states observed by the agent is upper-bounded by
[2] IS$) )< |S™1)|. Note that the learning complexity in clustered Q-learning is O(zM ), whereas
in standard Q-learning the complexity scales as O(m™M ), with the cluster size z < m. Consequently,
clustering enables a tractable RL task for sequential scheduling of short LDPC codes.

On the other hand, the larger the size of the cluster, the greater the ability of the agent to take into
account any dependencies between CN log-likelihood ratios (LLRs). Hence, there exists a trade-
off between the effectiveness of clustered Q-learning and the learning complexity. Indeed, cluster
size should be large enough to accommodate the dependencies between CN messages as much as
possible, without being so large that learning is infeasible. We note that clustered Q-learning serves
as an approximation for standard Q-learning, but suffers from a performance loss due to the existence
of dependencies between CN messages emanating from separate clusters.

To better understand this loss in performance, we introduce a critical sub-structure in the Tanner
graph Gy of an LDPC code. Let C,, = {c1,...,c.} denote the set of CNs belonging to the cluster
of index u, and let C,, = C'\ C,, be the remaining CNs in the Tanner graph. Let Ny (C,,) be the set
of all neighbors of C\, in V. For W C Ny (C,), let N (W) be the set of all neighbors of W in C.

Definition 1. Fix a CN cluster C,,, and let W C Ny (C,,). We say that W is the cluster-connecting
set (CCS) corresponding to C., if the following holds: v € W if and only if N¢, (v) and Ng, (v)
are both nonempty. If |W|= A, and |N¢,(W)|= B, we say that W is an (A, B) CCS.

CCSs induce dependencies between the messages generated by the CNs in ', and those in Ch.
Roughly speaking, the number of edges in a Tanner graph that connect C, to C,, grows with the size
of C,’s CCS. That is, on average, the larger the size of the CCS corresponding to C,,, the greater the
dependence between C, and C,,. This holds absolutely for Tanner graphs in which all VNs have the
same degree.

Fig. 1 depicts an example of a Tanner graph Gy containing a cluster of CNs whose corresponding
CCS, W, is a (3,3) CCS. Note that in this example there are no cycles in the subgraph induced by
WUNg, (W). However, there are multiple 4-cycles in the subgraph induced by (AN (Cy, ) \W)UC,,.

In the remainder of the paper, we assume all Tanner graphs are connected and contain cycles. We
first show that any choice of cluster that is a proper subset of the CNs has a nonempty CCS.



Figure 1: Depiction of the (3, 3) CCS (shown using solid red circles) corresponding to cluster C', (red squares).
The dashed edges connect C', to neighboring VNs (dashed red) which do not belong to the CCS. Arrows
highlight the cycles incident to the cluster.

Proposition 1. Consider a Tanner graph with m CNs, and choose a cluster C,, with z # m CNs.
Then, the CCS corresponding to C,, is nonempty.

Proof. Consider the set of VNs given by Ny (C,,). If every variable node in this set is only adja-
cent to CNs in C,,, then the Tanner graph is not connected, a contradiction to our assumption of
connectedness. We conclude that the CCS corresponding to C', has at least one element. O

Recall that our experimental results will focus on (j, k)-regular and AB-LDPC codes. In the next
section, we will be interested in optimizing clusters based on the number of edges incident to the
corresponding CCSs. However, since (j, k)-regular and AB-LDPC codes have regular VN degree,
examining the size of a CCS for these classes is equivalent to examining the number of edges adja-
cent to a CCS. We present below results on the size of a CCS for each class of LDPC codes.

Theorem 1. Let j, k > 2, and z > 1 be integers. Suppose G is a (j, k)-regular Tanner graph, and
let Cy, be a cluster of CNs of size |Cy|= z in G. If [Ny (Cy,)|= v, then the number of variable nodes
in W, the CCS corresponding to C., is bounded as follows.

v — VCZJ < |WI< min {jv — kz,v}.
J

Proof. It is straightforward to see that there are jv — kz edges in G that are incident to Ay (C,,) but
not to C,,. In other words, there are jv — kz edges exiting the subgraph induced by C,, U Ny (C,,).

Consider the CCS W, the subset of Ny (C,,) comprised of all variable nodes incident to an exiting
edge. The minimum size of W corresponds to the case in which the exiting edges are concentrated
at a few variable nodes in Ny (Cy,). Thatis, |W|> [(jv — kz2)/j] = [v — (kz/j)] = v — | kz/j].
On the other hand, the maximum size of W corresponds to the case where the exiting edges are
spread across as many variable nodes as possible: |W|< min {jv — kz, v}.

O

Remark 1. For fixed j, k, and z, the upper and lower bounds given in Theorem 1 are increasing
functions of v. In other words, the more neighbors a cluster has, the larger the maximum possible
size of W (and resulting j|W| CCS edges), and the larger the minimum possible size of W (and
JIW ). It is important to note that we are not claiming that a higher number of neighbors neces-
sitates a larger CCS. Rather, the shifting window of possible CCS sizes suggests a trend, even if a
strict increase does not hold universally.

Because they are (3, p)-regular, Theorem 1 gives bounds on the size of CCSs in (3,p) AB-LDPC
codes as well. However, given the added structure of an AB-LDPC code Tanner graph, we may
conclude more, as shown in the following theorem, whose proof is provided in the supplementary
material Section S.1.

Theorem 2. Consider an AB-LDPC code defined by a parity-check matrix H(3,p), let C,, be a

cluster of size 1 < z < p, and let W be the CCS corresponding to C.,,.

(i) [WI[>((1+2p)z - 2%)/4.

(ii) If all CNs in C,, belong to the same row group of H(3,p), |W|= zp.

(iti) If3 < z < p and every CN in C,, belongs to at least one 6-cycle such that the other two CNs
in the 6-cycle also belong to C.,, |W|< zp — z.




The bounds in Theorem 2 should be compared with those of Theorem 1. Indeed, we find that
Theorem 2(i) gives a tighter lower bound for smaller values of Ay (C,,), and Theorem 2(iii) is a
tighter upper bound for a particular type of cluster and larger values of Ny (C,,). Theorem 2(ii), as
an exact result, gives a clear improvement on Theorem 1 for a particular type of cluster.

The CNs of the cluster discussed in Theorem 2(ii) belong to the same row group in the correspond-
ing parity-check matrix; we call CNs that are given by subsequent rows in the parity-check matrix
contiguous. In comparison, not all CNs of the cluster discussed in Theorem 2(iii) are contiguous,
since a 6-cycle must span three distinct row groups of a H(3, p) AB-LDPC code [27, 6]. By compar-
ing the bounds on CCSs given in Theorem 2(ii) and (iii), we see that choosing non-contiguous CNs
that comprise 6-cycles is guaranteed to lower the size of the corresponding CCS. Observing that the
number of edges incident to a CCS W in a (3, p)-regular graph is equal to 3|7¥|, we conclude that
in case of (3, p) AB-LDPC codes, any cluster selection scheme should ensure that clustered CNs are
not contiguous.

4 Cluster Optimization

In this section, we propose a cluster optimization strategy, with the goal of minimizing the number
of edges connected to each CCS in a Tanner graph. Indeed, these edges are responsible for the
propagation of messages between clusters, and consequently for the resulting dependencies between
clusters. Let E(C,,, W) be the set of edges that connect C,, to its CCS W, E(C,,, W) the set of edges
connecting C,, to W, and ¢(C,,) £ |E(Cy, W)|+|E(C.,, W)]| the total number of edges by which
C, is connected to C,, via . Recall from Section 3 that in the case of (j, k)-regular Tanner graphs,
minimizing ¢(C,,) is equivalent to minimizing the size of a CCS, since ((C,,) = j|W|. We cluster
the set of CNs of a Tanner graph via a greedy iterative process: the z CNs of the first cluster, C7, are
chosen optimally from the set of all CNs. Each subsequent cluster is then chosen optimally from the

set of remaining check nodes, with the last cluster consisting of the leftover CNs. Let 1,...,u [m]
denote the indices of the clusters. Formally, this multi-step optimization is given by
Cr = arg min ¢(Cy), )
C.CC\C:_,U---UCY, |Ce|=2
where e € 1,..., [%1 — 1 denotes the index of the optimization step, C. represents a cluster

with index e, and C} denotes the optimal cluster obtained in step e. The final cluster is obtained
automatically, and hence excluded from (5).

Note that the complexity of the optimization in (5) grows exponentially with m, as we need to

search over (mfziefl)) possible cluster choices in each optimization step. To overcome this, we
propose a more computationally feasible cluster optimization approach based on our observation
that the lower bounds in Theorems 1 and 2 corresponds to a maximization of cluster-internal cycles:
indeed, suppose that in each step, we cluster CNs so that the subgraph induced by the cluster and its
neighbors contains as many cycles as possible. Such a cluster will have fewer neighbors compared to
one that does not induce cycles. In turn, the maximum possible size of the corresponding CCS (and
the number of exiting edges) will likely be reduced (see Remark 1). Thus, the cluster optimization
approach based on cycle maximization is given by

C’;‘ = arg max Nk (Ce), ©)
C.CC\Cr_,U..UC}, |Ce|=2

where C'¥ denotes a cycle-maximized cluster, and 7,,(C.) denotes the number of length-x cycles in
the graph induced by Ay (C,) U C,. The possible choices of x depends on the girth of the family
of codes considered; the smaller the choice of «, the lower the optimization complexity, as larger
cycles are more difficult to enumerate. In case of LDPC codes, optimized cycle detection algorithms
based on message-passing have complexity of O(gE?), where g is Tanner graph’s girth and F is the
total number of edges [17]. In a (3, p) AB-LDPC code, whose graph has girth 6, we choose = 6.
We present Algorithm 3 as a method for generating cycle-maximized clusters.

The algorithm inputs are a parity-check matrix H, the cluster size z and the length & of the cycles
to be detected. Let T be the total number of x-cycles in Gg. Foreach x € {1,...,T}, let S, =
{c1,...,cuy2} denote the set of /2 CNs in the k-cycle indexed by =z, and define €’ = {51, ..., S7}.
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Algorithm 3: Optimized clustering via cycle maximization

Input : H, 2, &
Output: Set of cycle-maximized clusters C7, . . . ~’fm /21
Initialize € + 0, x < 1
Run a suitable cycle detection algorithm on G
for each detected k-cycle in Gy do
Determine S
Store Sy in ¢
r—z+1
end
for k-cycles 1,...,T do
Determine the CN ¢* € C'\ C7_; U... U C7 appearing most frequently in ¢
Find the K sets S1,..., Sk € € containing c*
C(—SlU“-USK\C’;‘,lU...UC’f
if [C|> z then
‘ Select z CNs including ¢* from C and store them in C;'
end
else
Select z — |C| CNs randomly from C'\ C?_; U --- U C U C and store them in C’
Cr«cuc
end
end
In Line 13, the algorithm selects z distinct CNs, including ¢*, appearing in St, . . ., Sk, where K is

the total number of sets .S, containing c*. Note from Algorithm 3 that the optimization complexity
depends on 7', which is expected to be much smaller than (m_zie_l)) for sparse H. For example, in
a (3,p) AB-LDPC code, there are only 7' = p?(p — 1) 6-cycles in the Tanner graph [6]. In Section 5
we consider the case where p > 5 and z = 7. For these parameters and for e = 1, the number of
cluster choices using the optimization in (5) is (77) = O(p?) as opposed to p*(p — 1) using (6).

S Experimental Results

In this section, we perform learned sequential decoding by employing cluster-based Q-learning with
contiguous, random, and (cycle-)optimized clusters.

The resulting schemes are denoted by MQC, MQR, and MQO, respectively. As a benchmark, we
compare these three schemes to that wherein the MAB problem is solved by letting the action-
value function be equal to the Gittins index (GI): roughly speaking, the GI represents the long-term
expected reward for taking a particular action in a particular state under the assumption that the
arms are independent bandit processes [25, 11]. We denote this benchmark scheme by MGI. We
then utilize each of these schemes for sequential decoding of both (3,7) AB-LDPC and random
(3,6)-regular LDPC codes. Specifically, Algorithm 2 is used to implement the three cluster-based
learning approaches mentioned above.

As afirst step towards other RL approaches, we have implemented a NS decoder based on Thompson
Sampling [22], NS-TS, which performs better than flooding, but worse than our proposed Q-learning
scheme. Our NS-TS scheme tracks the densities of the messages via a Gaussian approximation and
uses the MSE (m/,,, — mq4_»)? as a non-central chi-square distributed reward, sampled in each
sequential decoding step.

For both considered codes, we let the learning parameters be as follows: « = 0.1, 8 = 0.9, e = 0.6,
2="T7 M =4, lya = 25, and |.Z|= 1.25 x 105. We note that this choice of || is sufficiently
large in order to accurately estimate the action-value function. For clustered Q-learning, training is
accomplished by appropriately updating the CN scheduling step of Algorithm 2 for each code, and
the corresponding action-value functions are used to perform MQC, MQR, and MQO. We compare
the performances of these MAB-NS schemes with the existing non-Q-learning-based BP decoding
schemes of flooding, MGI, and NS for £, = 25.
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Figure 2: BER results using different BP decoding schemes for a (3, 6)-regular LDPC (left figure) and (3, 7)
AB-LDPC code (right figure, code is lifted), with block length n = 196.

The bit error rate (BER), given by Pr[Z; # x;], ¢ € [[n — 1]], vs. channel signal-to-noise ratio
(SNR) E} /Ny in dB of (3, 6)-regular and (3,7) AB-LDPC codes using these decoding techniques
are shown in Fig. 2 on the left- and right-hand side, respectively.

The experimental results reveal that MQO is superior to the other decoding schemes in terms of BER
performance for both codes. In Table 1, we compare the average number of CN to VN messages
propagated in the considered decoding schemes to attain the results in Fig. 2. The numbers without
(resp. with) parentheses correspond to the (3, 6)-regular (resp. (3, 7) AB-) LDPC code. We note that
the MQO scheme, on average, generates a lower number of CN to VN messages when compared to
the other decoding schemes.

Moreover, in contrast to NS, RL-based schemes avoid the computation of residuals in real-time,
providing a significant reduction in message-passing complexity for short LDPC codes.

Table 1: Average number of CN to VN messages propagated in various decoding schemes for a (3, 6)-regular
((3,7) AB-) LDPC code to attain the results shown in Fig. 2.

SNR (dB) 0.5 1 1.5 2 2.5

flooding 27040 (27913) 21716 (24532) 13327 (16098) 6316 (8117) 2500 (3064)
MGI 308 (365) 275 (324) 234 (281) 210 (247) 174 (205)
NS 293 (362) 266 (332) 229 (279) 203 (245) 173 (203)
MQC 351 (411) 299 (369) 266 (313) 218 (264) 190 (215)
MQR 310 (368) 275 (326) 235 (286) 214 (244) 182 (214)
MQO 264 (367) 237 (333) 209 (283) 181 (243) 163 (208)

6 Conclusions

We presented a novel RL-based decoding framework to optimize the scheduling of BP decoders
for short-to-moderate length LDPC codes. The main ingredient is a new state space clustering
approach to significantly reduce the learning complexity. Experimental results show that optimiz-
ing the cluster structure by maximizing cluster-internal short cycles provides marked performance
gains when compared with both previous scheduling schemes and clustered Q-learning with non-
optimized clusters. These gains include lowering both BER and message-passing complexity. As
Bayesian inference over graphical models is at the core of many machine learning applications, on-
going work includes extending our RL approach to other applications involving BP-based message
passing over a factor graph defined by an underlying probabilistic model.



Broader Impact

The proposed approach outlines a comprehensive RL framework for low-complexity, low-latency,
decoding of short-to-moderate length LDPC codes. This approach has broader technological and so-
cietal impacts through several complementary mechanisms, elaborated on as follows. One broader
impact is on the advancement of information technology — and its benefits to society — through
newly established theory and practice in the area of RL-based error correction for linear graph-based
codes. As global per-capita information usage continues to grow significantly over the next decade,
considerable improvements in error correcting codes will be required in order to satisfy the high-
throughput, low-latency requirements of emerging communication systems, while ensuring scalable
service requirements for a host of heterogeneous devices. Our application of RL provides a signif-
icant gain in performance while reducing decoding complexity for linear graph-based codes. As a
consequence, the results of this work have the potential to materially impact our daily lives. In addi-
tion, the results presented in this work have the potential to have a significant transformative impact
on other critical applications employing low-latency, reliable networked communication. Among
many others, these include applications in the fields of healthcare, environmental monitoring, and
finance.
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