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Abstract

Hierarchical clusterings compactly encode
multiple granularities of clusters within a
tree structure. Hierarchies, by definition, fail
to capture di↵erent flat partitions that are
not subsumed in one another. In this paper,
we advocate for an alternative structure for
representing multiple clusterings, a directed
acyclic graph (DAG). By allowing nodes to
have multiple parents, DAG structures are
not only more flexible than trees, but also
allow for points to be members of multiple
clusters. We describe a scalable algorithm,
Llama, which simply merges nearest neigh-
bor substructures to form a DAG structure.
Llama discovers structures that are more ac-
curate than state-of-the-art tree-based tech-
niques while remaining scalable to large-scale
clustering benchmarks. Additionally, we sup-
port the proposed algorithm with theoreti-
cal guarantees on separated data, including
types of data that cannot be correctly clus-
tered by tree-based algorithms.

1 Introduction

Hierarchical clusterings are tree-structured nested par-
titions of a dataset. Each internal node of the tree
corresponds to the candidate cluster of its descendant
leaf data points. The tree structure encodes multiple
alternative granularities of clusterings of the dataset
(Heller and Ghahramani, 2005b). This representation
of uncertainty has been beneficial to modeling user
feedback in entity resolution (Kobren et al., 2019) and
selecting flat partitions from trees (Vitale et al., 2019).

The tree structure of these nested clusterings places
constraints on what clusters (and thereby clusterings)
can be encoded in the tree. In particular, the clus-
ters for which a leaf data point is a member must all
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Figure 1:DAG-Structured Clustering. A substruc-
ture of the clustering produced by our proposed algo-
rithm on a dataset of word vectors. Observe how the
word shepherd appears in both the cluster of dog breeds
as well as the cluster of farm professions.

exhibit sub/super cluster relationships. This requires
that leaves and internal nodes have a single parent in
the structure. This disallows leaf data points to simul-
taneously sit in multiple non-nested clusters.

The constraint of representing only nested clusters has
its limitations (Gama et al., 2017; Jeantet et al., 2020).
Representing overlapping (but non-subsuming) clus-
ters may be desirable when the cluster membership
of data points may be di�cult to determine or when
the underlying structure is better described by a cover
rather than a partition of the data.

Removing the tree-based constraints, we can instead
aim to discover DAG-structured clusterings (Diday,
1987; Liu et al., 2006; Carlsson et al., 2014; Jeantet
et al., 2020, inter alia). A DAG structure is able to
express both alternative sub/superset clusters for a
point and can better explain data for which points
should belong to overlapping clusters. For example,
Figure 1 shows a subset of the DAG structure built by
our method when clustering word embeddings. The
structure can simultaneously represent two senses of
the word shepherd (the type of dog and the profession).
Such a structure cannot be represented by a tree.

To the best of our knowledge, there does not ex-
ist e↵ective algorithms for inferring DAG-structured
clusterings at scale. Inferring DAG structures is com-
putationally very challenging. Discovering meaning-
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ful DAG-structured clusterings increases the computa-
tional burden over the already massive combinatorial
search space of hierarchical clusterings.

Previous work on building DAG-structured clusterings
(Diday, 1987; Liu et al., 2006, 2007; Jeantet et al.,
2020) use sequential bottom-up approaches limited to
datasets with a few thousand points, much smaller
than datasets on which hierarchical clustering has been
applied. Flat structures where points are assigned to
multiple clusters is common in approaches such as la-
tent feature models (Gri�ths and Ghahramani, 2011)
and dictionary learning (Mairal et al., 2009). These
approaches are not typically nested, however, and
bear di↵erent semantics than hierarchical clustering.
Other work has studied the representational capacity
of DAG-structured clusterings theoretically (Bertrand
and Janowitz, 2002; Gama et al., 2017; Culbertson
et al., 2018). For particular families of probabilistic
clustering, Greenberg et al. (2018, 2021) use DAG
structured clusterings to compactly represent distri-
butions over (and MAP inference for) flat/hierarchical
clusterings e�ciently via dynamic programming.

Contributions: We present a scalable algorithm for
discovering meaningful DAG-structured clusterings on
large datasets. The proposed method, Llama, scales
to large datasets and is inspired by the classic recip-
rocal nearest neighbors algorithm (Murtagh, 1983),
Llama is a simple round-based algorithm which works
by merging together pairs of nearest neighbor nodes.
The asymmetry of nearest neighbor relationships leads
to the departure from the tree-structure. The pro-
posed method supports parallelism and builds struc-
tures that are not exponential in the size of the dataset.
We advocate Llama as an e↵ective alternative to hi-
erarchical clustering with both a theoretical and em-
pirical analysis. We provide a theoretical analysis of
Llama, demonstrating that it can not only recover
the same classes of separated data that scalable hier-
archical clustering methods can recover (Monath et al.,
2019a), but also recover a less restrictive class of sepa-
rated data that is not recoverable by these tree-based
methods. We provide a comprehensive empirical eval-
uation that demonstrates that Llama produces higher
quality clusterings than state-of-the-art tree and DAG
structured methods. We further motivate a series of
metrics for evaluating DAG-structured clusterings.

2 Clustering Structures

Before describing our proposed approach, we define the
DAG-structured clusterings that we seek to discover
in this paper. Let X refer to a dataset of N points
X = {x1, . . . , xN}. A cover of X refers to a collection
of subsets of X such that their union is equal to X. A
clustering or partition of X is a set of disjoint subsets
that are a cover of X. A hierarchical clustering is:

Definition 1. (Hierarchical Clustering (Krish-
namurthy et al., 2012)) A hierarchical clustering,
T , of a dataset X, is a set of clusters where X 2 T ,
and 8x 2 X, {x} 2 T , and for each Ci, Cj 2 T either
Ci ⇢ Cj, Cj ⇢ Ci or Ci \ Cj = ;. For any cluster
C 2 T , if 9C

0 with C
0
⇢ C, then there exists a set

{Ci}
k
i=1 of disjoint clusters such that

Sk
i=1 Ci = C.

The definition of hierarchical clustering is in terms
of subsets of X rather than as a discrete data struc-
ture with nodes and edges. There is, however, a direct
mapping between the discrete data structure and the
set-based definition. In the data structure, the nodes
correspond to sets in T . A parent-to-child edge exists
between Cp and Cc if Cc ( Cp and @C 0 such that
Cc ⇢ C

0
⇢ Cp. A hierarchical clustering encodes a

number of di↵erent tree consistent partitions (Heller
and Ghahramani, 2005b), which are sets of (sub)-tree
roots in T that form flat clusterings.

We are interested in discovering rooted DAGs:

Definition 2. (DAG-Structured Clustering) A
DAG-Structured clustering, D, of a dataset X, is a
subset of the powerset of X, D ⇢ P(X) containing at
least a root node of the entire dataset X 2 D and the
shattered partition {{x} | x 2 X} ⇢ D.

As in the case of tree structures, we can provide a map-
ping between a DAG data structure and the nested col-
lection of sets. Like the tree structure case, a parent-
to-child edge exists between Cp and Cc if Cc ( Cp

and @C 0 such that Cc ⇢ C
0
⇢ Cp. In this case, how-

ever, a node may have multiple parent nodes, hence
calling this a DAG-structured clustering. The set of
clusters in a DAG-structured clustering form a par-
tially ordered set, where the containment relationship
defines the ordering. The connections to partially or-
dered sets/Hasse Diagrams have been studied theoret-
ically (Liu et al., 2007; Gama et al., 2017; Carlsson
et al., 2014; Culbertson et al., 2018, inter alia).

3 DAG-Structured Clustering

In this section, we describe an agglomerative algo-
rithm for building DAG-structured clusterings. The
approach is simple; in each round, nearest neighbor
nodes are merged to build additional structure. The
asymmetry of nearest neighbor relationships enables
the points to sit in multiple clusters simultaneously.
The algorithm builds structures that are polynomial
in the size of the dataset in the worst case, which is
advantageous given that DAG-structured clusterings
may have exponentially many nodes.

3.1 Warmup: Reciprocal Nearest Neighbors

Given a dataset X, agglomerative methods work in a
sequential round-based fashion, merging together clus-
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Figure 2: Llama Algorithm. An example of the algorithm applied to a toy example graph. The nearest neighbor
relationships of each round are shown. The resulting structure is shown on the far right.

ters from the previous round. The initial round of the
algorithm begins with each point in a separate clus-
ter {{x} | x 2 X}. Each round is a flat clustering;
H

(i) = {C1, · · · , CK} is used to refer to round i.

A linkage function, f : P(X) ⇥ P(X) ! R, describes
the inter-cluster similarities. In the classic hierarchical
agglomerative clustering (HAC) algorithm, each round
builds a single new cluster that is the union of the most
similar pair of clusters in round H

(i), i.e.,

C,C
0 = argmax

B,B02H(i�1)⇥H(i�1)

f(B,B
0) (1)

H
(i) =

⇣
H

(i�1)
[ {C [ C

0
}

⌘
\ {C,C

0
}. (2)

For convenience, we assume that the self-similarity of a
set is the minimum possible value, i.e. f(C,C) = �1.

The reciprocal nearest neighbor algorithm (Murtagh,
1983) can be more e�cient than HAC and for reducible
linkage functions produce the same structure. Recip-
rocal nearest neighbors are defined as two C,C

0 in the
clustering, H, which are more similar to one another
than either is any other object in the collection. The
algorithm builds the clustering of round H

(i) by merg-
ing all pairs of reciprocal nearest neighbors in H

(i�1):

R
(i) = {(C,C 0) | C 0 = argmax

B2H(i�1)

f(C,B) ^ (3)

C = argmax
B2H(i�1)

f(C 0
, B)}

H
(i) =

⇣
H

(i�1)
[ {C [ C

0
|(C,C 0) 2 R

(i)
}

⌘
\ (4)

{B|B = C _B = C
0
, (C,C 0) 2 R

(i)
}.

3.2 Building DAG-Structures

Akin to the reciprocal nearest neighbor algorithm
(Murtagh, 1983), we present a simple algorithm for
building DAG-structured clusterings. First, we will de-
part from the hierarchical clustering tradition by re-
moving the assumption that each round of the algo-
rithm will refer to a flat clustering. Instead, each round

will represent a cover of the dataset. Points may be
assigned to multiple clusters1 in the given round. We
overload notation and use H

(i) to refer to the cover
produced in round i.

The algorithm begins with each data point in its own
cluster. In round i, each cluster C finds its nearest
neighbor C

0 among the members of the cover H
(i�1).

These two are merged to form a new node C [ C
0 in

the following round. This is done for all pairs of nearest
neighbors:

N
(i) = {(C,C 0) | C 0 = argmax

B2H(i�1)

f(C,B)} (5)

H
(i) = {C [ C

0
|(C,C 0) 2 N

(i)
}. (6)

Observe that non-reciprocal nearest neighbor relation-
ships are the source of a cluster having more than one
parent in the given round. The cluster of points, C,
may be the nearest neighbor of many other clusters
C

0. Any cluster C 2 H
(i�1) may have multiple super-

sets in H
(i), and that every nearest neighbor cluster

C
0 of C 2 H

(i�1) will lead to a unique superset of
C 2 H

(i). From the data structure point of view, the
node corresponding to cluster C will have a parent
corresponding to the cluster of C [C

0 for each unique
nearest neighbor cluster C 0.

We refer to this algorithm as Lattices by Leveraging
Agglomerations and Multiple Ancestors (Llama) be-
cause of its ability to build clustering structures where
points have multiple ancestries. We take the number
of rounds used in the algorithm as an optional hyper-
paramater. Pseudocode is given in Algorithm 1.

The algorithm can be implemented to utilize paral-
lelism. The computation of N (i) is trivially paralleliz-
able. The computation of H(i) can also be parallelized
using H

(i�1) and N
(i). In Appendix A.1, we discuss

how the choice of linkage function impacts scalability.

3.3 Limiting the Size of the DAG-structures

The size of the DAG-structures discovered by Llama
will depend on the number of parents of each node.

1We use cluster to refer to member sets of a cover.
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Algorithm 1 Llama

1: Input: X : dataset, f : set similarity function, L:
number of rounds (optional, default 1)

2: Output: D: a DAG-structured clustering
3: H

(0)
 {{x} | x 2 X}

4: D  H
(0)

5: for i from 1 to L do
6: N

(i)
 {(C,C0)|C0 = argmaxB2H(i�1) f(C,B)}

7: H
(i)

 {C [ C
0
| (C,C 0) 2 N

(i)
}.

8: D  D [H
(i)

9: if |H
(i)
| = 1; return D

10: return D

Most simply, the number of parents can be be bounded
by an additional hyperparameter in the algorithm, p.
We can then adapt the Llama algorithm to select at
most p parents for each node. We propose to do this
by finding the top p entries in N

(i) for C, according to
f(·, ·), we refer to this set as PC . We will then restrict
the entries in N

(i) to be those tuples (C,C 0) such that
(C,C 0) 2 PC and (C,C 0) 2 PC0 (in both of the clus-

ters’ top p lists). Let N
(i)
C be the entries in N

(i) that
contain C, then in our set-based notation, this is:

PC = argtopk
(B,B0)2N

(i)
C

f(B,B
0) (7)

N
(i)0

 {(C,C 0) | (C,C 0) 2 PC \ PC0} (8)

We then update H(i) to include both the new sets from
N

(i)0 as well as singleton clusters that were assigned
no parent:

H
(i)0 = {C[C0

| (C,C0) 2 N
(i)0

}[{C|PC\N
(i)0 = ;} (9)

4 Theoretical Analysis

We would like to understand what kinds of data
Llama will be e↵ective at clustering. We prove that,
under certain separation assumptions, Llama is able
to recover the ground truth clustering as is often
done in the clustering literature (Balcan et al., 2014;
Kushagra et al., 2016; Bachem et al., 2015; Kobren
et al., 2017, inter alia). While data in practice may not
satisfy these separation assumptions, we believe that
this analysis supports our empirical evaluation by: (1)
proving our algorithm will work as expected on data
for which clusters are clearly defined, (2) providing in-
sights into the representational capacity of the model,
which can help understand its behavior.

In this section, we show that Llama is able to accu-
rately recover the target partition when data follows
a particular generalization of strictly separated data,
model-based separated data (Monath et al., 2019a). We
then describe a related class of separated data, less re-
strictive than model-based separated. We demonstrate

that Llama is able to recover the target partition
while tree-based methods such as HAC and Grinch
(Monath et al., 2019a) cannot.

4.1 Model-based Separation

The model-based separation condition defines the be-
havior of a linkage function f with respect to dataset
X and a ground truth partition of X, denoted H

?.
Model-based separation defines f ’s behavior in terms
of a latent graph structure. This latent graph is un-
observed at the time of clustering (i.e., the input to
the clustering problem is X, not this graph structure).
This graph G = (X,E) has one vertex per datapoint
in X and edges are defined such that the connected
components of G are exactly the clusters of H?.

Intuitively, model-based separation says that the link-
age function similarity between two sets of points C0

and C1 that are connected in G is higher than C0 or
C1’s similarity with any other set C2 which it is not
connected to. Formally, the condition is as follows:

Definition 3. (Model-based Separation
(Monath et al., 2019a)) Let G = (X,E) be a
graph. Let f : P(X) ⇥ P(X) ! R+ be a symmetric
linkage function that computes the similarity of two
groups of vertices and let g : P(X)⇥P(X) ! {0, 1} be
a function that returns 1 if the union of its arguments
is a connected subgraph of G. Then f separates G

if 8C0, C1, C2 ✓ X, g(C0, C1) > g(C0, C2) =)
f(C0, C1) > f(C0, C2). The target partition, H

?,
which is model-based separated, corresponds to
connected components in G.

Observe that strictly separated data (i.e., data for
which all within cluster similarities are more than
across cluster similarities) (Balcan et al., 2008) is a
special case of model-based separation. Strictly sepa-
rated data corresponds to the case where each cluster
in the underlying latent graph is a clique. Similarly,
tree or chain structured clusters can be described if
each cluster’s connected component in the underlying
latent graph is a tree or chain.

We are interested in understanding whether a target
partition H

? is contained in the hierarchical / DAG-
structured clusterings produced by an algorithm. HAC
and Grinch both produce trees that contain the tar-
get partition as a tree consistent partition. We now
show that Llama is also able to recover the target
partition as a DAG-consistent partition.

To show that Llama can recover DAG structures that
contain the target model-based separated partition
H

?, we make the following observation about the pairs
of nearest neighbors that are merged in each round:

Lemma 1. Given a dataset X and a symmetric link-
age function f such that X is model-based separated
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with respect to f , let H
? be the target partition cor-

responding to the separated data. In each round of
Llama, each pair of nearest neighbors (C,C 0) 2 N

(i),
will satisfy:

9C
⇤
2 H

⇤ s.t. C [ C
0
✓ C

⇤
, C

⇤
✓ C, or C

⇤
✓ C

0
.

Please see Appendix §B.1 for the proof.

Theorem 1. Given a dataset X and a symmetric link-
age function f such that X is model-based separated
with respect to f , let H

? be the target partition cor-
responding to the separated data. Let D be the DAG-
structured clustering produced by Llama (Alg. 1), then
H

? is a D consistent partition, H?
⇢ D.

Proof Sketch. Lemma 1 indicates that points from the
same ground truth cluster in the target partition will
be merged together until there are no more such points
to be merged. We only extend to cross-cluster merg-
ing (the latter two conditions of Lemma 1) when we
have contained a full ground-truth cluster in the DAG.
After some number of rounds, we show that this must
happen for each cluster in the target partition. A com-
plete proof is in the Appendix §B.1.

We have now seen that Llama is at least as expres-
sive as tree-based methods for clustering model-based
separated data. Now we turn to a data separation as-
sumption that is not recovered by tree-based methods.

4.2 Noisy Model-based Separation

While model-based separation allows some additional
flexibility compared to strict separation, it is overly
rigid in its assumption that every point in a cluster
has some point in their cluster that is closer than ev-
ery point outside of their cluster. In this section, we
propose a loosening of this restriction to allow some
points to have nearest neighbors outside their clusters,
which we refer to as noisy model-based separation.

Intuitively, noisy model-based separation says that a
point x in a ground truth cluster C? may have a near-
est neighbor x

0 such that x
0 is not in C

?, provided
that there exists another point x00

2 C
? whose nearest

neighbor is x. Formally, we need to make an additional
restriction on the linkages that separate this data:

Definition 4. (Noisy Model-based Separation)
Let G = (X,E) be a graph with connected components
H

?. Let f : P(X)⇥ P(X) ! R+ be a symmetric link-
age function that computes the similarity of two groups
of vertices. Let g : P(X) ⇥ P(X) ! {0, 1} be a func-
tion that returns 1 if the union of its arguments is a
connected subgraph of G. The function f separates G

if 8C0, C1, C2 ✓ X either:

• g(C0, C1) > g(C0, C2)=)f(C0, C1) > f(C0, C2);
or

• |C0| = |C1| = |C2| = 1, g(C0, C1) > g(C0, C2),
f(C0, C2) > f(C0, C1), 9x 2 X s.t. g(C0, {x}) =
1 and C0 = argmaxx02X f({x}, {x0

})

We now prove that Llama recovers a DAG-structure
with the noisy model-based separated partition and
that tree-based methods cannot recover the target par-
tition for some such datasets.

Proposition 1. Given a dataset X and a symmetric
linkage function f such that X is noisy model-based
separated with respect to f , let H? be the target parti-
tion corresponding to the noisy model-based separated
data. Let D be the DAG-structured clustering produced
by Llama (Alg. 1), then H

? is a D consistent parti-
tion, H?

⇢ D.

Proposition 2. There exists a datasets X and sym-
metric linkage function f such that X is noisy model-
based separated wrt f , let H

? be the target partition
corresponding to the noisy model-based separated data.
HAC and Grinch produces a structure T such that
H

? is not a tree consistent partition, H?
6⇢ T .

Please see Appendix §B.2 for more detail.

Finally, we note that less restrictive separation mod-
els have been considered. Balcan et al. (2014) use a
particular linkage function to discover tree structures
that contain the target partition, given a more flex-
ible separation model. Model-based separation anal-
ysis, on the other hand, presumes a linkage function
with the particular properties is given. Future work
might consider if particular linkage functions that can
be used with DAG-structured clustering algorithms for
broader, less-rigid, data separation assumptions.

4.3 Complexity

We analyze the space and time complexity of Llama.
See Appendix §B.3 for proofs for each statement.

Proposition 3. (Space Complexity). Given a
dataset of N points, Llama produces DAG-structured
clusterings with at most O(N2) nodes.

Proposition 4. (Time Complexity). Given a
dataset of N points, R rounds of Llama requires at
most O(R ⇤N

2) linkage function computations.

Proposition 5. (Number of Rounds). Let H? be
the target partition of a dataset that is (noisy) model-
based separated, let K be the size of the largest cluster
in H

?. K = maxC2H? |C|. After K rounds, Llama
produces a structure that contains H

?.

5 Evaluation Measures of
DAG-structured Clusterings

Hierarchical clustering is often evaluated on datasets
for which there exists a ground truth flat cluster-
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ing. Evaluation measures such as dendrogram purity
(Heller and Ghahramani, 2005b) are often used. Den-
drogram purity, which is the average purity of the least
common ancestor of pairs of same cluster points, does
not translate well to DAG-structured clusterings. In
particular, there exist trivial DAGs that produce per-
fect dendrogram purity scores (see Appendix §C.1).

To the best of our knowledge, there are not well es-
tablished metrics to measure the quality of DAG-
structured clusterings. We describe and motivate met-
rics here that can be used for both tree and DAG-
structured clustering. Further, we note that these met-
rics can be used in the case that there exists a ground
truth partition of the data as well as in the case where
there is a ground truth cover of the data.

5.1 Recall-Focused Metrics

First, we consider metrics that mimic recall metrics
in information retrieval. We measure whether each
ground truth cluster is faithfully represented in a
tree or DAG-structured clustering using Jaccard sim-
ilarity. The Jaccard similarity is defined between a
ground truth cluster C

? and predicted cluster Ĉ:

Jacc(C?
, Ĉ) = |C?

\Ĉ|

|C?[Ĉ|
.

Mean Jaccard Per Label We measure the mean
over ground truth cluster (or cover) labels of the max-
imum Jaccard similarity of the ground truth clusters
with the predicted structure. This metric was also pro-
posed by (Liu et al., 2007).

Jacc/lbl(D,H?) =
1

|H?|

X

C?2H?

max
Ĉ2D

Jacc(C?, Ĉ) (10)

Mean Jaccard Per Point We also compute the
mean of the Jaccard similarity over the ground truth
points for the highest scoring predicted clustering in
the DAG:

Jacc/pt(X,D,H?) =
1
Z

X

x2X

X

C?2H?
x

max
Ĉ2D

Jacc(C?, Ĉ) (11)

where Z =
P

x2X |H
?
x| and where H

?
x are the ground

truth cluster assignments of x. Observe that each met-
ric obtains a value of 1 if and only if each of the ground
truth clusters are represented predicted structure.

5.2 Precision-Focused Metrics

The recall-focused metrics are not enough to measure
the quality of a DAG or tree structure. A DAG struc-
ture that contains the full powerset P(X) of a dataset
would be unmanagably large and contain a multitude
of potentially irrelevant substructure. Yet this would
achieve a perfect score in terms of the recall-focused
metrics. And so, we consider a metric that is focused

on the quality of each node in the predicted structures.
We encourage structures to be as precise as possible.

Mean Jaccard Per Node We measure mean of the
Jaccard similarity of each node with its best aligned
ground truth cluster.

Jacc/node(D,H?) =
1
|D|

X

Ĉ2D

max
Ĉ?2H?

Jacc(C?, Ĉ) (12)

6 Experiments

We compare the performance of Llama to state-of-
the-art methods for hierarchical and DAG-structured
clusterings. We evaluate the e↵ectiveness of each at
recovering ground-truth labeled data. We further at-
tempt to automatically reconstruct the DAG-structure
WordNet (Miller, 1995) from vector representations of
words using Llama.

6.1 Clustering Benchmarks

First, we consider datasets where each point is assigned
one ground truth cluster. In this experiment, we hope
to understand if the clusters for each point that are
discovered by Llama are better aligned with the un-
derlying data than those of competing methods.

Following previous work (Kobren et al., 2017), we run
experiments on publicly available large scale hierar-
chical clustering benchmark datasets. We evaluate on
the following datasets: Speaker, feature vectors rep-
resenting audio signals of spoken voices from di↵er-
ent speakers (each speaker is a ground truth cluster)
(Greenberg et al., 2014); ALOI (Amsterdam Library
of Object Images), histogram features of toy objects
(Geusebroek et al., 2005); ILSVRC (Sm.) (50K
subset) and ILSVRC (Lg.) (1.2M Images) In-
ception embeddings from the ImageNet ILSVRC 2012
dataset (Russakovsky et al., 2015); Imagenet a sam-
ple of 100k images from all 17K classes present in Im-
ageNet. See Appendix §C.2 for additional details.

We evaluate against the following tree-based methods:
A�nity clustering (A↵.) (Bateni et al., 2017), a
round-based bottom-up hierarchical clustering method
that connects each point to its nearest neighbor in a
single round and builds nodes in a tree based on con-
nected components in this 1-nearest neighbor graph;
Grinch (Monath et al., 2019a), an online hierarchical
clustering method that performs tree re-arrangements
after each point is inserted; Reciprocal Nearest
Neighbors (RcNN) (Murtagh, 1983), the classic ag-
glomerative algorithm described in Section 3.1.

Each dataset uses cosine similarity. Llama, RcNN,
and A�nity all make use of linkage functions that
use k-nearest neighbor graph sparsification. This tech-
nique precomputes a k-NN graph over the dataset so as
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Llama RcNN A�nity Grinch

Sing. Avg. Sing. Avg. Sing. Avg.

Ja
cc
/n

o
de

ALOI 0.067 0.117 0.068 0.037 0.027 0.027 0.052
ILSVRC (Sm.) 0.154 0.284 0.146 0.076 0.044 0.047 0.171
Speaker 0.271 0.329 0.231 0.227 0.175 0.177 0.257
ImageNet 0.154 0.154 0.178 0.173 0.171 0.169 0.165
ILSVRC (Lg.) 0.023 0.023 - 0.005 0.002 0.003 -

Ja
cc
/p

t

ALOI 0.700 0.560 0.594 0.593 0.648 0.518 0.509
ILSVRC (Sm.) 0.559 0.655 0.393 0.626 0.537 0.555 0.575
Speaker 0.485 0.582 0.467 0.563 0.430 0.447 0.564
ImageNet 0.219 0.219 0.201 0.218 0.199 0.199 0.208
ILSVRC (Lg.) 0.540 0.604 - 0.621 0.546 0.530 -

Ja
cc
/l
bl

ALOI 0.759 0.647 0.704 0.669 0.713 0.605 0.615
ILSVRC (Sm.) 0.638 0.728 0.528 0.707 0.617 0.638 0.661
Speaker 0.665 0.726 0.659 0.713 0.607 0.615 0.711
ImageNet 0.390 0.399 0.366 0.384 0.360 0.360 0.372
ILSVRC (Lg.) 0.623 0.677 - 0.702 0.625 0.615 -

Table 1: Clustering Benchmarks. Precision metric is Jacc/node and Recall metrics are Jacc/pt and Jacc/lbl.

Llama Llama RcNN OHC
Avg. link. Approx. Exact.

Ja
cc
/n

od
e ALOI 0.152 0.100 0.044 0.091

ILSVRC 0.346 0.2647 0.090 0.197
Speaker 0.405 0.408 0.271 0.349

ImageNet 0.275 0.324 0.280 0.268

Ja
cc
/p

t ALOI 0.984 0.979 0.950 0.990
ILSVRC 0.975 0.973 0.976 0.924
Speaker 0.804 0.832 0.813 0.827

ImageNet 0.593 0.604 0.583 0.567

Ja
cc
/l
bl

ALOI 0.897 0.892 0.880 0.908
ILSVRC 0.936 0.935 0.936 0.904
Speaker 0.844 0.860 0.853 0.843

ImageNet 0.688 0.698 0.690 0.690

Table 2: Comparison to OHC. We sample datasets
of 1000 points and report results with average linkage.
A↵. and Grinch are outperformed by other methods.
We compare the two variants of average linkage (§A.1).

to make the argmax operations in the algorithm more
e�cient (§A.1). For RcNN, and A↵. we report results
with both single and average linkage. For Llama, we
use single and a approximation of average linkage that
supports a more e�cient implementation (§A.1). For
Grinch, which does not use k-NN graph sparsification,
we use its most e�cient (and best performing) imple-
mentation that uses a centroid-based linkage.

Table 1 shows the results for this experiment. We
observe that Llama outperforms the other methods
in all but three of the dataset/metric combinations.
We hypothesize that the improvements observed by
Llama are due to the DAG structure’s flexibility
in representing alternative clusterings. Importantly,
Llama performs better on both the precision-based

Llama RcNN A↵. Grinch

Ja
cc
/n

o
de

EURLex-4k 0.182 0.156 0.142 0.111
Bibtex 0.081 0.025 0.017 0.024
Wiki10-31K 0.298 0.404 0.411 –
Delicious 0.068 0.027 0.020 0.026
MediaMill 0.009 0.004 0.003 –

Ja
cc
/p

t

EURLex-4k 0.172 0.180 0.143 0.061
Bibtex 0.178 0.198 0.166 0.067
Wiki10-31K 0.184 0.104 0.168 –
Delicious 0.108 0.129 0.124 0.109
MediaMill 0.335 0.342 0.339 –

Ja
cc
/l
bl

EURLex-4k 0.466 0.455 0.424 0.332
Bibtex 0.172 0.179 0.138 0.089
Wiki10-31K 0.415 0.392 0.361 –
Delicious 0.090 0.091 0.076 0.056
MediaMill 0.099 0.096 0.089 –

Table 3: Covering Benchmarks. The datasets for
which Grinch did not finish are marked with dashes.
All methods use average linkage.

(Jacc/node) and recall-based (Jacc/pt, Jacc/lbl) met-
rics. This indicates that the structures discovered by
the method include, on average, nodes that are bet-
ter aligned with the ground truth clustering (recall)
and fewer spurious nodes that do not have significance
with respect to the underlying data (precision). The
dashed cells indicate the algorithm exceeded our 10hr,
150GB RAM limit.

To compare with bottom-up DAG-structured cluster-
ing algorithms that operate in a sequential fashion,
we compare to Overlapping Hierarchical Cluster-
ing (OHC) (Jeantet et al., 2020). OHC is a DAG-
structured clustering method that considers agglom-
erations, like HAC, one edge at a time and uses a dis-
tance threshold to determine whether a node should
participate in multiple agglomerations. We could not
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Leaf Node Ancestors Discovered by Llama

blossoming

{blossom, blossoming}, {budding, blossoming}, {budding, emergent, emerging, fledgling, incipient, nascent,
blossoming}, {abloom, blooming, flowered, flowering, bloom, bloomer, bloomers, blossom, blossoming},
{abloom, autumn-flowering, blooming, early-blooming, early-flowering, fall-blooming, flowered, flowering,
half-hardy, late-blooming, late-flowering, planted, seeded, sown, spring-blooming, sprouted, summer-bloom}

disloyal

{disloyal, allegiance, disloyalty, loyalty}, {anti-american, disloyal, pro-american, seditious, traitorous,
treasonable, treasonous, un-american, unpatriotic, collaborationist, disloyalty, incitement, quisling,
sedition, traitor, treason, treasonist, turncoat }, {adulterous, disloyal, faithless, unfaithful,
adulterer, adultery, allegiance, commitment, dedication, devotedness, devotion, disloyalty, faithfulness,
faithlessness, fealty, fidelity, fornication, infidelity, loyalty, unfaithful}

Table 4: WordNet Clusters Sample nodes from the DAG-structured clustering. We observe that the algorithm
discovers interesting overlapping components clusters with di↵erent lineages of words revealing multiple senses.

get results for OHC on the above datasets in the 10
hours/dataset we allot to each method as these are
much larger than the ones used by in the original pa-
per. To provide a comparison to OHC, we compare the
methods on a random subset of 1000 points and eval-
uate the methods on these subsets. We run a hyperpa-
rameter sweep over the parameters of OHC (merging
criterion and batch size) and report the best perform-
ing OHC result for each dataset in Table 2.

In the experiments, we use 50 rounds for Llama
and restrict the number of parents to be 5. RcNN
needs around 100 rounds for convergence on all ex-
cept ILSVRC (Lg.) needing 200 rounds. We analyze
two hyperparameters of Llama in Fig. 3. We plot the
accuracy performance as a function of the number of
neighbors in the k-NN sparsification and the number
of rounds used. We perform additional analysis of the
hyperparameters in §C.3 of the Appendix.

6.2 Covering Benchmarks

Next, we take extreme multi-label classification bench-
mark datasets for which the ground truth is a cover
rather than a partition (See §C.2): MediaMill, Deli-
cious, BiBTeX, EURLex-4k, Wiki10-31K.

We compare to the same set of algorithms as used in
Section 6.1. We use the same Jaccard-based metrics
as before since these metrics can be applied to both
partition and cover-based labelings of data. We use
the same experimental settings that are used for the
partition-based benchmarks. Table 3 provides the re-
sults for this experiment. We observe that our pro-
posed method either outperforms or is competitive
with tree-based metrics on all datasets/metrics.

Llama Llama RcNN A↵. Grinch

Rounds 50 5

Jacc/node 0.307 0.474 0.571 0.667 0.532
Jacc/pt 0.714 0.714 0.695 0.645 0.664
Jacc/lbl 0.869 0.869 0.857 0.823 0.839

Table 5:WordNet Reconstruction evaluation metrics.

6.3 WordNet Reconstruction

We perform analysis on the task of automatically
building lexical resources. WordNet (Miller, 1995; Fell-
baum, 1998) is a manually curated resource that
records, among other information, synsets, sets of En-
glish words that are synonymous. Words may be pol-
ysemous and so the same word spelling may exist in
two synsets. We attempt to recover these synsets from
the vector data using Llama and other approaches.

We select the subset of WordNet for which the word
type has a representation in the fasttext model (leav-
ing 64K words) (Mikolov et al., 2018). We again use
average linkage with cosine similarities as in the prior
experiments. Each word has a single embedding for
its spelling. This means that both senses of the word
crane are represented by the same point. We take the
synset labels of these words as the ground truth labels.

Table 5 provides the quantitative results. We show re-
sults for two variants of Llama, one with 50 rounds
and another with 5 rounds. We hypothesized that the
structure of the synsets is relatively fine grained and
so introducing additional rounds of the algorithm that
adds larger nodes is the reason for the decrease in the
precision-based mean Jaccard per node metric.

Despite each word having a single point representation,
we are able to discover alternative senses of various
words using Llama (Figure 1 and Table 4).

7 Related Work

DAGs. The discovery of DAG-structured clusterings
has been considered by previous work as PoCluster-
ing (Liu et al., 2006, 2007) (poset clustering), over-
lapping hierarchical clustering (OHC) (Jeantet et al.,
2020), and others (Jardine and Sibson, 1971; Diday,
1987; Bertrand and Janowitz, 2002; Kramer et al.,
2014; Carlsson et al., 2014; Bertrand and Diatta, 2017;
Gama et al., 2017; Culbertson et al., 2018; Mémoli and
Okutan, 2020, inter alia). In our empirical comparison,
we compare to OHC which shares a similar structure
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Figure 3: k-NN Sparsification & Num Rounds.
We plot the Jacc/pt for each method as a function of
the k-NN and the number of rounds hyperparameters.

to methods such as PoCluster (Liu et al., 2006, 2007)
and CLIXO (Kramer et al., 2014), in their sequential
consideration of ordered pairwise similarities. Pyrami-
dal clustering (Diday, 1987; Bertrand and Janowitz,
2002) represent a special case of DAG-structured clus-
tering where nodes have at at most two parents. In the
same way the relationship between ultrametrics and
tree structures has been explored (Ailon and Charikar,
2005; Carlsson and Mémoli, 2010; Cohen-Addad et al.,
2020), theoretical work has considered the relationship
between di↵erent kinds of metrics and DAG-structured
clusterings as well as more general representational ca-
pacity considerations (Bertrand and Janowitz, 2002;
Carlsson et al., 2014; Gama et al., 2017; Culbertson
et al., 2018; Mémoli and Okutan, 2020).

Feature Models & Grouped Data. Mixed mem-
bership models such as sparse dictionary learning
(Mairal et al., 2009, inter alia) and latent feature mod-
els (Gri�ths and Ghahramani, 2011, inter alia) pro-
duce an assignment of points to overlapping clusters.
These approaches typically attempt to reconstruct a
data matrix and use the overlapping clusters to cap-
ture di↵erent components of each data point. Our
work, on the other hand, represents alternative clus-
ters, where each point is an equal member of its clus-
ters. Our work di↵ers from topic models and related
models that build tree and DAG structures (Paisley
et al., 2014; Zhang and Paisley, 2015, inter alia) in
that we do not operate on grouped data.

Graph-based methods. Ego-splitting methods
(Epasto et al., 2017) operate on graph-based data, and
create duplicate copies of certain nodes in the graph,
allowing data to be simultaneously attributed to mul-
tiple clusters, however these approaches are limited to
flat structures. Other work has considered discovering
clusters in asymmetric graphs (Carlsson et al., 2014;

Vasiliauskaite and Evans, 2020).

Multiple Alternative Clusterings. Other work has
attempted to discover several distinct partitions for
a given dataset. (Jain et al., 2008; Qi and Davidson,
2009; Niu et al., 2010; Wu et al., 2018).

Gradient-based Methods. Recent work has ex-
plored discovering DAG structures via gradient de-
scent (Zheng et al., 2018, 2020). Other work has con-
sidered continuous representations of hierarchical clus-
terings with objectives optimized by gradient descent
(Monath et al., 2019b; Chami et al., 2020).

Geometric embeddings. Cone (Vendrov et al., 2015;
Lai and Hockenmaier, 2017; Ganea et al., 2018), hy-
perbolic (Nickel and Kiela, 2017, 2018; Law et al.,
2019), disc (Suzuki et al., 2019), and box (Vilnis et al.,
2018; Dasgupta et al., 2020) embeddings been shown
to be used to be e↵ective at representing partially or-
dered sets, DAGs, and trees. Directly representing ev-
ery member of the powerset using these methods is
computationally infeasible. Instead, one could consider
using union/intersection operations to represent clus-
ters parameterizing only the base elements.

Hierarchies. Hierarchical clustering is widely studied
theoretically (Balcan et al., 2014; Chaudhuri et al.,
2014; Dasgupta, 2016, inter alia), empirically (Zhang
et al., 1997; Rao et al., 2010, inter alia) and from scala-
bility aspects (Olson, 1995; Garg et al., 2006; Jin et al.,
2013; Dubey et al., 2014; Hu et al., 2015; Jin et al.,
2015; Bateni et al., 2017; Yaroslavtsev and Vadapalli,
2018; Moseley et al., 2019; Santos et al., 2019; Dubey
et al., 2020). These related works define cost functions,
data models, and approximation algorithms for discov-
ering meaningful structures. We also refer readers to
hashing-based (Abboud et al., 2019) and randomized
approaches (Heller and Ghahramani, 2005a). Our goal
was to show the applicability of DAG-based methods
where tree-based method are typically used.

8 Conclusion

In this paper, we present an algorithm for building
DAG-structured clusterings, Llama, as an alternative
to hierarchical clustering. We show that Llama can
discover higher quality structures than state-of-the-art
tree and DAG-based alternatives. We evaluate on clus-
tering benchmarks (of around 1M points) demonstrat-
ing Llama can be run at the same scale as tree-based
methods. We additionally provide a theoretical anal-
ysis that shows there exist classes of separable data
for which Llama can recover the ground truth clus-
tering while tree-based alternatives cannot. We hope
that this paper can lead to future work to considering
DAG-structured clustering work as an alternative to
tree-based methods.
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