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Abstract

We consider low-distortion embeddings for subspaces under entrywise nonlinear transformations. In
particular we seek embeddings that preserve the norm of all vectors in a space S = {y : y = f(x) for x €
Z}, where Z is a k-dimensional subspace of R” and f(x) is a nonlinear activation function applied
entrywise to x. When f is the identity, and so S is just a k-dimensional subspace, it is known that, with
high probability, a random embedding into O(k/e*) dimensions preserves the norm of all y € S up to
(1 £ €) relative error. Such embeddings are known as subspace embeddings, and have found widespread
use in compressed sensing and approximation algorithms.

We give the first low-distortion embeddings for a wide class of nonlinear functions f. In particular, we

give additive € error embeddings into O(%) dimensions for a class of nonlinearities that includes

the popular Sigmoid SoftPlus, and Gaussian functions. We strengthen this result to give relative error
embeddings under some further restrictions, which are satisfied e.g., by the Tanh, SoftSign, Exponential
Linear Unit, and many other ‘soft’ step functions and rectifying units.

Understanding embeddings for subspaces under nonlinear transformations is a key step towards
extending random sketching and compressing sensing techniques for linear problems to nonlinear ones.
We discuss example applications of our results to improved bounds for compressed sensing via generative
neural networks.

1 Introduction

Random sketching and dimensionality reduction methods are an increasingly important tool in working
with massive and high-dimensional datasets [3, 29, 30]. These methods attempt to very quickly com-
press data points into a lower-dimensional space, while still preserving important information about their
structure, from which a downstream task (e.g., clustering, regression, PCA) can be solved approximately.

1.1 Low-Distortion Embeddings

Many such approaches are based around the idea of low-distortion embeddings, dimension reducing maps
which preserve the norm of all vectors in some set.

Definition 1 (Low-Distortion Embedding). A linear map IT: R” — IR is an (€1, € )-error embedding for
SCR"if forally € S:

(1 —e))yll, —e2 <[[My[l, < A +e) yll; +e2
where ||-||, is the Euclidean norm. When €, = 0, we say that IT is an €;-relative-error embedding.

When the set S is just a k-dimensional linear subspace of R”, it is well known that letting IT € R"*" be
a random map (e.g., an appropriately scaled matrix with i.i.d. sub-Gaussian entries) with m = O (e%) will

result in IT being an e-relative error embedding for S with high probability. Such an embedding is known
as an oblivious subspace embedding (OSE) since 11 can be chosen from a distribution which is oblivious to
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the dataset it is applied to. This is a key property e.g., in applications to low-memory streaming and low-
communication distributed algorithms. OSE’s have found a widespread application in fast algorithms for
numerical linear algebra and regression [9, 20, 21, 26, 30], clustering [5, 11], and classification [23].

Despite their widespread success, OSE’s only apply to linear subspaces. Theoretical results are limited
for more general sets, including natural sets arising in the application of nonlinear models such as neural
networks and modern graph and work embedding methods.

1.2 Subspace Embeddings Under Nonlinear Transformations

In this work, we study low-distortion embeddings for subspaces under entrywise nonlinear transformations.
In particular, we study sets of the form:

S={y:y=f(x)forxeZ}, (1)

where Z is a k-dimensional linear subspace of R" and f(x) is a nonlinear activation function applied
entrywise to x. It is helpful to think of such a set S as all possible outputs of a two layer neural network,
with k inputs and #n outputs. If f is a nonlinear activation function applied to each neuron in the output
layer, W € R"*¥ is the weight matrix connecting the first layer to the second layer, and x € R is any input,
then the neural network output will be f(Wx). Since Wx lies in a k-dimensional subspace (the column
span of W), the output set is thus of the form given in (1).

Understanding low-distortion embeddings for the output sets of neural networks is a key theoretical
tool behind recent results on compressed sensing from generative models [4, 13, 27]. In particular, [4] study
the case for which f is piecewise linear with 2 pieces — e.g., the popular ReLU activation function. In this
setting, one can see that the set S lies within a union of linear subspaces. Applying an OSE seperately on
each of these subspaces and then taking a union bound, yields a relative error embedding on the set S. [4]
also study the case for which f is any Lipschitz function. This encompasses nearly all common activation
functions. For such functions, one can extend the results for OSEs which are based on embedding all
points in a net with bounded cardinality over the subspace. The approximation of this net is preserved
under a Lipschitz transformation, and thus the same argument yields low-distortion embedding bounds
for entrywise transformed subspaces. However, this approach only results in embeddings with additive
(not relative) error and requires an additional restriction — it applies to S of the form:

S={y:y=f(x)forx e Zand |x|, <R}, (2)

where R is a bound on the radius of the input set.

1.3 Our Contributions

We significantly extend the results on low-distortion embeddings for subspaces under nonlinear transfor-
mation. Our results, along with prior work, are summarized in Table 1. Our first bound applies to a wide
class of nonlinearities which (1) have a bounded second derivative and (2) approach linear asymptotes
for large magnitude x. Such nonlinearities include for example, the Sigmoid f(x) = ﬁ, the SoftPlus
f(x) = In(1 4 ¢), and the Gaussian f(x) = e~*". We show that functions of this type can be approximated
to small uniform error via a piecewise linear function with a bounded number of linear regions. Applying

embedding results of [4] for piecewise linear functions then yields an additive error embedding for these
functions. Formally:

Theorem 1 (Additive Error Embedding). Let S = {y : y = f(x) for x € Z}, where Z is a k-dimensional

subspace of R” and let f : R — R be a nonlinearity satisfying for constants a,b,c,d1,e1,d,e; and any
e e (0,1

1. Bounded Second Derivative: sup,. |f”(x)| < a and f” has a finite number of discontinuities.

2. Linear Asymptotes: Vx > 5, |f(x) — (dix +e1)| < €and Vx < —5, [f(x) — (dax +e2)[ < €.



Then, if IT € R™*" has i.i.d entries TT;; ~ N(0, %), and m = O klOg("/ez);lOg(l/‘s)) for €1,€5,6 € (0,1],

€1

with probability at least 1 — 4, IT is an (€, €2)-error embedding for S.

For simplicity we assume I1I to be a random Gaussian embedding matrix. However, our results hold
more generally for any family of random embedding matrices that yields a subspace embedding for a
k-dimensional subspace with probability 1 — J using m = O (%2(1/5)). See [30] for a discussion of
various embedding matrix distributions, many of which yield matrices that can be multiplied by much
more quickly and stored in less space than a dense Gaussian embedding.

Next, we investigate relative error embeddings, which, prior to our work, were only known for linear
spaces or unions of linear spaces. These results suffice for f which is piecewise linear, but not for more
general functions. We give the first results for a much wider class of nonlinearities that, both satisfy the
second derivative and linear asymptote assumptions of Theorem 1, along with an additional property:
they are close to linear at the origin. Such nonlinearities include a large number of ‘soft’ step functions
and rectifying units, including Tanh, ArcTan, the SoftSign, the Square Nonlinearity (SQNL), and the
Exponential Linear Unit (ELU). The following theorem gives an embedding for this class of functions.

Theorem 2 (Relative Error Embedding). Let S = {y : y = f(x) for x € Z}, where Z is a k-dimensional
subspace of R"” and f : R — R is a nonlinearity satisfying conditions (1) and (2) of Theorem 1 along with,
for some constants g1, 2, g3

3. Linear Near Origin': For any y with |y| < g1, |2+ f ' (y) —y| < g3 - ¥*

Then, if IT € R™*" has ii.d entries IT;; ~ N(0, %), and m = O (%W) for €,6 € (0,1], with
probability at least 1 — ¢, I1 is an e-relative-error embedding for S.

Nonlinearity Class Examples Embedding Dim. Error Type Reference
Piecewise linear ReLU, Binary Step klog(nt) . [4]
with t pieces Leaky ReLU © ( e ) relative See Thm. 3
additive,
L-Lipschitz Nearly all O (%) input bounded [4]
! in radius R
U . .
; f" bounded, Sigmoid, ngtPlus, o klOg(Z /€2) additive Thm. 1
inear asymptotes Gaussian €]
Near-linear at origin,
f" bounded, Tanh, Arctan, SQNL O (%2"/5)) relative Thm. 2
1i SoftSign, ELU €
inear asymptotes

Table 1: Low-distortion embedding results (Def. 1) for k-dimensional subspaces under entrywise nonlin-
ear transformations. For simplicity we hide dependences on the failure probability § when embedding
with a random linear map. Our results (highlighted in rows 3-4) significantly expand the class of nonlin-
earities for which low-dimensional embeddings are known and give the first relative error results beyond
piecewise linear functions.

1.4 Applications

Our primary technical contributions are the embedding results of Theorems 1 and 2. To illustrate the use-
fulness of these results, in Section 5 we give example applications to compressed sensing from generative
models [4, 27]. In this setting, the goal is to recover x € R" from m < n noisy linear measurements
y = Ax + 1 where A € R"*" is a measurement matrix and 7 € R” is some measurement noise.

Under the assumption that x lies in some set S (e.g., the set of all possible outputs of a generative
neural network G : R — IR"), approximate recovery up to the noise threshold ||77||, is possible when A is

*Note that when f is bi-Lipschitz, this assumption is equivalent to |f(y) — g2 - y| < g4 - x for some constant gj.



an (€1, €)-error embedding for S. Thus, our improved embedding results immediately lead to new results
here, removing Lipschitzness and bounded input assumptions required by [4] when G has two layers and
employs any nonlinearity satisfying Theorem 1.

In the important case when G has d > 2 layers, we show how to apply our techniques to remove the
bounded input assumption of [4] for any bounded nonlinearity satisfying the assumptions of Theorem 1,
including the Sigmoid, Gaussian, Tanh, Arctan, SoftSign, and SQNL.

1.5 Related Work

Low-distortion embeddings are widely studied in the literature on randomized algorithms and com-
pressed sensing. When S is a finite set, the Johnson-Lindenstrauss lemma [12, 17] gives that a random

IT € R™*" is an e-relative-error embedding with high probability when m = O (k)i#) A majority of the

work on infinite sets focuses on the case where S is a linear subspace. As discussed, in this setting, many
constructions for relative-error oblivious subspace embeddings (OSEs) are known. See e.g., [18] and [30]
for surveys.

The case where S is the union of linear subspaces is also studied widely in the compressed sensing
literature. The well known Restricted Isometry Property (RIP) is equivalent to a relative error embedding
for the union of linear subspaces arising as the spans of all subsets of a fixed number of columns of a
given matrix [6, 14].

Embeddings for nonlinear spaces have been less explored. As discussed, recent work considers low-
distortion embeddings for the output sets of neural networks [4, 13] with ReLU nonlinearities and under
Lipschitz assumptions. We build on and significantly extend this work — see Table 1 for a summary.
[2] considers embeddings on a smooth manifold, although this is different than our nonlinear entrywise
transformation setting. A number of approaches consider random projection for linear regression under
various loss functions, including the Huber, Tukey, and Orlicz norm losses [1, 8, 10]. These methods prove
low-distortion embedding results for the norms induced by these losses. This can be viewed as embedding
results for the standard /; or ¢, norms, after applying appropriate entrywise nonlinearity, although the
goal is find an embedding IT € R™*" so that for W € R"** and all x € R, || f(ITMx) ||, = || f(Mx)||,. This
is related to but different from our goal, and requires significantly different techniques.

Finally, we note that Gordon’s theorem in functional analysis [16] gives that when S is a set of unit

vectors with Gaussian mean width m = E,_r(0,1)Sup,c5(g, X), a random embedding I1 into O (’g—;) di-

mensions is an e-relative error embedding with high probability. The Gaussian mean width is equivalent
up to logarithmic factors to the Rademacher complexity of S, a quantity widely studied in computational
learning theory [28]. A number of Rademacher complexity bounds are known for neural networks [15, 22],
although they don’t apply directly in our setting since (1) they bound the complexity of the function class
corresponding to the network, rather than its output set S and (2) they are parameterized by various quan-
tities in the neural network, such as the norms of its weight matrices. Our bounds are entirely independent
of the neural network parameters, depending only on the nonlinearity used. An interesting direction for
future work would be to better understand the connections between randomized dimensionality reduc-
tion for subspaces under nonlinear transformations and the work in learning theory on neural networks
Rademacher complexity.

2 Embeddings under Piecewise Linear Transformations

We begin by showing how to extend OSE results to subspaces under piecewise linear entrywise transfor-
mations. The key idea is that such a transformation fragments the subspace into a bounded number of
linear regions, each of which can be embedded with an OSE. This idea is applied e.g., by [4] to embed
ReLU networks. For completeness, we give a proof in the general case for any piecewise linear function
with t linear pieces.

Theorem 3 (Piecewise Linear Embedding). Let Z C IR” be a k—dimensional linear subspace and f : R — R
be piecewise linear with at most t pieces. Let S = {y : y = f(x) for x € Z}. Then if IT € R™*" has i.i.d.



entries IT;; ~ J\/’(O,%), m =0 (w) for €,6 > 0, with probability at least 1 — ¢, IT is an

e2
e-relative-error embedding for S (Definition 1).

We establish Theorem 3 from the following lemma, which counts the number of k—dimensional linear
regions in S. We obtain the embedding for S by a union bound over these regions.

Lemma 1. Let Z C R” be a k—dimensional linear subspace and f : R — R be piecewise linear with at
most t pieces. Let S = {y : y = f(x) for x € Z}. S lies in the union of O((tn)) k-dimensional linear
subspaces.

Proof. Any vector x € Z can be written as Qz for some z € R* where Q € R"*¥ has columns spanning Z.
Any z € RF thus corresponds to a vector x € S. If we fix the pieces of f that the n entries of Qz fall into,
then f simply performs a linear transformation of Qz, and so x = f(Qz) lies in a k-dimensional subspace
of R". Now, each entry of Qz can fall into one of ¢ pieces of f. Fixing which pieces it falls into splits R
using 1 - (t — 1) different k — 1 dimensional hyperplanes, corresponding to the sets {z € R* : (Qz); > t;}
where ¢} is the j" change point of f.

One can show (c.f. [4]) that ¢ hyperplanes split RF into O(c¥) regions. Plug}ging inc=n-(t—1), we
have that S is generated by applying a different linear transformation to O((tn)*) regions of R, and thus
S lies in the union of O((tn)*) k-dimensional subspaces. O

Proof of Theorem 3. Let S1,S;...,Sw be the w = O((tn)*) linear subspaces , the union of which contains
S. Tt is well known (c.f. Theorem 6 of [30]) that if IT € R"*™ has independent entries I ~ N(0, %)

and m = O ( M), then with probability > 1 — ¢, Il is an e-relative-error embedding for any k-

€
dimensional subspace of R".
Setting &' = 6/w = O(J/(tn)¥), and applying a union bound, we have that IT is an e-relative-error

embedding for S; U...USy, O S with probability at least 1 — 6 as long as m = O (M) =

€

O (w). This completes the proof. |

3 Additive Error Embeddings

We next show how to extend the result of Theorem 3 to give additive error embeddings for functions that
are well approximated by piecewise linear functions with a bounded number of pieces. Such functions
include the popular Sigmoid activation function, the SoftPlus, and the Gaussian activation function. More
generally, we give a result for any function which (1) has a bounded second derivative and (2) converges
at a reasonable rate to linear asymptotes.

Theorem 1. Let S = {y : y = f(x) for x € Z}, where Z is a k-dimensional subspace of R” and f : R - R
is a nonlinearity satisfying for constants a,b, ¢, dy, e1,d>, e;:
1. Bounded Second Derivative: sup,, |f”(x)| < a and f” has a finite number of discontinuities.

2. Linear Asymptotes: For any € € (0,1], Vx > 5, [f(x) — (dix +e1)| < eand Vx < —elb, |f(x) — (dax +
e)| <e.

Then, if IT € R™*" has i.i.d entries I1;; ~ N(0, %), and m = O <k1°g("/€2)2+10g(1/5)) for €1,€5,6 € (0,1],

€1

with probability at least 1 — 4, IT is an (€, €2)-error embedding for S.

The first assumption of bounded second derivative ensures that f is well approximated by a piecewise
linear function with sufficiency small pieces. The second ensures that, outside a range of width O(1/¢?)
around the origin, f(x) can be approximated to € error via a single straight line. This is a crucial condition
that applies to a large class of functions and ensures that the piecewise linear approximation has a bounded
number of pieces. Formally we show:



Lemma 2. Let f : R — R be a function satisfying the conditions of Theorem 1. Then for any € € (0,1],
there exists a piecewise linear function f(x) with t = O(1/€e"+1/2) pieces so that, Vx € R, [f(x) — f(x)| <.

Proof. Fori =0,1,..., [%], lett; = g—bc +1i -, where v is a stepsize we will define later. These ¢; divide
the interval [ 5 %} into subintervals of length 7. Let f : R — R be a piecewise linear approximation of
f with [ﬁ} + 1 pieces defined by:

dix +eq, if x >

7€b

f(x) =< dax+e, ifx < -5

el

flt) + T e — 1) if x € [t )

By assumption (2) of Theorem 1 we have |f(x) — f(x)| < € for any x & [— 5+ 5| Thus it suffices to focus
on x € [—e%, e%} Within this interval, f is approximated by piecewise hnear 1nterpolat10n over intervals
of width «y. For any t;, t;11 and x € [t;, t;11] it is well known that (c.f. [7]) Rolle’s theorem yields a bound
on the approximation:

2

. _1)2 .
) — fa) < BT ) < 28,
8 teltitiv] 8

by our assumed upper bound of f”(x) < a. Setting v = \/g- V€ we have |f(x) — f(x)| < e. We note
that this bound requires that f”/(x) is continuous on the interval [t;,t;1]. Since we assume f”(x) has a
finite number of discontinuities, we can ensure that this is the case by placing an additional break point
at each discontinuity. This will increase the number of linear pieces in f(x) by just an additive constant.
The proof is now complete: f(x) is a piecewise linear function with [%1 +1=0 (ﬁ) pieces with
If(x) — f(x)| <€ Vx €R. O

We Lemma 2 in place, we now show how to extend the embedding bound of Theorem 3 to any function
that is well approximated by a piecewise linear function.

Lemma 3. Consider a function f : R — R and the set S = {y : y = f(x) forx € Z} where Z is a k-

dimensional subspace of R". Assume that there exists piecewise linear f : R — R with ¢ pieces and | f(x) —

f(x)] <2 Vx € R. Then, if IT € R™*" has iid entries IT;; ~ N'(0,4), and m = O (w),
1

with probability at least 1 — ¢, IT is an (€1, €;)-error embedding for S.

Proof. Define S = {j: § = f(x) forx € Z } By our approximation assumption, for all x € Z, letting
y= f(x)and § = f(x ) we have: ||y — 7|, < 2 - v/n = - Applying Theorem 3 with parameters ¢; and

6/2, we have that with probability at least 1 —6/2, ITis an €1 -relative-error embedding for 5. Additionally,
it is well known (c.f. [25]) that with probability at least 1 — 2e M2 >1-6/2, s spectral norm is bounded

by [[TT]|, < % < 3y/n. Assuming both events occur, which happens with probability > 1 — ¢, for any

y € S we have:

1Ty, <117, + |1y — 7) |, (triangle inequality)
< (1+e) |7, +II, - % (subspace embedding)
<(1+e€) <||y||2 + %) +3€» (spectral norm bound + triangle inequality)
< (1+e1)|y|, +Ole).
Symmetrically, we can prove that |I1y||, > (1 —€1)||y|| — O(e2). Adjusting constants on m, we have that

ITis an (€1, €3)-error embedding for S, completmg the proof O



We now combine Lemmas 2 and 3 to prove the additive error embedding result of Theorem 1.

Proof of Theorem 1. By the assumptions of the theorem and Lemma 2, there exists piecewise linear f : R —

]Rwitht-O(

ab1/2
b+1/2
€

) pieces and |f(x) — f(x)| < £ for all x € R. Applying Lemma 3, which holds due

to the existence of this f, we have that IT is an (€1, €;)-error embedding for S when:

m=0 (klog(nt)—glog(l/&)) -0 <klog(n/ez)2+log(l/5)) )

€ €1

This completes the theorem. O

3.1 Example Nonlinearities

Many common neural network activation functions satisfy the assumptions of Theorem 1. Thus, the
theorem provides a bound on the number of dimensions required to embed the output space of a large
class of two-layer neural networks. We give some important examples below.

Sigmoid. f(x) = l+1e*-’~"

e Condition 1: We can compute f(x) = (13_‘3;,2::)3 — (1j;fx)2. Thus sup, |f"(x)| = sup, |p(y)| where
2
p(x) = (12+_yy)3 - (1+y)2 We can check that this polynomial is maximized at p(y) = 6%/3 aty =2++/3.
Thus condition (1) of Theorem 1 is satisfied with a = 6%'

e Condition 2: We can also check that for any € € (0,1], when x < —1 < —In(1/€), f(x) € [0,€).
Similarly, when x > 1 > In(1/¢), f(x) € [%Jre,l] C [1 —€,1]. Thus, condition (2) is satisfied with
b:C:1,d1:1,d2:0,and61:€2:o.

SoftPlus. f(x) = In(1+e").
e Condition 1: We can compute f(x) = (lf—;)z Thus sup, [f"(x)| = sup, |p(y)| where p(x) = ﬁ

We can check that this polynomial is maximized at p(y) = § aty = 1. Thus condition (1) of Theorem

1 is satisfied with a = %.

e Condition 2: We can also check that for any € € (0,1], when x > 1 > In(1/€), f(x) > x and

f(x) <In((1+€)e*) < x+1In(1+e€) < x +e. Thus, |f(x) — x| < e. Similarly, when x < —1 < In(e),
f(x) > 0and f(x) <In(1+¢€) < e. Thus |[f(x)| < €. So, condition (2) is satisfied with b = ¢ =1,
d] :d2:0,andel :1al’ld€2:0.

Gaussian. f(x) = e
e Condition 1: We can verify that f”(x) = e~*"(4x* — 2), and has sup, |f"(x)| = |f"(0)| = 2. Thus
condition (1) of Theorem 1 is satisfied with a = 2.

e Condition 2: We can also check that for any € € (0,1], when |x| > /In(1/€) < 1, |f(x)| <€, and
thus condition (2) is satisfied withb =c=1and dy =d, =e; = e, = 0.

4 Relative Error Embeddings

We now show that the additive error embedding result of Theorem 1 can be improved to relative error
under the additional assumption that the nonlinearity f is close to linear near the origin. This assumption
holds for a many ‘soft’ step functions and rectifying units, including Tanh, ArcTan, SoftSign, Square
Nonlinearity (SQNL), and the Exponential Linear Unit (ELU).



Theorem 2. Let S = {y : y = f(x) for x € Z}, where Z is a k-dimensional subspace of R” and f : R — R
is a nonlinearity satisfying conditions (1) and (2) of Theorem 1 along with, for some constants g1, g2, $3:

3. Linear Near Origin: For any y with |y| < ¢1, [g2- f ' (y) —y| < g3 - >

Then, if IT € R"*" has i.id entries IT;j ~ A'(0, 1), and m = O (w) for €,6 € (0,1], with
probability at least 1 — ¢, ITis an e- relatlve -error embedding for S.

Proof. Assume without loss of generality that € < g;. If it is not, we can replace € with min(gy,€),
and since g7 is a fixed constant, this will affect the bound only by constants. We split S into two sets
containing elements with relatively large norms and relatively small norms. Specifically, S = S; U Sy
where S = {y € S : |ly||, > e/vn} and Sy = {y € S : |Jy||, < e/v/n}. We then prove that with
probability 1 — 6/2, I1 is an e-relative-error embedding for each of S; and Sy;. Via a union bound, this
yields the theorem.

Case 1: S;. Since by assumption f satisfies the requirements of Theorem 1, applying that theorem with
Elogln/) Hog(1/0) ) with probability 1 —6/2, for ally € S

_ € _
€1 =5 and e 2

% and gives that, form = O (

IMyll, < (14 )yl + 55 < (1+e)

&2

where the second bound holds since for y € Sg, sz > % and thus 7 5 Hsz Similarly, we have

[Ty|[, > (1 —e)y

,» which completes the bound in this case.

Case 2: S;. We prove the theorem for Sy using the fact f is close to linear near the origin —i.e., where
|v||, is small. Let f(x) = g - x be a linear approximation to f near the origin, i.e. for all x such that
x| < g1,7 = f(x). The approximation to S thus becomes S = {7 : 7 = f(x) forx € Z} By assumption
(3) of the theorem, for y € Sy, sz < % and thus for all i € {1,2,...n}, |y(i)|] < f < g1. This gives

that:
8247 (0) —y(D)] = 170) —y(D)] < g3 9()* < = y)
In turn we have:
Iy =3l < 2=yl 6)

Now, note that S is just a k-dimensional linear subspace. As discussed in the proof of Theorem 1, it
is well known that for m = O (%(1/0)) with probability > 1 —6/2,|[I1||, < 3y/n and for all § € §,

(1=e)|7l, < ||Hy||2 (1+¢€)| 7|, (ie., ITis an e-error subspace embedding for 5). Along with (3), these
two conditions give that for every y € S:

T[], <|[[TTgl, +([TT(y — 9) |,
< (1 +e)||7]l, + I, |y — 7,
< (1+e)lyll, + @ +e+[T1],) -[ly — 7],

g3<1 +€+3\/_
Ly, <

for some constant c. Similarly, one can prove that ||ITy||, > (1 — ce Hsz Thus, adjusting constants on €
by increasing m by a constant gives that, with probability 1 — /2, I1 is an e-relative-error embedding for
S. Combined with our argument for Case 1 (the set S;), this completes the proof. O

(1+ce)

< @+l +




4.1 Example Nonlinearities

Many common neural network activation functions satisfy the assumptions of Theorem 2. In particular,
soft step functions and rectifying units (i.e., soft variants of the ReLU) often have linear asymptotes and
are close to linear near the origin. We give two illustrative examples below: Tanh and ELU. Other non-
linearities, including ArcTan, SoftSign and the Square Nonlinearity (SQNL) are described in Appendix
A.

—X

Tanh (Hyperbolic Tangent). f(x) = &

e Condition 1: We can check that sup |f"(x)| = achieved at x = 1 In(2 — v/3). Thus, condition (1)

of Theorem 1 is satisfied with a = 33"

3\/’

e Condition 2: For x > 1 > In(1/€), we have f(x) < 1 and f(x) > %g;g = L’_zz > 1—e€. So
2
|f(x) — 1| < e. Similarly, for x < —1 < In(e) we have f(x) > —1 and f(x) < ;%;g = 751!5) <
1 —e. Thus, |f(x) 4+ 1| < e. Thus, condition (2) of Theorem 1 is satisfied with b = ¢ = 1.

11 Ty
e Condition 3: f~1(y) = 1 3In (Hy) We can check that % < % fory € [~1/2,1/2]. Thus, the

final condition (3) of Theorem 2 holds with g1 =1/2,¢» =1, and g3 = 1/5.

X —1forx<0
Exponential Linear Unit (ELU). x) = -
xP ! ! it ( - f(x) {xforx>0

e Condition 1: For x > 0 we have f”(x) = 0. For x < 0, we have f”(x) = ¢* < 1. Thus, sup, |f"(x)| <1
and condition (1) of Theorem 1 is satisfied with a = 1.

e Condition 2: For x > 1, we have f(x) = x and thus, [f(x) — x| = 0. For x < —1 < —1In(1/¢), we
have |f(x) + 1| < e. Hence condition (2) of Theorem 1 is satisfied with b = ¢ = 1.

In(1+y) fory <0

e Condition 3: We have f~1(y) = {y fory >0

We can check that = ;) l <1fory e [-1/2,0] and -y ( ) LI =0 for y > 0. Thus, condition (3) of
Theorem 2 holds with g1 =1/2,¢o =1and g3 = 1.

5 Application: Compressed Sensing from Generative Models

Recently, deep generative models have become an important tool in the recovery of high-dimensional data
from limited measurements using compressed sensing techniques [4, 24, 27]. They have found significant
success in solving linear inverse problems [19], offering a powerful alternative to the traditional structural
assumption of sparsity.

Formally, compressed sensing seeks to recover a signal x € R" from m < n linear measurements,
y = Ax +1, where A € R™ " is the measurement matrix and 7 € R is some measurement noise.
Recovering x from y requires solving this underdetermined and noisy linear system — a task which is only
possible under structural assumptions on x. Most commonly, in the sparse recovery setting, it is assumed
that x is sparse in some basis, such as the Fourier or Wavelet basis [14]. Methods based on generative
models instead assume that x lies in the output span of some generative neural network G : RF — R".
That is, x lies in a low-dimensional subspace under a series of linear transformations and entrywise
nonlinearities.

[4] extend the well-known restricted eigenvalue condition (REC) from sparse recovery, showing that,
under the assumption that x lies in some set S, as long as the objective function minycg||y — Ax||, can be



minimized to small additive error (e.g., via projected gradient descent), x can be approximately recovered
from any measurement matrix A € R"*" satisfying the S-REC property:

[AG1 —x2)[| = (1 —er)|lv1 —x2f —e2 Yy, x2 €. 4)

In turn, [4] consider S = {x : x = G(z) for z € R, |z||, < R} - the output span of a generative model
G under a bounded input restriction. They show that when A € R™*" has iid. N (0,1/m) entries, it

klog(LR/ep)
i

satisfies (4) with high probability as long as m = O < ), where L is the Lipschitzness of G (i.e.,

1
for any z1,z0 € R, ||G(z1) — G(z2)|| < L||z1 — z2||). When G uses just ReLU nonlinearities, the bounded

radius and Lipschitz assumptions can be removed, €, = 0, and m = O (dk le(;gn), where d is the depth of
1

the neural network.

5.1 Our Results

Our improved embedding results immediately apply to the setting of [4], letting us remove the dependence
on the Lipschitz constant L and the assumption of a bounded input||z|, < R for two layer neural networks
under the nonlinearities discussed in Sections 3 and 4 (including the Sigmoid, Tanh, ELU, Softplus, etc.)

We employ a small modification of Theorem 1, which applies to the difference of two vectors gener-
ated from a subspace under an entrywise nonlinearity. This theorem is proven essentially identically to
Theorem 1.

Theorem 4 (Additive Error Embedding — Distance). Let S = {y : y = f(x) forx € Z}, where Z is a
k-dimensional subspace of R" and f : R — R is a nonlinearity satisfying the conditions of Theorem 1.

Then, if IT € R™*" has i.i.d entries IT;; ~ N(0, %), and m = O <k1°g("/€2)+10g(1/5)) for €1,€5,6 € (0,1],

2
€1

with probability at least 1 — J, for all 1,12 € S:
(1 —e)|yr —vll, —e2 <|[TI(y1 = y2) |, < (1 +€1)|ly1 — 2, + €2

Now, let G : RF — R" be a two layered generative neural network with G(z) = f(Wz) for some weight
matrix W € R"*F and some nonlinearity f satisfying the conditions of Theorem 1. Let S be the output
setof G: S = {x € R" : x = G(z) forz € R¥}. Then Theorem 4 implies that, when A has random
Gaussian entries, it satisfies the restricted eigenvalue condition of (4), and thus, x can be recovered from

klog(n/€2)+log(l/§)> has 1o

noisy measurements y = Ax + #. In comparison to the result of [4], m = O ( o
1
dependence on the Lipschitzness L of G(z). Additionally, the bound holds under the weaker assumption

that S is G’s full output set, rather than the outputs restricted to the range of bounded diameter inputs.

5.2 Extension to deep networks

Our results apply to depth-2 neural networks, and an important direction for future work is to extend
them to general depth-d networks. In this section, we give an example of how our techniques can be
applied to deeper networks.

Let G : R¥ — R” be a neural network with d layers and < 7 nodes per non-input layer. The previously
mentioned results of [4] show that when A € R"*™ has i.i.d entries A;; ~ N(0, L), it satisfies the S-REC

property of (4) for S = {x : x = G(z) forz € R¥,||z|, < R} and m = O (kbg(eLizR/ez))) We extend this
1

result, showing how to remove the norm restriction on the representation z for nonlinearities that satisfy
the conditions of Theorem 1 and are bounded in magnitude by some constant u. This includes all soft
step functions we consider, such as the Sigmoid, Tanh and SoftStep.

We split G into the composition of two functions: G; : R¥ — R" mapping the input layer to the
second layer and G; : R” — R”, mapping the second layer to the output. Assume that G, is L-Lipschitz
Note that Gi(z) = f(Wjz), where W; is the weight matrix of the first layer and f is the nonlinearity.



Let G; : R — R” be an approximation to G; which uses a piecewise linear approximation f with

~ ~ b+1/2
|f(x) — f(x)| < <% Vx. The existence of f with t = O (("—L) ) pieces is guarantee by Lemma 2. We

€
q@y—gngggﬁ.
Let G(z) = G2(G(z)). By our Lipschitzness assumption on G,, for all z,

have for any z € R,

|6(2) - 62)| = | Ga(Ga(2)) ~ Ga(Gr(2)) |, < L[| Gr(2) ~ Gu2)| (%)

< &2
27 n
Additionally, by Lemma 1, the output of G;(z) lies in the union of (nt)* k-dimensional linear subspaces.
Since we assume f(x) < u forall x, f(x) < u+ £ forall x. ThusHGl(z)H2 < (u+%)-y/n = 0(y/n). Thus,
the output of G(z) lies in the union of t regions of the form S = {G,(z') : 2’ € Z,||/||, = O(v/n)}, where
Z is a k-dimensional subspace. We know via the results of [4] and a union bound over these t regions that

o klog(Ln/ey)+log1/6
form = O ( 2

), with probability > 1 — J, for any %1, £, € R" in the approximate output

set $ = {G(z) : z € R},
[A(F —%2) |, > (1 —e1)[ %1 — %2, — €2

For any x1,x; € R" in the true output set S = {G(z) : z € R¥} via (5) we thus have, following the proof of
Lemma 3:

.o 2e : : :
|A(x1 —x2) |, > ||AGF — %2) ||, =1 Al - \/—% (triangle inequality)
> (1—e1)]|%1 — %2fl, — €2 — O(e2) (|All, = O(y/n) with high probability)
> (1—e€1)||x1 —x2|l, —O(e2) (triangle inequality)

Adjusting constants on e, this gives us the S-REC property of (4) for S = {G(z) : z € RF} when A
klog(Ln/ex)+log1/s
o
linearities satisfying the assumptions of Theorem 1, we obtain a similar result to [4] but without the

bounded input assumption.

makes m = O

) measurements. Thus, for any Lipschitz neural network using bounded

5.3 Conclusions and Future Work

Our paper makes initial steps in building a systematic understanding of randomized dimensionality re-
duction for subspaces under entrywise nonlinear transformations. An important next step is to extend
our results to the output spaces of neural networks with d > 2 layers. It is possible to use an argument
similar to Theorem 1 to give some bounds here, by approximating all nonlinearities in the neural network
via piecewise linear functions. However, due to compounding error at each level, e, must be set very
small at the first level, leading to relatively weak embedding bounds. Understanding how to avoid this
compounding error would be very interesting.

As discussed, it would also be interesting to apply Rademacher and other complexity bounds for learn-
ing neural networks to understanding the compressibility of their output spaces and to give low-distortion
embedding bounds. This would let us leverage an even richer class of tools in proving embedding bounds.
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A Example Nonlinearities for Relative Error Embeddings

We now give a number of other examples of nonlinearities that satisfy the assumptions of our relative
error embedding result, Theorem 2.

ArcTan. f(x) = tan~'(x)

e Condition 1: . We can check that sup, [f"(x)| = % achieved at |x| = % Thus, condition (1) of
Theorem 1 is satisfied with a = %3.

e Condition 2: We use a series expansion which gives that:

3 5 7
x—5+ % % 4. for x| <1
tan~!(x) = %—%—k% Lforx>1
1., 1
~F—xtga—forx<—1

For x > 1, we thus have f(x) < Z and f(x) > ¥ —e. Thus |f(x) — Z| < e. Similarly, for x < —1,
we have |f(x) + 5| < e. Thus, condition (2) of Theorem 1 is satisfied with b = ¢ = 1.

e Condition 3: f~'(y) = tan(y) for y € (—%,%). We can check that when |y| < 1, w <

Y
tan(1) — 1 < .56. Thus, condition (3) of Theorem 2 holds with g1 =1,¢, = 1 and g3 = .56.
SoftSign. f(x) = H"M.
e Condition 1: Tt can be checked that f”(x) = 2~ — 21X and sup, |f”(x)| = 2, achieved at

(A+x[)®  x(1+[x])
x = 0. Thus, condition (1) of Theorem 1 is satisfied with a = 2.

 Condition 2: For x > 1, we have f(x) < 1and f(x) > 1— ﬁ
Similarly, for x < —1, we have f(x) > —1 and f(x) < -1+ =
Hence condition (2) of Theorem 1 is satisfied with b = ¢ = 1.

1—e. Thus, [f(x) —1]

<
—1+e. Thus, |[f(x)+1| <

>
<

o Condition 3: We have f~!(y) = ‘ - It can be checked that F- ;) Y < 2 when ly] < 1/2. Thus,
condition (3) of Theorem 2 holds for for g1 =1/2, g0 =1 and g3 = 2.

1forx>2
x—%zforxe [0,2]
x—|—"72forx€ [—2,0]
—1forx <2

Square Nonlinearity (SQNL). Here f(x) =

e Condition 1: f"(x) = 0 for x ¢ [-2,2], f"(x) = —1 for x € [0,2] and f"(x) = 4 for x € [~2,0] Thus,

sup, |f”(x)| = 4 and so condition (1) of Theorem 1 is satisfied with a = 1.

e Condition 2: For x > 1, we have f(x) = 1 and hence, |f(x) — 1| = 0. For x < —1, we have f(x) = —1
and hence |f(x) + 1| = 0. Hence condition (2) of Theorem 1 is satisfied with b = ¢ = 1.
e Condition 3: f~1(y) = 2—2y/1—yfory€0,2]
—2+42y/1+4yforx € [-2,0]
We can check that I~ (y y)—y| <1 fory € [-1/2,1/2], which gives that condition (3) of Theorem 2
holds for for g1 =1/2,gp =1and g3 = 1.
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