ARC-LfD: Using Augmented Reality for Interactive Long-Term Robot
Skill Maintenance via Constrained Learning from Demonstration

Matthew B. Luebbers', Connor Brooks', Carl L. Mueller!, Daniel Szafir'?, Bradley Hayes'

Abstract— Learning from Demonstration (LfD) enables
novice users to teach robots new skills. However, many LfD
methods do not facilitate skill maintenance and adaptation.
Changes in task requirements or in the environment often
reveal the lack of resiliency and adaptability in the skill model.
To overcome these limitations, we introduce ARC-LfD: an
Augmented Reality (AR) interface for constrained Learning
from Demonstration that allows users to maintain, update,
and adapt learned skills. This is accomplished through in-
situ visualizations of learned skills and constraint-based editing
of existing skills without requiring further demonstration.
We describe the existing algorithmic basis for this system
as well as our Augmented Reality interface and the novel
capabilities it provides. Finally, we provide three case studies
that demonstrate how ARC-LfD enables users to adapt to
changes in the environment or task which require a skill to
be altered after initial teaching has taken place.

I. INTRODUCTION

Robot Learning from Demonstration (LfD) methods en-
able users to teach desired skills to robots without program-
ming or other forms of robot-specific knowledge [1], [2]. The
predominant focus of LfD research to date has been on the
initial learning process itself, rather than the maintenance and
adaptation of learned models. In a shift of focus to the latter,
we introduce Augmented Reality for Constrained Learning
from Demonstration (ARC-LfD): a system that combines an
Augmented Reality (AR) interface and constrained Learning
from Demonstration [3] to enable users to teach a robot new
skills as well as verify, repair, and edit existing skills. ARC-
LfD demonstrates a novel approach to LfD that can mitigate
problems arising from poor quality demonstrations, changes
in the environment, and adaptations to the task procedure.

When using LfD methods for robot instruction, safe
deployment necessitates verification that a skill has been
learned properly after the skill has been demonstrated and
taught. While verification can be done in simulation, this
requires a high-fidelity model of the environment in order for
the visualization of the learned skill to be shown in the proper
context (and obtaining such a model may be a technical
endeavor). After this step is completed, the robot may begin
executing the learned skill as long as the environment stays
constant, but even small changes in the robot’s environment
or the desired skill may require an entirely new set of

Corresponding author: matthew.luebbers @colorado.edu

I Computer Science Department, College of Engineering and Applied
Science, University of Colorado Boulder, Boulder, Colorado, USA

2 ATLAS Institute, University of Colorado Boulder, Boulder, Colorado,
USA

This work was funded in part by NSF Award #1830686 and the U.S.
Army Research Lab STRONG program.

Fig. . ARC-LfD combines Augmented Reality with constrained Learning
from Demonstration to create a system that enables the teaching, verifica-
tion, editing, and updating of robot skills using in-situ visualizations.

demonstrations to fix it. This requirement for rigidity of
environment and task can make long-term deployment and
maintenance of the skill difficult in practice.

One approach to handling this rigidity is the creation
of end-to-end policy learning systems that aim to model
skills more generally. However, such systems may demand a
prohibitive number of demonstrations or require unavailable
simulation environments to capture user intent, and aren’t
designed to accommodate user selection of task constraints.
Our approach emphasizes transparency and adaptability in
a system designed for online skill editing and validation
necessary for long-term robot deployment. Through AR
visualization, ARC-LfD safely demonstrates to users what
skill has been learned and how executing that skill will cause
the robot to move through the environment. The AR interface
also facilitates the visualization and editing of constraints,
enabling users to see how these constraints interact with
objects or points of interest in the environment. Furthermore,
constraint editing through AR allows the entire training pro-
cess to take place in-situ without requiring context-switching
between the real environment and a 2D display.

The contributions of the ARC-LfD system are as follows:

1) AR visualizations of learned skills, in-situ robot be-
havior, and constraints without needing a model of the
entire environment.

2) An iterative process to verify, repair, and edit existing
skills through AR using visualized constraints em-
ployed by the underlying LfD algorithm.

3) Three case studies that illustrate how the system en-
ables skill adaptation with no further demonstration.

II. RELATED WORKS

A. Learning from Demonstration

Robot Learning from Demonstration (LfD) encompasses a
set of methods that strive to learn successful robot behavior

models from human input [2]. A human operator interacts
with a robotic system through some mode of demonstration,
usually through kinesthetic demonstration (e.g., physical
interaction), teleoperation (e.g., remote control), or passive
observation (e.g., motion tracking observation). While the
mode may vary, demonstrations ideally communicate the
nature of the skill to the robot such that the learned model
effectively resembles some latent ground truth model held
by the demonstrator [1]. The methods by which robotic
systems learn such models span a broad spectrum, but are
generally categorized into three classes: 1) plan learning,
2) functional optimization, and 3) policy learning [4]. Most
importantly, LfD methods enable non-roboticists to quickly
teach robots useful skills and forgo the need for expert
robotics programming knowledge.

ARC-LfD uses an LfD method that falls under the policy
learning categorization, where the goal is to learn models that
output either robot trajectories or low-level actions directly.
Work by Akgun et al. [5] introduces Keyframe-based LfD,
a method that learns a sequential waypoint (i.e. keyframe)
model of a skill through the clustering of demonstrated
trajectories. Keyframe models essentially produce coarse
trajectories for the robot to execute by employing motion
planning algorithms to traverse from waypoint to waypoint.

ARC-LfD utilizes an enhanced variant of this technique
called Concept Constrained Learning from Demonstration
(CC-LfD) [3]. During demonstration, users annotate behav-
ioral constraints (through real-time dictation) to be applied
to the learned model. Akin to prior work in learning from
human teachers [6], [7], this algorithm is motivated by the
insight that although traditional state data captured by the
robotic learner does encode certain aspects of the task,
the users’ internal model might have latent information not
communicated through traditional kinesthetic demonstration.
Thus, by enabling the user to also communicate behavioral
constraints (e.g., “a cup must remain upright until over
the bowl”), the robotic learning system is given additional
information that helps produce a more robust and successful
model. To this end, CC-LfD requires far fewer demon-
strations to teach a successful skill model than robot state
demonstration trajectories alone produce, and enables post-
hoc skill repair and adaptation through constraint application.

Keyframe-based LfD methods are agnostic to the mode
of demonstration as they operate on the resulting trajecto-
ries. However, ARC-LfD utilizes kinesthetic demonstration,
where users physically manipulate the robotic system to
produce demonstration trajectories. Akgun et al. [8] showed
that kinesthetic demonstration generally produces more suc-
cessful skill models and is the preferred mode of demon-
stration by end-users when compared with teleoperation.
However, Wrede et al. [9] described how kinesthetic demon-
stration can be limited by non-experts users’ lack of robotics
knowledge. For example, they showed that resultant models
learned through kinesthetic demonstration perform poorly
when users guide robots close to configuration space Jaco-
bian singularities. Furthermore, Villani et al. [10] surveyed
a multitude of industrial environments in which robots are

deployed, describing highly variable and potentially danger-
ous collaborative environments and tasks. Such environments
challenge kinesthetic demonstration as complex structures
and dangerous conditions make kinesthetic demonstration
infeasible to model or unsafe for humans.

Given these concerns, safety and adaptability become
paramount, both for the design of safe human-robot col-
laborative environments [11] and for the mechanisms by
which robots build skill models [12], [3]. The ARC-LfD
system utilizes an AR interface that enables users to both
visualize learned skills and to define a strict set of behavioral
restrictions via the application and editing of constraints. The
benefit is twofold: 1) constraint application helps facilitate
encoding additional information, shifting the burden of end-
user expertise away from robotics and towards the task
consideration, and 2) AR enables a user to operate in an envi-
ronment where certain features (dangerous objects, difficult
arrangement, etc.) that make kinesthetic demonstration either
infeasible or dangerous can be virtualized, communicating
skill-essential behavioral restrictions as encoded constraints.

B. Augmented Reality Interfaces for Robotics

In order to facilitate an additional visual interface for an
LfD system without requiring user context-switching [13],
we use AR. AR interfaces for robotics have a proven track
record [14], [15], enabling new methods of enhancing robotic
control [16], [17], [18], [19], collaboration in human-robot
teaming [20], [21], safe movement in shared spaces [22],
[23], and communication of robot knowledge [24], [25], [26].
Motivated by this existing body of work, we use AR to create
an interface for LfD that previews learned skills and allows
editing of constraints directly in the robot’s environment.

Through ARC-LfD, users are able to examine a sample
trajectory from a learned skill visualized in AR through
an overlay in the workspace environment. Such skill vi-
sualization is intended to improve safety as the operator
can “preview” robot behavior without the need for actual
skill execution [27]. Prior work has established this potential
through user studies: Walker et al. [22] conducted a user
study which found that showing flying robot paths in AR
made users more efficient and comfortable when sharing
an environment with these robots. Similarly, Rosen et al.
[23] found that AR visualization of possible robotic arm
trajectories improved participants’ accuracy and quickness in
identifying collisions with objects in the environment. These
studies substantiate the notion that AR visualizations of robot
trajectories may improve user understanding with respect to
the path a robot will take and how that trajectory will interact
with the environment.

In addition to visualizing the robot’s possible future move-
ment, ARC-LfD supplies visual cues that describe the robot’s
ability to adhere to user supplied behavioral constraints on
a learned skill. This is akin to helping users understand the
internal state of the robot, another functionality that has been
explored within the space of AR for human-robot interaction.
Through AR, information such as the robot’s battery life
[25] or sensor readings [24] can be communicated to users

through a heads-up display. This is particularly useful when
performing complex tasks such as controlling a robot as it
prevents disruptive context-switching when averting attention
away from the environment towards a 2D display [13]. Using
AR to visualize a robot’s knowledge in the form of a learned
skill or action can also provide a realistic demonstration of
this knowledge without requiring extensive modeling of the
environment to use in simulation [26].

The final type of interaction supported by AR in ARC-
LfD is the ability to create and manipulate constraints
on a learned skill. Visualizing constraints in the physical
environment allows users to see the exact effect of applying
these constraints [28]. Yamamoto et al. [16] illustrated that
applying virtual constraints was an effective tool for robot-
assisted surgery, allowing surgeons to specify thresholds that
the robot should not cross. In our case, the constraints are
both shown and edited in the environment in which the skill
will be executed, allowing users to move constraints around
physical objects to ensure the skill can be performed safely.

Generally, we are motivated in designing ARC-LfD by a
rich history of research into LfD as well as strong results
from prior work at the intersection of AR and robotics that
demonstrate AR interfaces outperform 2D and tablet-based
interfaces for visualizing information critical to human-
robot interactions. In the next two sections, we describe the
algorithmic basis for ARC-LfD followed by the design and
capability features of the AR interface.

III. CONCEPT CONSTRAINED LEARNING FROM
DEMONSTRATION

As shown in Figure 2, ARC-LfD consists of two com-
ponents communicating via the Robot Operating System
(ROS): a Concept Constrained Learning from Demonstration
subsystem (CC-LfD), which serves as a backend for skill
learning, and an AR subsystem for visualization and user
interactions with a learned skill. In this section, we present
an overview of CC-LfD; however, we point the reader to the
original paper for a more thorough review: [3].

CC-LfD is an augmentation of Keyframe-based Learning
from Demonstration [5] that incorporates the ability to utilize
constraints, consisting of concepts (e.g., “X is above Y”, “Z
is powered on”, etc.) encoded as Boolean planning predicate
classifiers, to produce a more representative learned model
of the demonstrated skill. The motivation behind incorpo-
rating predicate-based constraints is to overcome the limited
capacity of demonstrated robot state (e.g., end-effector state)
trajectories alone to encode all critical aspects of a skill that a
human operator intends the robot to learn. For example, when
teaching a robot a cup carrying task, robot state data alone
will not adequately capture the concept of “keeping a cup
upright.” By leveraging logical combinations of predicate-
based constraints, CC-LfD biases waypoint sampling from
learned keyframes, resulting in a dramatic reduction in the
required number of demonstrations to both train a successful
model and repair a poorly performing skill as compared to
introducing additional high-quality demonstrations.

/ ARC-LfD System Architecture Diagram \

’ User ‘
s /\
Trajectory Constraint Edits Visualization|
Demonstrations & icati & Constrai
[e e e e e e 2 2 2 Nalidity _———
1 ROS Communication 1
1 Layer 1
1 1
: cc LfD Skill Representation Augmented :
: Subsystem FEClliyy :
1 Constraint P: te
. (crsmmrmee | | Subsystem | | !
1
sy | R N sl |
Sequential Motion
Plans

Robot

_ |
Fig. 2. A diagram of the ARC-LfD system architecture. The user (blue)
supplies the initial demonstrations to the CC-LfD subsystem (green). During
the editing phase, the user also supplies constraint edits and their keyframe
application to the AR subsystem (red). In return, the AR subsystem supplies
skill and keyframe constraint validity visualizations to the user. Through a
Robot Operating System (ROS) communication layer, the CC-LfD and AR
subsystems exchange skill representation, constraint parameterization, and
constraint application information. Finally, the CC-LfD subsystem provides
sequential motion plans for the robot (purple) to execute.

The CC-LfD algorithm requires a set of demonstrated
robot trajectories annotated with constraints. These trajecto-
ries are aligned via Dynamic Time Warping [29] to preserve
point-to-point spatio-temporal similarity across trajectories.
Once the trajectories are aligned, annotated constraints are
combined via a Boolean logical AND across all demon-
strations. Sequential clusters of aligned trajectory points
provide the basis for the nodes of a directed acyclic graph
representative of a learned skill.

Individual keyframe models are created by fitting distri-
butions on the data within each cluster. Keyframes inherit
the set of constraint annotations preserved during the align-
ment step. Importantly, constraint set change-point regions
demarcate special keyframes of data known as boundary
keyframes. Consecutive keyframes whose variational distance
is below a threshold parameter are culled from the keyframe
graph. This produces a more sparse keyframe representation
and eliminates backtracking behavior during skill execution.
Boundary keyframes are never deleted as they represent
pertinent structural change-points for the learned skill. To
better ensure each keyframe is representative of a constraint-
compliant distribution, a rejection sampling step produces
a constraint-compliant set of points that is used to rebuild
the keyframe distributions. Finally, skill execution is ac-
complished by sequentially sampling constraint-compliant
waypoints from a directed path through the keyframe graph,
subsequently constructing motion plans between waypoints.

ARC-LfD introduces an advancement over CC-LfD by
enabling post-hoc application of constraints as opposed to
requiring constraint application during demonstration. This
new approach facilitates an iterative update process that alters
keyframe constraints and the corresponding distributions,
providing the basis for ARC-LfD to achieve skill adaptation.

Demonstration .
Trajectories Skill
Execution
1 5

New Constrained Keyframe
Model

Visualize Representative
Robot Waypoints and
Constraint Validity

3 .~ >~ 4

Relearn New Keyframe
» Distributions Using New
Constraints

,/ﬂ

Intial Keyframe Model

Generate/Edit Constraints
and Assign to Keyframes

Fig. 3. Flowchart indicating how ARC-LfD integrates into CC-L{D. Steps
2, 3, and 4 repeat until the user is satisfied. The pink region (bottom)
indicates AR-based steps whereas the green region (top) indicates that AR
is not strictly required.

ARC-LfD first generates an initial keyframe model of the
skill (Fig. 3, Step 1), which is visualized as an instantiation
of the keyframe waypoints that the robot will execute (Fig.
4). This visualization includes the validity of each waypoint
relative to the keyframe’s applied constraints (Fig. 3, Step 2).
Using the AR interface, the user generates new constraints, or
edits existing constraints (Fig. 3, Step 3), and assigns them to
a chosen keyframe. This initiates a model rebuilding phase
where keyframe distributions are relearned using the same
rejection sampling and distribution fitting steps as CC-LfD
(Fig. 3, Step 4). If the user is satisfied with the visualized
robot behavior, skill execution can proceed as carried out by
the CC-LfD algorithm (Fig. 3, Step 5).

IV. AUGMENTED REALITY SYSTEM DESIGN

The second subsystem of ARC-LfD (see Fig. 2) is an AR
interface deployed on a HoloLens, a mixed reality headset
developed by Microsoft. A headset was chosen over alterna-
tive tablet-based passthrough AR solutions due to its hands-
free nature, freeing users’ hands for interaction with the
robot, and its ability to show different imagery to different
eyes, enabling superior depth perception [30]. Users wearing
the HoloLens are able to see holographic visualizations of
relevant keyframes and constraints projected onto the robot’s
workspace. User interaction is achieved through performing
pinching gestures known as air taps on these visualizations
and on menu buttons pinned above the robot (see Fig. 1).

A. Skill & Constraint Representation

For a given skill, each keyframe generated by CC-LfD
is sent to the AR interface and visualized as a hologram
of the robot’s end-effector, whose position and rotation
are representative of a randomly sampled valid waypoint
within that keyframe. The combination of these keyframe
visualizations traces out a trajectory that the robot would

EDITABLE CONSTRAINTS AND ADJUSTABLE PARAMETERS IN ARC-LFD

TABLE I

Editable Constraints
Constraint AR Parameters Example
Type Visualization P
Height Plane w/]l_ilzfz;etnce Fig. 4,
Above/Below Arrows Direction top-right
Orientation Orientation, Fie. 4
Orientation Validity Cone Affordance g
bottom-left
and Fan Angle
Position, X
. g Fig. 4,
Over-Under Cylinder Validity .
. bottom-right
Radius

follow to execute the skill. To aid the user in evaluating a
candidate trajectory at a glance, the end-effector holograms
are colored in a gradient from green to gray to indicate the
ordering of the keyframes, and any waypoints in violation of
an applied constraint are colored bright red (see Fig. 4).
Our test implementation incorporates three constraint
types, representing a subset of possible parametric, predicate-
based constraint templates for ARC-LfD, selected to provide
coverage over a number of common robotic manipulation
task setups. These are height constraints (the robot’s end-
effector must stay above or below a given height), orien-
tation constraints (the robot’s end-effector must maintain a
given rotation, within a given affordance), and over-under
constraints (the robot’s end-effector must stay above a given
location, within a given radius). Each constraint type has its
own associated visualization: a plane with arrows indicating
the valid direction for height constraints, a cone and fan
overlaid onto an end-effector showing the affordance for each
axis for orientation constraints, and a cylinder representing
the radius around a target for over-under constraints. When
the user selects a keyframe with a constraint applied, that

Fig. 4. ARC-LfD allows the user to visualize trajectories as a series of
keyframes (top left). Selecting a keyframe will show holograms representing
any constraints active at that keyframe, such as the height constraint (top
right) indicating the end-effector must stay above the plane, the orientation
constraint (bottom left) overlaid on the selected end-effector to show its
proper rotation, and the over-under constraint (bottom right) indicating the
end-effector must stay within the cylinder. Note that in the bottom right
image, one keyframe has the over-under constraint applied, but is not located
inside the cylinder, placing it in violation of the constraint, and coloring its
hologram red to alert the user.

constraint hologram appears, positioned, rotated, and scaled
according to its parameters, and colored a translucent purple
to maximize visibility of the trajectory and environment. For
a summary of these constraints, their AR visualizations, their
editable parameters, and references to examples, see Table I.

B. Constraint Editing & Application

ARC-LfD lets users edit existing constraints and create
new ones from a template via the AR interface (see Fig. 5).
The user accesses the constraint editing interface by selecting
a constraint type and slot with the menu buttons above the
robot. The user will then have the trajectory visualization
cleared from their view and a lone constraint visualization
will be rendered. The user can edit the parameters of their
chosen constraint type (see Fig. 5), seeing the visualization
update in real-time, which allows them to match constraints
to environmental features (e.g., placing an over-under con-
straint on top of a target object for a pick-and-place task).

Once a user is satisfied with their new constraint, they
press a confirmation button, which synchronizes the repre-
sentation across the AR and CC-LfD subsystems of ARC-
LfD. They are then able to apply that constraint to a keyframe
or range of keyframes through the constraint application
menu until they have added the constraint to the desired
areas of the skill trajectory. Once this process is complete,
and the trajectory has been satisfactorily inspected, the user
selects the “Send to Robot” button to send the new constraint
application to the CC-LfD subsystem, which initiates a
rebuilding and resampling of the skill. After the CC-LfD
subsystem has relearned a set of new keyframe distributions,
it sends them back to the AR subsystem and updates the
trajectory visualization to inform the user if the system
adequately captured their intent, and whether the skill is
likely to be executed successfully. This process of trajectory
evaluation, constraint editing, and constraint application can
be repeated until the user is satisfied.

V. SYSTEM VALIDATION

In order to validate the ARC-LfD system, we examine its
operation within three test cases representative of potential
task scenarios asked of robot manipulators. These case stud-
ies exemplify how ARC-LfD allows a user to demonstrate
a skill, visualize the learned skill, then adapt the learned
skill to two different environment setups (an “initial setup”
and “secondary setup”) using edited constraints. One of
our research team members acted as a user to demonstrate
the system’s functionality. Eight kinesthetic demonstrations
were provided as the basis for each skill using the Rethink
Robotics Sawyer platform. Once the ARC-LfD system had
generated a skill model learned from these demonstrations,
the user was shown a sample trajectory of this skill. The
user then edited and applied constraints with consideration
given to the specific environment setup. ARC-LfD used the
applied constraint to adapt the initial learned skill and sent a
representation of the updated skill back to the user for visual
inspection. Finally, the skill was executed on the robot.

Height Height
Constraint 1 Constraint 2
Back | Y Position

ius
{] Orientation
Edit Constraint 1
Z Position Fi

Over/Under Over/Under
Constraint 1 Constraint 2

Fig. 5. Users can customize constraints from templates via the AR
interface. After selecting a height (top left), orientation (top right), or
over-under (bottom left) constraint, they edit its parameters and see the
corresponding visualization update in real-time. Once satisfied, they can
apply the newly edited constraint to the model by selecting it from the
application menu (bottom right), and by selecting which keyframes the
constraint should apply to. After this process, they will send a request to
the robot to rebuild and revisualize the model using any new constraints,
and evaluate whether the robot has correctly learned the skill.

These case studies demonstrate situations in which ARC-
LfD allows a user to assess and edit a skill in response to
changes in the environment or task setup. This illustrates
a novel capability over CC-LfD as a user can craft and
visualize constraint annotations to ensure successful model
adaptation to differing task setups sans additional demonstra-
tions. In these example applications, the entire process (skill
visualization, creation and application of a constraint, skill
updating within the CC-LfD subsystem, visualization of the
updated skill, and approval of execution) took an average
of 120 seconds per skill. Videos of the execution from each
case study can be found at: https://youtu.be/GOTJIKVod4A.

A. Case Study I (Precise Placement): A Placement Task with
Orientation Change at Goal Pose

The first case study emulates situations in which the goals
of the task are modified after initial demonstrations are given.

Fig. 6. For Case Study I, the robot inserts a rectangular object into
a similarly-sized rectangular crate. In this case study, the user applies
orientation constraints to the final keyframes in the trajectory in order to
match the initial setup (left) with a horizontal crate or the secondary setup
(right) with a vertical crate.

In this task, the robot’s objective was to place a rectan-
gular object into an upright crate, with minimal clearance.
If the object was placed using the wrong orientation, a
collision with the crate would occur. The user first provided
demonstrations with varied orientations of the object. We
evaluate the task for two different orientations of the crate,
horizontal and vertical, with no additional demonstrations
provided between conditions. In both cases, the user applied
an orientation constraint to the last few keyframes of the
task specifying the respective desired orientation. With the
added constraints, the ARC-LfD system enabled the robot to
successfully place the object without collision. The setup of
this case study is shown in Figure 6.

B. Case Study Il (Changing Environment): Introducing New
Obstacles in a Pick-and-Place Task

In the second case study, the robot’s task involved moving
an object from one side of a table to another. This task
is representative of pick-and-place kitting tasks with known
initial/goal locations but configurations of obstacles that may
change over time. For this case study, the user provided 8
demonstrations of moving the robot’s arm across the table
from right to left. The initial environment setup had no
obstacles in the way. In the test condition, we placed stacked
foam obstacles halfway across the table. By applying a height
constraint, the user is able to edit the skill so that the robot
could still complete the task without colliding with the new
obstacles, without requiring additional demonstrations. This
case study exemplifies how a generic constraint can be used
in lieu of a simulated collision obstacle required by motion
planning. Images from this case study are given in Figure 7.

el
|

Fig. 7. In Case Study II, the robot completes a pick-and-place task either
with or without an obstacle present. The initial environment (left) has no
obstacles on the table, allowing the robot to freely move the object from right
to left across the table. The test condition setup (right) introduces an obstacle
halfway across the table, requiring the user to apply a height constraint that
ensures the robot lifts its payload over the obstacle to complete the task.

C. Case Study Il (Changing Goal): Moving the Receptacle
for a Pouring Task

The third and final case study we conducted involved a
task in which the robot poured a cup of material into a
receptacle. The modification for this case study consisted of
moving the receptacle to a different position. Using ARC-
LfD’s over-under constraint, the user was able to specify
where on the table the pouring part of the task should begin.
This allowed the robot to execute the cup pouring task
successfully with two different end goal positions without
any new demonstrations. Figure 8 illustrates the environment
setup and constraint applications for this case study.

-

Fig. 8. Case Study III involves the robot pouring a cup into a bowl
positioned at different points on the table. In the initial setup (left), the
bowl is placed toward the front of the table, while in the test condition
(right), the bowl is placed further back. In both cases, the user applies an
over-under constraint to the trajectory representation in order to ensure the
pouring motion takes place at the correct position.

D. Discussion

These three case studies exhibit the functionality of ARC-
LfD and its ability to make LfD systems more robust. Case
Studies I and III illustrate that ARC-LfD can make a set
of demonstrations robust to changes in the task, provided
sufficient variance of demonstrations in the set: through
application of constraints to an existing skill, the robot can
execute an altered version of a task. Case Study II shows
how ARC-LfD can make learned skills robust to changes
in the environment through using constraints that alter the
skill trajectory to fit a new execution context. Furthermore,
the interface of ARC-LfD enables users to conduct these
alterations after demonstrations have been given, allowing
for any-time editing of a skill. In addition to its func-
tionality for verifying and previewing skills directly in the
environment, ARC-LfD introduces a method for maintaining
robotic skills even if the particulars of task and environment
shift over time. We posit that ARC-LfD presents a safer-by-
construction alternative to general end-to-end policy learning
systems, trading generally unneeded levels of model expres-
sivity for system transparency, enabling successful safer skill
execution across a broad range of robotics tasks.

VI. CONCLUSION

ARC-LfD is proposed as a step toward producing practi-
cal, real-world-ready LfD systems that allow non-roboticists
to conduct training and evaluation of robotic systems. The
use of AR for in-situ visualizations relaxes the requirement
of a model of the environment to use in simulation for
verification of learned skills. Through visualizing a sample
trajectory directly in the environment, users can preview
the robot’s skill execution contextualized by the actual en-
vironment itself. The control flow of ARC-LfD provides
an improvement over CC-LfD, allowing users to separate
demonstration from constraint application.

Finally, the proposed constraint editing interface relaxes
the static environment assumption often levied for successful
LfD skill deployment. ARC-LfD enables direct skill repair
and editing, creating constraints contextualized in the en-
vironment and applying them to keyframes of an existing
skill. Thus, ARC-LfD fills a critical technical gap in LfD
systems, enabling long-term skill assessment and validation
as the environment or task requirements change over time.

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

REFERENCES

B. D. Argall, S. Chernova, M. Veloso, and B. Browning, “A survey
of robot learning from demonstration,” Robotics and Autonomous
Systems, vol. 57, no. 5, pp. 469—483, 2009.

C. G. Atkeson and S. Schaal, “Robot learning from demonstration,”
in ICML, vol. 97. Citeseer, 1997, pp. 12-20.

C. Mueller, J. Venicx, and B. Hayes, “Robust robot learning from
demonstration and skill repair using conceptual constraints,” in 2018
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS). 1IEEE, 2018, pp. 6029-6036.

H. Ravichandar, A. S. Polydoros, S. Chernova, and A. Billard, “Recent
advances in robot learning from demonstration,” Annual Review of
Control, Robotics, and Autonomous Systems, vol. 3, 2020.

B. Akgun, M. Cakmak, K. Jiang, and A. L. Thomaz, “Keyframe-
based learning from demonstration,” International Journal of Social
Robotics, vol. 4, no. 4, pp. 343-355, 2012.

M. Cakmak and A. L. Thomaz, “Designing robot learners that ask
good questions,” in 2012 ACM/IEEE International Conference on
Human-Robot Interaction (HRI). 1EEE, 2012, pp. 17-24.

A. Jain, B. Wojcik, T. Joachims, and A. Saxena, “Learning trajectory
preferences for manipulators via iterative improvement,” in Advances
in Neural Information Processing Systems (NeurIPS), 2013, pp. 575—
583.

B. Akgun, K. Subramanian, and A. L. Thomaz, “Novel interaction
strategies for learning from teleoperation.” 2012 AAAI Fall Sympo-
sium: Robots Learning Interactively from Human Teachers, vol. 12,
2012.

S. Wrede, C. Emmerich, R. Griinberg, A. Nordmann, A. Swadzba, and
J. Steil, “A user study on kinesthetic teaching of redundant robots in
task and configuration space,” Journal of Human-Robot Interaction,
vol. 2, no. 1, pp. 56-81, 2013.

V. Villani, F. Pini, F. Leali, and C. Secchi, “Survey on human-robot
collaboration in industrial settings: Safety, intuitive interfaces and
applications,” Mechatronics, vol. 55, pp. 248-266, 2018.

Y. Shen, G. Reinhart, and M. M. Tseng, “A design approach for in-
corporating task coordination for human-robot-coexistence within as-
sembly systems,” in 2015 Annual IEEE Systems Conference (SysCon).
IEEE, 2015, pp. 426-431.

F. Berkenkamp, A. Krause, and A. P. Schoellig, “Bayesian optimiza-
tion with safety constraints: safe and automatic parameter tuning in
robotics,” arXiv preprint arXiv:1602.04450, 2016.

H. Hedayati, M. Walker, and D. Szafir, “Improving collocated robot
teleoperation with augmented reality,” in 20/8 ACM/IEEE Interna-
tional Conference on Human-Robot Interaction (HRI), 2018, pp. 78—
86.

S. A. Green, M. Billinghurst, X. Chen, and J. G. Chase, “‘Human-robot
collaboration: A literature review and augmented reality approach in
design,” International Journal of Advanced Robotic Systems, vol. 5,
no. 1, p. 1, 2008.

D. Szafir, “Mediating human-robot interactions with virtual, aug-
mented, and mixed reality,” in 2019 International Conference on
Human-Computer Interaction (HCI). Springer, 2019, pp. 124-149.
T. Yamamoto, N. Abolhassani, S. Jung, A. M. Okamura, and T. N.
Judkins, “Augmented reality and haptic interfaces for robot-assisted
surgery,” The International Journal of Medical Robotics and Computer
Assisted Surgery, vol. 8, no. 1, pp. 45-56, 2012.

J. Weisz, P. K. Allen, A. G. Barszap, and S. S. Joshi, “Assistive
grasping with an augmented reality user interface,” The International
Journal of Robotics Research, vol. 36, no. 5-7, pp. 543-562, 2017.
M. E. Walker, H. Hedayati, and D. Szafir, “Robot teleoperation
with augmented reality virtual surrogates,” in 2019 14th ACM/IEEE
International Conference on Human-Robot Interaction (HRI). 1EEE,
2019, pp. 202-210.

C. Brooks and D. Szafir, “Visualization of intended assistance for
acceptance of shared control,” in 2020 IEEE/RSJ International Con-

ference on Intelligent Robots and Systems (IROS), 2020.

K. Chandan, V. Kudalkar, X. Li, and S. Zhang, “Negotiation-based
human-robot collaboration via augmented reality,” 2019 AAAI Fall
Symposium: Al for HRI, 2019.

E. Rosen, D. Whitney, M. Fishman, D. Ullman, and S. Tellex, “Mixed
reality as a bidirectional communication interface for human-robot
interaction,” in 2020 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS). IEEE, 2020.

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

M. Walker, H. Hedayati, J. Lee, and D. Szafir, “Communicating
robot motion intent with augmented reality,” in 2018 ACM/IEEE
International Conference on Human-Robot Interaction (HRI), 2018,
pp. 316-324.

E. Rosen, D. Whitney, E. Phillips, G. Chien, J. Tompkin, G. Konidaris,
and S. Tellex, “Communicating robot arm motion intent through mixed
reality head-mounted displays,” in Robotics Research. Springer, 2020,
pp. 301-316.

K. Kobayashi, K. Nishiwaki, S. Uchiyama, H. Yamamoto, S. Kagami,
and T. Kanade, “Overlay what humanoid robot perceives and thinks to
the real-world by mixed reality system,” in 2007 6th IEEE and ACM
International Symposium on Mixed and Augmented Reality. 1EEE,
2007, pp. 275-276.

T. Kot and P. Novdk, “Utilization of the oculus rift hmd in mobile
robot teleoperation,” in Applied Mechanics and Materials, vol. 555.
Trans Tech Publ, 2014, pp. 199-208.

M. Diehl, A. Plopski, H. Kato, and K. Ramirez-Amaro, “Augmented
reality interface to verify robot learning,” in 2020 29th IEEE Interna-
tional Conference on Robot and Human Interactive Communication
(RO-MAN). IEEE, pp. 378-383.

D. Krupke, F. Steinicke, P. Lubos, Y. Jonetzko, M. Gorner, and
J. Zhang, “Comparison of multimodal heading and pointing ges-
tures for co-located mixed reality human-robot interaction,” in 2018
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS). 1EEE, 2018, pp. 1-9.

D. Sprute, K. Tonnies, and M. Konig, “A study on different user
interfaces for teaching virtual borders to mobile robots,” International
Journal of Social Robotics, vol. 11, no. 3, pp. 373-388, 2019.

H. Sakoe and S. Chiba, “Dynamic programming algorithm optimiza-
tion for spoken word recognition,” IEEE Transactions on Acoustics,
Speech, and Signal Processing, vol. 26, no. 1, pp. 43-49, 1978.

J. P. Mclntire, P. R. Havig, and E. E. Geiselman, “Stereoscopic 3d
displays and human performance: A comprehensive review,” Displays,
vol. 35, no. 1, pp. 18-26, 2014.

