Robust Pose Estimation Based on
Normalized Information Distance

Zhaozhong Chen and Christoffer Heckman*

Abstract— Dense image alignment works by minimizing the
photometric error of two images since it is assumed that the
illumination changes between images close in time remain
the same—this is what is called the brightness constancy
assumption. However, this assumption does not hold with long-
term maps since illumination changes continually from day
to day (morning, afternoon, evening) and is dependent on
certain external conditions like weather or even seasons. In
this work, we present an image registration algorithm based
on the Normalized Information Distance (NID) that is shown
to be robust to extreme illumination changes comparing to the
traditional direct methods. The pose is estimated by minimizing
the NID function with the help of the nonlinear least square
optimization library G20. We share our source code! (CPU
and GPU version) for the benefit of the community, which can
be a strong basis for future tracking and mapping system based
on NID.

I. INTRODUCTION

Direct visual odometry [1], [2] works by minimizing the
photometric error of two images since it is assumed that the
illumination changes between images close in time is small—
this is what is called the brightness constancy assumption.
This works well for visual odometry, which estimates the
3D pose of the camera frame-to-frame, since the changes in
the scene’s lighting is minimal within a short time interval,
especially with a high frame rate camera.

Frame-to-frame tracking, however is not ideal due to
natural drift over time. Instead, it is desirable to localize
the camera with respect to a prior map. This is the essence
of simultaneous localization and mapping (SLAM): not
only to map an environment but also to localize against
it. However, the brightness constancy assumption does not
hold with outdoor long-term maps since illumination changes
continually from day to night, it doesn’t hold with indoor
illumination change such as light source turn on and turn
off either. As such, a direct photometric minimization is
often inadequate in these kind of situations. A technique
that is capable of registering against a map and is robust
to illumination changes like those shown in Figure 1 is of
great interest to roboticists. In this paper, we propose a dense
image alignment algorithm based on information entropy that
is robust to extreme illumination changes while maintaining
the benefits of typical direct photometric image alignment
methods.
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Fig. 1. Example images of the similar scene with different illumination
condition, globally and locally. (ETHZ CVG illimunation change dataset).

II. RELATED WORK

While some work exists to create maps that are capable of
coping with extreme illumination changes, like for example
experienced based mapping [3] or localizing against a nav-
igation sequence [4], these techniques mitigate the problem
by simply using redundant information and storing all the
different conditions in maps that are co-registered. These
approaches are not suitable for real world implementation.

By far, the most common techniques involve folding in the
illumination robustness directly into the image registration
optimization. An example of such a technique is applying
Zero Normalized Cross Correlation (ZNCC) [5], [6] by
which the scene’s mean intensity is subtracted to each pixel
which in turn is then divided by the standard deviation.
This aids in adjusting the brightness of the image due
to variations in lighting and exposure conditions. Another
similar technique is the Global Affine Illumination (AI)
[2]. In this method, two extra parameters are added to the
tracking optimization: a scale « and a bias [ parameter
that is applied to each pixel’s intensity when calculating the
photometric error.

These techniques have a major drawback in that they
assume that the illumination change is globally consistent.
It is often the case that lighting conditions affect the scene
differently in different areas, depending on the geometry of
the scene (e.g. multi-path), the camera position (e.g. non-
Lambertian reflections [7]) or the material properties of the
objects within it (e.g. albedo).

One error function that is robust against this non-uniform
lighting limitation, and is one of the most popular techniques
used in computer vision, is called the Census transform [8],


https://github.com/arpg/NID-Pose-Estimation

[9]. Whereas the Sum of Absolute Difference (SAD), or
even the Sum of Squared Differences (SSD) directly operate
over the photometric values of pixels, Census converts each
pixel into a binary signature that encodes whether a pixel’s
photometric value is lower or not compared to its neighbor-
ing pixels. This has the advantage that it encapsulates local
consistencies of illumination changes, rather than assuming
a global illumination transform. However, given the fact that
each pixel is now a binary signature, a direct subtraction can
no longer be applied to find correlations. Thus, the Hamming
distance is used as a metric of similarity by which the
number of matching bits in the binary signature are counted
in order to provide the final score. A major disadvantage
of using the Hamming distance in optimizations is that it
is not continuous. Thus, what the authors of the work in
[10] proposed is to use each bit independently as a different
channel or plane. Furthermore, each bit is interpolated during
the reprojection in order to find the error per bit which is
then aggregated with the rest of the Census bits to calculate
the final error for that pixel. The downside to using this
technique, however, is that the computation per pixel has
now been incremented by the number of bits in the Census
transform used. Other work such as [11] novely trains a
network to recover the image to a canonical appearence from
different illumination condition. However, this approach is
limited by its training dataset.

A number of recent works, e.g. [12] in the real-time frame-
to-frame tracking problem have focused on indirect methods,
i.e. those that compute features over the image in order to
conduct alignment. These methods are highly popular for
many applications of frame-to-frame tracking in particular,
e.g. dense map fusion [13]. Furthermore, features may be
designed to be considerably illumination invariant [14], and
with deep learning techniques, can be run in real-time on an
available GPU. However, in this work we focus exclusively
on the direct problem in order to explore the potential upside
in this particular domain.

More recently, the Normalized Information Distance
(NID) metric [15], [16] was proposed. This technique makes
use of mutual information [17], [18], [19] which has been
shown to be robust in the alignment of multi-modal im-
ages, in particular for medical applications. The images are
converted into histograms, which are then aligned using an
entropy metric. This method, although far superior to others,
is extremely computationally intensive and can take up to
three orders of magnitude more than the typical photometric
minimizations; even those with robust lighting techniques.
To increase the efficiency NID for pose estimation, [20],
[21], [22], [23] investigate using second order optimization
method to minimize the cost function. It is extremely useful
in other SLAM algorithms like pose graph relaxations [24],
[25] or sensor fusion [26]. [23], [22] use Mutual Informa-
tion instead of NID as the metric. However, the mutual
information is not a true metric. This problem is further
discussed in Section III-B. [20], [21] use NID as well as
second order optimization algorithm to accomplish tracking
task and achieve impressive result. However, they use the

whole image to generate one residual for optimization, which
make the traditional second order optimization strategy such
as Levenberg-Marquardt(LM) being suboptimal. LM is more
efficient when the residual number is higher than the number
of parameters. In their case, they only have one residual but
have 6D pose to estimate. Comparing to those previous work,
our main contribution is stated as follows.

o We firstly investigate grid cell approach for NID calcu-
lation using LM method.

« While B-spline functions have been used in previous
approaches to NID, [20], [21] we are the first to inves-
tigate their parameters’ influence on the optimization
result.

e We derive the detail formula for the NID method and
release our code under a standard LM optimization
framework using G20.

To the best of our knowledge, there is no open source
code using NID for 6D pose optimization. In the remainder
of this paper, Section III introduces the definition of NID
in information theory. Section IV list our cost function,
demonstrate the benefit of the cell based approach, and
derive the Jacobian detail for the LM opimization. Section
V compares the NID method with the tradictional direct
method.

III. BACKGROUND
A. Mutual Information

The concept of entropy and mutual information [27], [28]
have already been widely discussed in information theory.
Entropy H of a random variable X is defined as H(X) =
> wex Px(x)Ix(x), where Px(x) is the probability mass
function and Ix(z) = —log(Px(z)) is the information
content. Entropy can also be extended to two random vari-
ables to measure the amount of information obtained about
one random variable, through the other random variable.
This is what is called mutual information. Figure 2 shows a
graphical representation of two random variables and their
entropy. H(X) and H(Y") are the individual entropies for the
correlated random variables X and Y. H(X,Y) is the joint
entropy while H(X|Y) and H(Y|X) are the conditional
entropies. The purple is the mutual information I(X,Y).
Formally it is defined as:

I(X,)Y)=H(X)+H(Y)-H(X,)Y), (1

where H(X,Y) = =Y Pxy(z,y) log (Pxy(z,y)) V z €
X, y € Y. As can be seen from this definition, mutual infor-
mation is maximized as the two circles overlap completely.
In contrast, variables that are independent have circles that
do not overlap and as such convey no mutual information.
For image X, the probability of a pixel x; being of a certain
value I(p) is the number of pixels at that value divided by
the total pixels M, i.e.:
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B. Normalized Information Distance (NID)

One of the biggest issues with mutual information is that
it is not a true metric as it does not satisfy the triangle in-
equality. Consider again the case of Figure 2; in this example,
both cases have the same amount of mutual information, yet
with different joint entropies. It is desirable to disambiguate
between the two cases, and have a distance that captures
D(X1,Y1) > D(X2,Ys).

I(X1,Y1) = I(X2;Y2)

H(X1) H(Y1) H(X2)

H(Y2)

W g

H(X1,Y1)

O

I= H(X2,Y2)

Fig. 2. Entropy diagrams of two non independent random variables. The
mutual information is denoted as I(X;Y"). In these two cases, the mutual
information is the same [(X1;Y1) = I(X2;Y2) (purple areas), yet the
joint entropies are different H(X1,Y1) # H(Xg2,Y2) (captured by the
brackets).

The NID is designed to overcome this limitation by
normalizing the variation of information by the joint entropy;
furthermore, unlike mutual information, it is a true metric.
Formally, NID is defined as:

H(X,Y)—I(X,Y)
H(X,Y)
IV. METHOD

Pascoe et al. [20], [29] were one of the first to propose a
dense tracking system that directly minimizes a single global
NID cost. The optimization uses the Broyden-Fletcher-
Goldfarb-Shanno (BFGS) algorithm, which is a quasi-newton
method by which the Hessian is iteratively approximated
from the gradient and provides robustness by using a line
search. In their method, the images are converted into a sin-
gle histogram, inconsistencies due to outliers cannot be han-
dled like typical direct photometric methods could. This work
proposes to use NID as an image distance measure instead
that provides multiple residuals, and therefore the problem
can be rewritten to use the conventional Lucas-Kanade [30]
whole image alignment formulation. As such, a second-order
optimization method like Levenberg—Marquardt (LM) [31]
can be used. Furthermore, the optimization is now capable
of providing its true covariance matrix. To achieve this, the
image is now split into cells, for each of which a NID cost
is computed. The optimization is looking to minimize the
summation of the NID costs for all cells in the image. The
cost function of whole image alignment is written as follows:

argmin D (Lyr,w (Toh w(lres, Trep))) @)

cur»
Teur

NID(X,Y) = 3)

where T, € SE(3) is the six degree-of-freedom pose to be
estimated from camera frame to world frame. I,,, : Q@ — Rt

and I.p : 0 — R* are the current and reference images
respectively, and w is the warping function that transforms
the reference image using the known parameters T,..; and
camera intrinsics K to the 3D world frame. Then we use the
estimated T, and warping function to project 3D world
points back to the current image frame. The initial guess of
T, can be infered from the constant velocity model as we
know the T, and its previous frame’s transformation from
local to world.

Finally, D in Eq. (4) is a measure of distance and as such
must be designed to meet certain conditions:

« Non-negativity: D(X,Y) >0

o Equivalence: D(X,Y) =0 <= X =Y

o Symmetry: D(X,Y) = D(Y, X)

o Triangle Inequality: D(X,Y) +D(Y, Z) > D(X, Z)

This work posits that the NID operation defined in Eq. (3)
satisfy the above requirement and provides a robust result to
brightness inconstancy so we use Eq. (3) as D: D(X,Y) =
NID(X,Y)

Intuitively, H(X) and H(Y') are the individual entropies
of the images X and Y whose distributions are calculated
by Eq. (2). However, what we practically use to calculate
the distribution is a B-spline function, which overcomes the
limitation that Eq. (2) is not differentiable. Details on this
are discussed in the next subsection. The NID cost only
requires computing the joint distribution, since the individual
distributions can be calculated by marginalization. A sam-
pling method is performed to construct each distribution,
represented as a /N-bin (interval) histogram, with the final
joint distribution being of size N x N.

Finally, the spatial distribution of cells in the image

Fig. 3. The grid cell approach preserves the histogram consistency
regardless of reprojection errors due to incorrect depth estimates or outliers.
For the case of the whole image NID, the final histograms between the top
and middle row will not match correctly. With the grid cells, however,
the cells that are affected can easily be down-weighted or rejected by the
huber norm in least square optimization and as such preserve the original
histogram (bottom row).

provides additional benefits with regards to histogram consis-
tency. For the single residual NID case, the joint entropy will
possibly be the minimum at some incorrect transform since
the bad observations were already added to the histogram.
However, with the cell based approach the position of the
black area of the image will only affect the cells it reprojects
into, and as such, the histograms of the other cells will not
be affected (Figure 3).



A. Optimization Strategy

We use the G20 [32] as the backend to implement the
LM algorithm. Two terms need to be defined: the first is the
error term, which is described as Eq. (4); and the second
is the Jacobian matrix, i.e. the Jacobian of NID w.r.t. T, .
For brevity, we rewrite D (Icyy,w ™ (Tol, w(lres, Trey)))
from Eq. (4) as D(I., I,.). To provide clarity frequently ab-
sent from previous works, we explicitly derive the Jacobian:

DU, 1))
aTcur
ML) (p(1,) 4 H(I,)) — 92U F (1, 1,)
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For brevity, we rewrite H(I.,I.) and H(I.) as H(-).
According to the chain rule ~ can be writen as:
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the pixel intensity gradient and the m‘?p is the projected
pixel’s derivative w.r.t. the SE(3) pose. Generally we need
to transform it to calculate the derivatives on the perturbation
of its lie algebra se(3). The detail is in [33], [34] and for

simplification it is given by:
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where f,, f, are the camera focal length, and with a slight
abuse of notation, z,y, 2z represent the 3D point location
in current camera frame after being projected from the
world frame by T.,,.. Note that z, the projective depth of a
pixel, may be either measured directly (e.g. in RGB-D) or
conducted with arbitrary scale through inference (e.g. [35]).
However, 5(-) from Eq. (2) is not differentiable. Hence, we
use a basis of B-splines to take its place while maintain-
ing SB(-) function’s constraints. B-splines have basic spline
function properties deriving from their piecewise polynomial
origins. However, they also have unique behaviors that fit
our purposes, which will be detailed below. B-splines are
calculated recursively and can be written as [36], [37], [38]:

0 otherwise,

if k=1and, if £k > 1,

t—t;
tivk—1 —

i1 —t

Bik(t) = Bik—1(t) + Bit1,k-1(t),

titk — tit1

where t; is B-spline knots, k is the B-spline degree. For
k > 1 the B-spline function is differentiable because it is a

k-degree polynomial and its derivative is:

dB; k(1) _

dt

t—t; dB; —1(t tiz1—t dB; _1(t

Bik 1()+ +1 Bit1,k—1(t) ™
tivk—1— 1t dt tivk — tig1 dt
1 1
— Bipa(t) — ————Biy1 ot
R tiﬂ k—1(t) foer — ti+15+1,k 1(t)

The knots of a B-spline in our application are arranged
according to the bin number N and B-spline degree k. The
degree k is fixed to 4, a choice discussed in Section V-B, and
the influence of different bin numbers N is also shown and
discussed later. After defining the bin number and B-spline
order, we can obtain the knot vector according to:

0 if i<k
t;={i—k+1 if i<k<N (8)
N—k+1 if N<i<N+k

The arrangement of the B-spline function as described in
Eq. (8) is known as the clamped knot vector. Note that this
has some duplicate knots such as the 0 in the Eq. (8). With
the help of clamped knot vector, we maintain by construction
vajok_l Bik(t) = 1. This is important because after we
sum up the B-spline values of all the pixels in a cell and
divided by the pixel number M, the uniform value of the
probability mass function summation still holds.

Finally, as the knot vector range is between [0, N — k+1],
we need to map the pixel intensity into knot vector range to
compute its B spline value, by:

N-k+1

t=1(p) T

)
Combining Eq. (7) and Eq. (9) we can have the gf—((:; in
Eq. (6).

V. EXPERIMENTAL RESULTS
A. Evaluation Method

To evaluate the algorithm, experiments were conducted on
the synthetic ETHZ-CVG illumination change dataset [39]
and TUM RGB-D dataset [40]. [39] provides image pixel
intensity varies globally and locally (like Figure 1).

We want to demonstrate that the proposed method can give
a more accurate pose estimation compared to a traditional di-
rect method when the lighting condition is not consistent. We
conduct three different traditional direct methods experiment
for comparison. We perform our simple direct method by
minimizing the photometric error of an image’s high gradient
pixels [41], [35], i.e.:

- Wﬁl(Til w(lre, Tref)HZ-

curs (10)

argmin || Loy
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We then run the same dataset on the semi-direct library SVO
[22] and direct method library DSO [35]. We must note that
our current library focus on estimating the 6D pose between
an image pair instead of the whole image sequence so we
cannot run our algorithm on the whole dataset and compare
the trajectory error with DSO or SVO. Instead, we only use



the LM algorithm part of DSO and SVO to estimate the
poses between image pairs like our NID algorithm. To make
the comparison fair, we don’t allow depth updation in DSO
and SVO. Instead, we feed them with known depth from
the RGB-D dataset and fix the depth. We focus our work
on the comparison of different conventional direct methods
to demonstrate its imporvements on different illumination
conditions.

For the NID method, we split the image into different cells,
since the number of cells into which the image is split will
affect the final result. Table I shows the number of splits for
each configuration, and the corresponding number of cells
and cell size. One split means the image is divided by two
in each dimension, yielding four cells, and so on.

In the global illumination condition varying subset, the

TABLE I
NID CONFIGURATIONS

Configuration ~ Splits ~ Total Num Cells  Resolution of Cell
NID1 1 4 320x240
NID2 2 16 160x120
NID3 3 64 80x60
NID4 4 256 40x30
NIDS5 5 1024 20x15

whole image sequence goes from bright to dark and dark to
bright continuously over multiple frames, simulating turning
a light off and on. In the local illumination condition varying
subset, only a sub-part of the image’s illumination changes.
Of thoses datasets, we choose 90 pairs image each, with
each pair having a different illumination condition like Figure
1. For example, in subdataset ethl_synl_global, we choose
image pair {0035.png, 0040.png}, {0036.png, 0041.png}...
Such a pair has a strong illumination difference directly from
visualization. For each image pair, we choose one camera
pose as static reference T',..; and the other one is the to be
optimized pose T.,,. Both poses are from the groundtruth.
Then we add a fixed disturbance in rotation and translation
T, 0ise to the Ty, for all the image pairs to imitate the
none-perfect pose estimation from a tracking system.
Finally we apply NID method and the direct method to
optimize the T.,, with noise seperately. In both datasets,
the noise we add to the groundtruth is 0.03 meters in
translation and 0.015 radians in rotation because the average
translation and rotation movement between two consecutive
images are around this two numerical values. The way we
calculate the rotation error is by mapping the rotation from
Lie group SO(3) to the Lie algebra so(3) so that we can
have a minimal representation of the 6D estimated pose
and ground truth, then we calculate the root sum-of-squares
of the difference between the estimated pose and ground
truth. To further investigate the numerical result, we define
“successful estimation” if the optimized pose’s root sum-of-
squares rotation and translation error from ground truth is
smaller than 6 = 0.045. This is not a strict metric, however,
if the optimized error is smaller than J, it generally means
the difference between the noise pose and groundtruth gets

smaller after optimization. It should be noted that NIDI
and NID2 are not tested since they would result in too few
residuals and not suitable for LM algorithm. Also, The cell
resolution naturally is reduced to the point that no clean
split can be performed after 5 splits. Thus, experiments
were performed between 3 to 5 splits, yielding 64 to 1024
residuals.

B. Results

1) ETHZ CVG dataset test: The left and middle side
of Figures 5 show the median/max/min translation and
rotation errors of the 90 ETHZ-CVG dataset image pairs
with global illumination change after optimization, the midlle
figure shows the same error statistics but using the local
illumination change dataset. We can see the NID method here
shows its advantage mostly in improved translation results.
The translation of the direct method has a large varaince
while NID4 and NIDS5 is quite robust. Interestingly, the
direct method’s rotation estimation is stable but the NID4
still surpasses it with smaller median/max/min error.

Table II shows the percent of successful estimates of the
direct method and NID method with different number of
cell splits as defined in the previous section, where the pose
estimation error falls below a fixed threshold. “G” stands for
the global illumination varying dataset and “L” represents
the local illumination varying dataset. Using the result from
“G” row, when there is a significant illumination change
between the images, the direct method fails at most of the
image pairs with a only 12.22% successful rate. With NID,
the success rate increases significantly, with NID4 returning
the higest success rates. When the cell number is too small,
for example the NID3 can only yield 64 measurements, the
system is not found to be robust to the outliers of larger
NID values. However, when the cell number is too large like
NIDS, a cell’s pixel number (300) is small, which means it
may not be able to provide valid information over a wide
enough receptive field. In both “G” and “L”, NID4 shows
the highest succesful rate.

TABLE I
SUCCESSFUL ESTIMATES FOR ETHZ-CVG DATASET

DIR DSO SVO ‘ NID3 NID4 NID5
G 1222% 22.22% 1445% | 3444% 80.00%  53.33%
L 1330% 4556% 2221% | 53.33% 74.44%  48.89%

2) B spline coefficients: There are several customized
variables that may influence the errors; for instance, setting
the B-spline order to k = 4 ensures the cost function has
a C? continuous derivative. We also show results for the
number of bins, a frequently-unchanged setting which we
found has impact on the results of the estimation. Following
Eq. 8), we let k =4 and N = 6,8,10, 12, 14 respectively,
then run the NID method with 90 image pairs same as
previous subsection V-A. The split number is fixed to 4 in
different bin numbers comparison.

Table III shows the percent of successful estimates (as
defined in the previous section); the right plots in Figures



TABLE III
SUCCESSFUL ESTIMATES WITH DIFFERENT BIN NUMBERS

6 8 10 12 14
67.78%  80.00% 81.11%  65.56%  72.22%

5 shows the translation and rotation error box plot for the
different bin numbers. We can see that, unlike the image
cell number setting, the bin number doesn’t affect error very
significantly. The translation and rotation median/max/min
error are comparable, although N = 10 yields the best result.
When we use NID4, a small bin number (extreme example
being N = 1) or a large bin number (extreme example
being N = 255) may both lead to data losing significant
information content. Therefore we design the number of bins
N to have each cell’s pixel count set such that each cell can
have a resonable number of pixels, which is dependent on
the resolution of the image and therefore reduces to a choice
based on application. In the case of NID4, our tests show
N = 8 or 10 can yield the smallest pose estimation error.

3) TUM RGB-D dataset test: The TUM RGB-D dataset
doesn’t have illumination change. We simply imitate the
ETHZ-CVG dataset and artificially add illumination change
to the dataset. We continuously add and subtract intensity
to each pixel. Figure 4 shows a sample of the frl/desk
image sequence of the TUM RGB-D dataset after adding
illumination change. Again, we choose 90 image pairs from
different TUM RGB-D datasets, add the same noise to the
groundtruth pose as the ETHZ-CVG dataset, and run the
pose optimization algorithm from different methods. Due
to the page limitation, we only show the succesful rate in
Table IV. It’s not a surprise that the traditional methods
have poor performance on the real world dataset with rolling
shutter camera. For example, the SVO successful rate is 0
on every dataset so we don’t list it on the table. Although
we didn’t compare with the DSO and SVO on the whole
image sequence, we tried to run them to visualize the final
trajectory. SVO cannot initialize on any of the illumination
change TUM and DSO is struggling at initialization and can
barely initialize successfully. This behavior corresponding to
the table result implicitly.

Fig. 4. We manually change the illumination condition of the TUM RGB-
D dataset. We firstly decrease the light intensity, then increase it and do the
process continuously.

VI. CONCLUSION

In this work, we introduced an algorithm that makes use
of the Normalized Information Distance (NID) metric for
whole image alignment. The algorithm splits the image into
cells, each counting as an observation for a least squares style
LM optimization. The NID metric was shown to be robust

TABLE IV
SUCCESSFUL ESTIMATES FOR TUM-RGBD DATASET

DIR DSO NID4
frl/desk 8.89% 10.89%  64.44%
frl/teddy 15.12% 6.56% 57.78%
fr1/360 5.89% 22.22%  75.56%
fr2/desk 5.89% 9.55% 46.67%
r2/360_kidnap 12.78% 9.67% 26.67%
fr2/360_pioneer 9.67% 10.12%  40.00%
fr3/long_house 5.22% 21.56%  86.67%
fr3/str_texture_far 16.67%  13.56%  42.22%
fr3/str_texture_near 5.56% 7.78% 37.78%
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Fig. 5. Median/max/min translation error for both the direct method and
different splits of the NID algorithm for the ETHZ-CVG illumination change
dataset. The first row is the translation error, the second row is the rotation
error. For the column, from left to the right, the figures are results from
global/local illumination change datasets and different B-spline bin numbers.
W: Our simple direct method. D: DSO. S: SVO. Nk: NID method with &
splits. Red line: median value. The bottom and top edges of the box: 25%
and 75" percentiles, respectively. The whiskers: extreme data and outliers.

to strong illumination changes compared to conventional
photometric algorithms. Also, we are the first to open source
vision-based NID localization code for pose estimation. The
CPU version can take 2 to 3 min to optimize the pose while
the GPU version can be 100 to 300 times faster.

In all, this work is a basis for a future open-source NID-
based tracking and mapping system. There are multiple
avenues for future work resulting from this effort. First, to
the best of our knowledge, sparse NID alignment, i.e. only
choosing a subset of pixels to calculate NID, has not been
tried before, but would be a direct extension of this work.
Second, We would like to use image pyramid in the future.
We hope to further imporve the computation speed and the
scale robustness. Finally, we’d like to develop tracking and
mapping algorithm based on the current framework.
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