
Abstract 

The knowledge tracing (KT) task consists of 
predicting students’ future performance on 
instructional activities given their past performance. 
Recently, deep learning models used to solve this 
task yielded relative excellent prediction results 
relative to prior approaches. Despite this success, 
the majority of these models ignore relevant 
information that can be used to enhance the 
knowledge tracing performance. To overcome these 
limitations, we  propose a generic framework that 
also accounts for the engagement level of students, 
the difficulty level of the instructional activities, and 
the natural language processing embeddings of the 
text of each concept. Furthermore, to capture the 
fact that students’ knowledge states evolve over 
time we employ a LSTM-based model. Then, we 
pass such sequences of knowledge states to a 
Temporal Convolutional Network to predict future 
performance. Several empirical experiments have 
been conducted to evaluate the effectiveness of our 
proposed framework for KT using Cognitive Tutor 
datasets. Experimental results showed the superior 
performance of our proposed model over many 
existing deep KT models. And AUC of 96.57% has 
been achieved on the Algebra 2006-2007 dataset. 

1 Introduction 

Modeling students’ knowledge states reflecting their level  of 
mastery with respect to a domain or set of targeted skills and 
concepts as well as predicting their future performance is an 
important task in learning science and engineering and is 
known as the Knowledge Tracing task (KT). It is usually 
leveraged to optimize students’ learning trajectories, 
experiences, and outcomes. KT is a challenging task due to 
the complexity of the human learning processes (e.g., 
guessing, forgetting etc.) and the inherent difficulties of 
modeling knowledge (e.g., prior background; [Piech et 
al.,2015]). Further improvements in KT, which is the focus 
of our work, will have a wide range of benefits including 
better adaptation to individual learner’s needs and, 
consequently, improved effectiveness at inducing learning 
gains and better learning experiences. There are other 

benefits of better KT solutions, as exemplified next. Given 
the tight link between domain models, i.e., the set of concepts 
to be mastered in a target domain, and knowledge tracing, 
better KT models, e.g., more accurate, will inform refinement 
of domain models. In addition, better KT will lead to 
designing new, more effective learning materials and 
instructional strategies. 
 
Given the success of deep neural networks in other domains, 
deep KT models have gained significant attention recently. 
They use deep learning techniques to represent learners’ 
latent knowledge states using large vectors of “artificial 
neurons”. The parameters of these vectorial representations 
are inferred from data. Deep KT models use one hot encoding 
of the identification numbers (IDs) of the instructional 
activities, e.g., questions or problems to be solved, ignoring 
those items’ characteristics. Several research works 
demonstrated that incorporating the items’ semantics in the 
form of text embeddings into deep KT models can boost their 
prediction performance [Sonkar et al., 2020]. Despite the 
state-of-the-art results obtained by these models, they suffer 
from major limitations. For instance, many of the existing 
deep KT models do not account for other important 
information such as the number of the correct attempts to 
solve a task and the duration of each step, which can be 
viewed as indicators of        levels of engagement. To address 
these limitations and enhance the    capabilities of KT models, 
many researchers incorporated into deep  KT models various 
components such as learning ability [Minn et al.,2018], prior 
knowledge [Shen et al.,2020,  and slipping and guessing 
effects [Cheng et al.,2020]. Furthermore, existing deep KT 
models consider all questions/items under a specific concept 
as equivalent observations. In attempt to improve instruction 
adaptation [Shailaja et al., 2014] which will maximize 
(effectiveness) and speedup (efficiency) students’ learning, 
we propose a generic framework that explores the underlying 
information among questions to enhance the performance of 
KT. The key components of our framework are: 
 
- an NLP embedding component using the Sentence 

Universal Encoder [Cer, D.M. et al.,2018]. Given a 
question, we extract the semantics associated with its 
knowledge components (KCs) by averaging the 
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embeddings corresponding to the textual descriptions of 
these knowledge components. 

- a component capturing the engagement level of the 

student by dynamically assigning students into various 

groups based on their frequency interactions data using 

K-means clustering. To the best our knowledge this the 

first time an engagement level component is included in 

a deep KT model. 

- a question/item difficulty component. 

- knowledge embeddings resulted from the fusion of all 

these inputs (engagement level, text embeddings and 

item difficulty), using concatenation. The embeddings 

should lead to similar representations for items targeting 

similar concepts and having similar difficulty levels. 

- an LSTM-based model to infer the students’ latent 

knowledge states and a Temporal Convolutional 

Network to predict future responses.  
 
We conducted series of experiments on the Cognitive Tutor 
datasets [Stamper et al.,2010] and we compared our proposed 
model to existing deep KT models. 

2 Related Work 

Several researchers incorporated important information 
about questions/items that can help better capture the wider 
learning context and therefore lead to improved ways to solve 
the KT problem. For example, Liu and colleagues [Liu et al., 
2020] proposed a Pre-training Embeddings via Bipartite 
Graph (PEBG) to learn a low dimensional embedding for 
each question based on additional information including 
question difficulty, question similarity, and skill similarity. 
They also introduced a product layer to fuse all the input      
features and obtain the final question embeddings which are 
incorporated into existing deep KT models. Experiments      
indicated an AUC (Area Under the Curve) improvement over 
state-of-the-art results by 8.6 % on average. Ghosh and        
colleagues [Ghosh et al.,2020] proposed an attentive 
knowledge tracing (AKT) model which combines an 
attentive neural model with various novel and interpretable 
model components inspired by cognitive and psychometric 
models. In addition to the question similarity, AKT uses 
Rasch model parameters: question difficulty and learning 
ability. The goal was to learn question embeddings that 
capture individual differences among questions targeting the 
same concept. Experimental results demonstrated improved 
performance of the AKT over prior KT models with a 
reported AUC improvement of up to 6%. To better model the 
individualization of prior knowledge and learning rates of 
various students, Shen, and colleagues [Shen et al.,2020] 
proposed a novel Convolutional Knowledge Tracing (CKT) 
model. More specifically, Hierarchical Convolutional layers 
were designed to extract learning rate features by processing 
many continuous learning interactions within a sliding 
window. Individualized prior knowledge was assessed 
according to students’ historical learning interactions. Yang 
and colleagues [Yang et al.,2020] argued that knowledge 
tracing is affected by the most recent questions answered by 

students according to the forgetting curve theory. Based on 
this assumption, they proposed a Convolutional Knowledge 
Tracing (CKT) model that captures the long-term effect of 
the entire question-answer sequence and short-term effect of 
the recent questions using 3D convolutions. The 
experimental results showed an AUC improvement relative 
to existing KT models. 

Cheng and colleagues [Cheng et al.,2020] proposed an 
adaptable knowledge tracing (AKT) framework that 
integrates slipping and guessing factors into the model to 
obtain more reasonable knowledge state results and leverage 
the semantics of question texts for more precise knowledge 
tracing. They obtained improved performance over several 
KT models. 

Shin and colleagues [Shin et al.,2020] proposed SAINT+, 
a successor of SAINT which is a Transformer based 
knowledge tracing model. The main addition in this new 
version is incorporating two temporal features: elapsed time 
which is the time taken by the student to answer a question 
and lag time, the time interval between adjacent learning 
activities. The empirical results showed an improvement in 
the AUC over the SAINT model on EdNet, the largest public 
dataset in the education domain according to some metrics, 
e.g., data from almost 800k students. It should be noted that 
EdNet contains learning data from the domain of English 
learning, i.e., it does not target learning of complex STEM 
topics. 

In a continuous effort to overcome the major limitation of 
deep KT models in capturing differences among questions 
targeting the same concept and to enhance the knowledge 
tracing ability, we consider additional information such as 
students’ engagement level. We also consider the semantics 
of the key concepts targeted by each question using a novel 
natural language processing (NLP) algorithm, i.e., the 
Universal Sentence Encoder. We also employ for the first 
time a novel times series model based on a Temporal  
Convolutional Network to predict student performance. 

3 Model Architecture 

Our proposed framework comprises of several important 
components. First, we account for the engagement level of 
students in the form of a one hot encoded vector of the 
engagement cluster that the student belongs to at each time t. 
Second, our model uses an averaged embedding vector of the 
knowledge components associated with each question. The 
third component consists of a one hot encoded vector 
reflecting the difficulty level of each question. Fourth, we use 
a one hot encoded vector of the ID of each question. Then, 
we fuse all these inputs to generate a knowledge embedding 
for each question answered by the students. The sequence of 
these knowledge embeddings of each student are passed to an 
LSTM based model to learn students’ knowledge states of the 
student for specific concepts. The sequences of these vector 
are then passed to a Temporal Convolutional Network (TCN) 
connected with a Sigmoid layer to predict performance. 
 
3.1 Dynamic Assessment of the Engagement Level of 

Students using Clustering 







Training and Testing. In all experiments, we perform            
5-cross fold validation using a Tesla K80 GPU and a total of 
12 GB of RAM. We split all datasets at the student level: at 
each iteration, 80% of students were used for training and 
20% were used for testing. For LSTM, we considered 100 
units as the dimensionality of the output space. For the TCN 
parameters settings, we set the number of filters to use in the 
convolutional layers to 64. The kernel size was set to 6 and 
we considered a dilation list = [1,2,4,8,16,32,64]. An Adam 
optimizer [13] with a learning rate of 0.001 was used and gra-
dients were clipped to 1.0 to prevent exploding gradients. 
Due to the large size of our datasets, we considered a small 
batch size of 5. To evaluate the performance of our model, 
we customized the Binary Cross Entropy loss since our model 
gives predictions for all skills/concepts. Given a new student 
in the testing data, the model predicts her performance in all 
the concepts in the Cognitive dataset. Thus, to generate the 
prediction for a specific skill, we take the column-wise dot 
product between the predictions and a one-hot encoding of 
the skill. 

Our model was evaluated on the test data and the 
performance of the model is reported using the area under the 
ROC curve (AUC). AUC measure ranges from 0.5 reflecting 
a low ability to distinguish from correct and incorrect answers 
to 1.0 reflecting a perfect discrimination. We compute the 
AUC by obtaining the prediction of each student in the testing 
data across all concepts. 

Compared Methods. To demonstrate the effectiveness of 
our proposed model, we compare its AUC results with 
existing methods the reported results on the same Cognitive 
Tutor data sets. The methods are: 

- DAS3H [Chofin et al.,2019]: incorporates item-skills 
relationships and forgetting effects. 

- qDKT [Sonkar et al., 2020]: models every learner’s 
success probability on individual questions over time. 
qDKT incorporates graph Laplacian regularization to 
smooth predictions and uses an initialization scheme in-
spired by the fastText algorithm. 

- DynEmb [Xu et al.,2020]: enables the tracking of stu-
dent knowledge without the concept/skill tag infor-
mation that other KT models require. 

- Transformer-based DKT [Pu,et al.,2020]: a Trans-
former based model that addresses the forgetting issue 
by accounting for elapsed time. It also uses the ques-
tions-skills associations to learn representations of both 
frequent and rare questions. 

4.3 Results and Discussion 

Table 2 lists the AUC performance results of our proposed 
model using the three datasets of Cognitive Tutor. Including 
all the model components: the engagement level, the question 
difficulty and the knowledge component text embeddings, 
the model performs better on the Algebra 2006-2007 dataset 
with an AUC of 96.57%, followed by the Algebra 2006-2007 
dataset with an AUC of 92%, and the Bridge dataset with an 
AUC of 91%. As shown in Table 4, these results reflect a 
significant performance gain in comparison with existing 
deep KT methods. 

Table 2. The performance results of the proposed model and the 

ablation experiments results. 

 
Table 3 lists some examples of the results of our proposed 

framework based on the engagement level and the difficulty 
of the questions. As shown in the table, the engagement level 
of the student has more impact on the performance in 
comparison with the difficulty of the questions. Students with 
high levels of engagement perform well regardless of the 
difficulty of the questions. However, it is less probable that 
the low engaged students perform well especially when the 
question is difficult. 

Table 3. Example of the results in terms of engagement level and 

difficulty of the question 

 
Ablation experiments. To test the impact of each key 
component of our model on the overall performance, we 
conducted a series of ablation experiments. The ablation 
experiments are: 

- First, we removed the engagement level component 
from the model inputs and evaluated the resulting 
model on the Algebra2006-2007 dataset. The 
experiments showed that the model AUC has 
decreased by 1.07 %. Based on the existing literature, 
this is a significant statistical drop in the AUC results 
reflecting the important of this component. 

- Second, we removed the question difficulty from the 

model inputs. The results showed that the model 

AUC has decreased by 0.01% which is not 

statistically significant.  Thus, the question difficulty 

component  is not important in the framework. 
- Third, we removed the knowledge component text 

embeddings from the model’s inputs. The AUC of 

the model has decreased, reflecting the importance 

of this component. Generally, the Universal 

Sentence Encoder boosts the prediction ability of 

deep learning models. 
 

Model AUC Result (%) 

EL+QD+KCE-Algebra2005-2006 92 

EL+QD+KCE-Algebra2006-2007 96.57 

EL+QD+KCE-Bridge2006-2007 91 

Engagement 

Level 

Difficulty of 

Questions 

Performance % of testing 

data 

High (1) Easy (<0.5) High 13 

High (1) Easy (<0.5) Low 6 

High (1) Difficult (>0.5) High 13 

High (1) Difficult (>0.5) Low 6 

Low (2) Easy (<0.5) High 0.4 

Low (2) Easy (<0.5) Low 1 

Low (2) Difficult (>0.5) High 0.47 

Low (2) Difficult (>0.5) Low 2.68 
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