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Abstract

The knowledge tracing (KT) task consists of
predicting students’ future performance on
instructional activities given their past performance.
Recently, deep learning models used to solve this
task yielded relative excellent prediction results
relative to prior approaches. Despite this success,
the majority of these models ignore relevant
information that can be used to enhance the
knowledge tracing performance. To overcome these
limitations, we propose a generic framework that
also accounts for the engagement level of students,
the difficulty level of the instructional activities, and
the natural language processing embeddings of the
text of each concept. Furthermore, to capture the
fact that students’ knowledge states evolve over
time we employ a LSTM-based model. Then, we
pass such sequences of knowledge states to a
Temporal Convolutional Network to predict future
performance. Several empirical experiments have
been conducted to evaluate the effectiveness of our
proposed framework for KT using Cognitive Tutor
datasets. Experimental results showed the superior
performance of our proposed model over many
existing deep KT models. And AUC of 96.57% has
been achieved on the Algebra 2006-2007 dataset.

1 Introduction

Modeling students’ knowledge states reflecting their level of
mastery with respect to a domain or set of targeted skills and
concepts as well as predicting their future performance is an
important task in learning science and engineering and is
known as the Knowledge Tracing task (KT). It is usually
leveraged to optimize students’ learning trajectories,
experiences, and outcomes. KT is a challenging task due to
the complexity of the human learning processes (e.g.,
guessing, forgetting etc.) and the inherent difficulties of
modeling knowledge (e.g., prior background; [Piech et
al.,2015]). Further improvements in KT, which is the focus
of our work, will have a wide range of benefits including
better adaptation to individual learner’s needs and,
consequently, improved effectiveness at inducing learning
gains and better learning experiences. There are other

benefits of better KT solutions, as exemplified next. Given
the tight link between domain models, i.e., the set of concepts
to be mastered in a target domain, and knowledge tracing,
better KT models, e.g., more accurate, will inform refinement
of domain models. In addition, better KT will lead to
designing new, more effective learning materials and
instructional strategies.

Given the success of deep neural networks in other domains,
deep KT models have gained significant attention recently.
They use deep learning techniques to represent learners’
latent knowledge states using large vectors of “artificial
neurons”. The parameters of these vectorial representations
are inferred from data. Deep KT models use one hot encoding
of the identification numbers (IDs) of the instructional
activities, e.g., questions or problems to be solved, ignoring
those items’ characteristics. Several research works
demonstrated that incorporating the items’ semantics in the
form of text embeddings into deep KT models can boost their
prediction performance [Sonkar et al., 2020]. Despite the
state-of-the-art results obtainedby these models, they suffer
from major limitations. For instance, many of the existing
deep KT models do not account for other important
information such as the number of the correct attempts to
solve a task and the duration of each step, which can be
viewed as indicators of levels of engagement. To address
these limitations and enhance the capabilities of KT models,
many researchers incorporated into deep KT models various
components such as learning ability [Minn et al.,2018], prior
knowledge [Shen et al.,2020, and slipping and guessing
effects [Cheng et al.,2020]. Furthermore, existing deep KT
models consider all questions/items under a specific concept
as equivalent observations. In attempt to improve instruction
adaptation [Shailaja et al, 2014] which will maximize
(effectiveness) and speedup (efficiency) students’ learning,
we propose a generic framework that explores the underlying
information among questions to enhance the performance of
KT. The key components of our framework are:

- an NLP embedding component using the Sentence
Universal Encoder [Cer, D.M. et al.,2018]. Given a
question, we extract the semantics associated with its
knowledge components (KCs) by averaging the



embeddings corresponding to the textual descriptions of
these knowledge components.

- a component capturing the engagement level of the
student by dynamically assigning students into various
groups based on their frequency interactions data using
K-means clustering. To the best our knowledge this the
first time an engagement level component is included in
a deep KT model.

- aquestion/item difficulty component.

- knowledge embeddings resulted from the fusion of all
these inputs (engagement level, text embeddings and
item difficulty), using concatenation. The embeddings
should lead to similar representations for items targeting
similar concepts and having similar difficulty levels.

- an LSTM-based model to infer the students’ latent
knowledge states and a Temporal Convolutional
Network to predict future responses.

We conducted series of experiments on the Cognitive Tutor
datasets [Stamper et al.,2010] and we compared our proposed
model to existing deep KT models.

2 Related Work

Several researchers incorporated important information
about questions/items that can help better capture the wider
learning context and therefore lead to improved ways to solve
the KT problem. For example, Liu and colleagues [Liu ef al.,
2020] proposed a Pre-training Embeddings via Bipartite
Graph (PEBQG) to learn a low dimensional embedding for
each question based on additional information including
question difficulty, question similarity, and skill similarity.
They also introduced a product layer to fuse all the input
features and obtain the final question embeddings which are
incorporated into existing deep KT models. Experiments
indicated an AUC (Area Under the Curve) improvement over
state-of-the-art results by 8.6 % on average. Ghosh and
colleagues [Ghosh et al.,2020] proposed an attentive
knowledge tracing (AKT) model which combines an
attentive neural model with various novel and interpretable
model components inspired by cognitive and psychometric
models. In addition to the question similarity, AKT uses
Rasch model parameters: question difficulty and learning
ability. The goal was to learn question embeddings that
capture individual differences among questions targeting the
same concept. Experimental results demonstrated improved
performance of the AKT over prior KT models with a
reported AUC improvement of up to 6%. To better model the
individualization of prior knowledge and learning rates of
various students, Shen, and colleagues [Shen et al.,2020]
proposed a novel Convolutional Knowledge Tracing (CKT)
model. More specifically, Hierarchical Convolutional layers
were designed to extract learning rate features by processing
many continuous learning interactions within a sliding
window. Individualized prior knowledge was assessed
according to students’ historical learning interactions. Yang
and colleagues [Yang ef al.,2020] argued that knowledge
tracing is affected by the most recent questions answered by

students according to the forgetting curve theory. Based on
this assumption, they proposed a Convolutional Knowledge
Tracing (CKT) model that captures the long-term effect of
the entire question-answer sequence and short-term effect of
the recent questions using 3D convolutions. The
experimental results showed an AUC improvement relative
to existing KT models.

Cheng and colleagues [Cheng et al.,2020] proposed an
adaptable knowledge tracing (AKT) framework that
integrates slipping and guessing factors into the model to
obtain more reasonable knowledge state results and leverage
the semantics of question texts for more precise knowledge
tracing. They obtained improved performance over several
KT models.

Shin and colleagues [Shin et al.,2020] proposed SAINT+,
a successor of SAINT which is a Transformer based
knowledge tracing model. The main addition in this new
version is incorporating two temporal features: elapsed time
which is the time taken by the student to answer a question
and lag time, the time interval between adjacent learning
activities. The empirical results showed an improvement in
the AUC over the SAINT model on EdNet, the largest public
dataset in the education domain according to some metrics,
e.g., data from almost 800k students. It should be noted that
EdNet contains learning data from the domain of English
learning, i.e., it does not target learning of complex STEM
topics.

In a continuous effort to overcome the major limitation of
deep KT models in capturing differences among questions
targeting the same concept and to enhance the knowledge
tracing ability, we consider additional information such as
students’ engagement level. We also consider the semantics
of the key concepts targeted by each question using a novel
natural language processing (NLP) algorithm, i.e., the
Universal Sentence Encoder. We also employ for the first
time a novel times series model based on a Temporal
Convolutional Network to predict student performance.

3 Model Architecture

Our proposed framework comprises of several important
components. First, we account for the engagement level of
students in the form of a one hot encoded vector of the
engagement cluster that the student belongs to at each time t.
Second, our model uses an averaged embedding vector of the
knowledge components associated with each question. The
third component consists of a one hot encoded vector
reflecting the difficulty level of each question. Fourth, we use
a one hot encoded vector of the ID of each question. Then,
we fuse all these inputs to generate a knowledge embedding
for each question answered by the students. The sequence of
these knowledge embeddings of each student are passed to an
LSTM based model to learn students’ knowledge states of the
student for specific concepts. The sequences of these vector
are then passed to a Temporal Convolutional Network (TCN)
connected with a Sigmoid layer to predict performance.

3.1 Dynamic Assessment of the Engagement Level of
Students using Clustering



Several research studies have revealed the positive
correlation between student engagement and academic
performance with higher engagement level associated with
better grades [Casuso-Holgado et al, 2013; Lee, 2014].
Therefore, we take into consideration this information in
predicting the future student performance. Inspired by the
frequency-based metrics proposed by Reid et al [Reid et
al.,2012] to assess engagement level, we propose to use the
following metrics available in the Cognitive Tutor dataset:

- Step Duration: the elapsed time of the question in
seconds, calculated by adding all of the durations for
transactions that were attributed to the question.

- Incorrects: total number of incorrect attempts by the
student on the question.

- Corrects: total correct attempts by the student for the
question.

- Hints: total number of hints requested by the student for
the question.

Based on these metrics, we dynamically assess students’
engagement level by clustering, where each cluster represents
a level of engagement. Assigning students into a group with
similar engagement level at each time step is performed by k-
means clustering. Following the research results of
Moubayed and colleagues [Moubayed et al.,2020], we
consider a three-level model to classify the students’
engagement levels. Hence, the parameter k of the k-means
clustering algorithm is set to 3.

After clustering students into three groups with distinct
levels of engagement, the clustering results are added to the
training data. That is given a student with a specific concept
(KC), we add its corresponding cluster value (e.g.,1,2
etc.).Then, a student’s engagement level is encoded as a
vector e; with C+1 dimensions where C is the number of
concepts or knowledge components in the dataset. We encode
in this vector, the associated concepts, and the engagement
level cluster that the student belongs to at each time step t (
an instance in the data records) as following:

eilkcf] =1 and ef[C + 1] = ¢y (1)
where kc! is the associated knowledge component or concept

for the question g} at a specific time t and c,, is the engage-
ment level cluster where ¢, € {0,1,2}.
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Figure 1. Engagement level evolution of a student at different time
steps while interacting with Cognitive Tutor.

As an example, Figurel illustrates the evolution of the
engagement level of one student at different time steps on
three knowledge components: “simple fractions”,
“multiplication”, and “combine like terms”. Each bar in the
figure represents a different KC. The red color reflects that
the student belongs to the low engagement group, blue color
reflects belonging to the medium engagement group, and
gray color reflects their belonging to the high engagement
group. It is important to emphasize that the engagement level
of the student differs from a concept to another.

3.2 NLP Embedding

To enhance the knowledge tracing ability and improve the
prediction of our proposed deep KT model, we add an NLP
embedding component that captures the semantics of the
knowledge components. To this end, we use the recently
proposed NLP embedding approach called Universal
Sentence Encoder (USE) [Cer, D.M. et al.,2018]. USE
employs the encoder component of the transformer.
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Figure 2. The architecture of the Universal Sentence Encoder

As shown in Figure 2, first, each textual description of a
concept is converted to lowercase and tokenized into tokens
using the Penn Treebank (PTB) tokenizer. USE relies on a
self-attention mechanism that takes into consideration the
token order and its surrounding context for generating each
token’s  representation. The  context-based token
representations are then converted to a fixed length text
vector by computing the element-wise sum of the
representations at each token position. The encoder outputs a
512-dimensional vector for the knowledge component text
embedding. Then, we average the embeddings of the
knowledge components of each question at each time step t
as a way to capture the semantics of each question with
respect to the targeted concepts or KCs.

3.3 Difficulty Constraint

To capture difficulty of a question, the main assumption we
make is that the more the number of mathematical concepts
required to answer a specific question the more difficult and
sophisticated the question is. Therefore, we calculate the



difficulty level of each question by dividing the total number
of KCs in a question by the total number of KCs in the
Cognitive Tutor dataset.

After calculating questions’ difficulty, we encode the ques-
tion difficulty as a vector with C+/ dimension where C is the
number of concepts. Following the prior works, the first C
entries of the vector represent the one hot encoded concepts.
The last entry of the vector represents the difficulty level of
the question.

3.4 Knowledge Tracing using LSTM.

After obtaining the knowledge embedding sequences of each
student at time #, we pass them to an LSTM base model to
compute the knowledge hidden states that represent the
mastery level of different KCs.

The resulted hidden states are passed to the Temporal
Convolutional Network (TCN) to compute the prediction of
future answers.

3.5 ResponsePrediction using Temporal
Convolutional Network (TCN)

Temporal Convolutional Networks (TCN) have been
proposed first by Lea et al [Lea ef al.,2016] for the video-
based action segmentation task. The distinguishing
characteristics of TCNs are:
- the convolutions in the architecture are causal,
meaning that there is no leakage from future to past.
- the model can take a sequence of any length and map
it to an output sequence with the same length.

Added to this, TCN-based models outperform the LSTM-
based models for time series predictions.

Motivated by these advantages, we propose to use TCN to
improve the prediction of future responses, as described next.
Let H! be the knowledge state with respect to the target
domain of student 7 at time step ¢. The TCN’s architecture is
composed of 1D pooling/upsampling and channel wise
normalization layers in the encoder. For each of the
convolutional layers in the encoder, we apply a set of 1D
filters that capture how the input signals evolve over the
course of an action. Pooling enables us to efficiently compute
activations over a long period of time. The channel wise
normalization has been effective in recent CNN methods.

The i-th component of the activation vector output of the
encoder is calculated as follows:

Al _ 1 d D (-1

Eil.t - f (bi() + Zt’=1<VVi,(tl)'Et(+d—)tl)) ()
where () is a Leaky Rectified Linear Unit, b’ represents the
biases, E(~1 is the activation matrix from the previous layer,
and d is the filter duration, and it is set as the mean segment
duration for the shortest class from the training set.

The pooled activation vector E} is then normalized by its
highest response at that time step m = max; E il_t with small &
such that :

1 -~

E = ——E 3

m+e

The decoder part of the TCN is similar to the encoder and the
order of the operations is the following: upsample, convolve,

then normalize. The activation output is Dt(l).

Finally, we compute the prediction probabilities of answering
future questions by passing the activation matrix output of the
decoder to a sigmoid function as follows :

Y, = sigmoid (D) 4)

4 Experiments

We conducted several experiments to demonstrate the
effectiveness of our proposed model for the knowledge
tracing (KT) task using the Cognitive Tutor datasets. Details
about the data are provided next.

4.1 The Data

Our datasets come from the Cognitive Tutor [Anderson et
al.,1995] that teaches students algebra (middle school and
high school). Cognitive Tutor presents a problem to a student
in form of questions (also called steps) of many
skills/concepts. That is every question targets multiple KCs.
The Cognitive Tutor uses Knowledge Tracing to determine
when a student has mastered a skill. In this work, we consider
the following attributes of each record in the dataset: Student
ID, Step Name that represents the question, Step Duration
(sec), KC(Default/SubSkills) that represents the associated
skill or concept, Incorrects, Corrects, Hints, and Correct First
Attempt that is a binary attribute and we consider it as the
target to be predicted in our model.

In this paper, we use three of the development datasets
[Stamper et al.,2010]: the “2005-2006 Algebra* dataset, the
“2006-2007 Algebra” dataset, and the “Bridge to Algebra
2006-2007” dataset. The Algebra I dataset consists of
813,661 total responses over 387 skills covering practice
attempts for 3,310 students. The Bridge to Algebra dataset
contains data from 1,146 students and includes 3,679,199
total logged responses for 494 skills. Table 1 details
important statistics of the data after preprocessing.

#Records #Students #Skills
Algebra 1 2005-2006 809694 574 113
Algebra I 2006-2007 2270384 1338 492
Algebra to Bridge [3679199 |1146 494

Table 1. Cognitive Tutor Datasets Statistics

4.2 Experimental Setup

Data Preprocessing. Consistent with data preprocessing in
prior works, we conducted the following data preprocessing
steps: removed duplicate records, removed records with NaN
KCs, removed records with dummies KCs, discarded learners
that have fewer than 10 interactions with the system and dis-
cards skills answered by less than 10 students.



Training and Testing. In all experiments, we perform
5-cross fold validation using a Tesla K80 GPU and a total of
12 GB of RAM. We split all datasets at the student level: at
each iteration, 80% of students were used for training and
20% were used for testing. For LSTM, we considered 100
units as the dimensionality of the output space. For the TCN
parameters settings, we set the number of filters to use in the
convolutional layers to 64. The kernel size was set to 6 and
we considered a dilation list = [1,2,4,8,16,32,64]. An Adam
optimizer [13] with a learning rate of 0.001 was used and gra-
dients were clipped to 1.0 to prevent exploding gradients.
Due to the large size of our datasets, we considered a small
batch size of 5. To evaluate the performance of our model,
we customized the Binary Cross Entropy loss since our model
gives predictions for all skills/concepts. Given a new student
in the testing data, the model predicts her performance in all
the concepts in the Cognitive dataset. Thus, to generate the
prediction for a specific skill, we take the column-wise dot
product between the predictions and a one-hot encoding of
the skill.

Our model was evaluated on the test data and the
performance of the model is reported using the area under the
ROC curve (AUC). AUC measure ranges from 0.5 reflecting
a low ability to distinguish from correct and incorrect answers
to 1.0 reflecting a perfect discrimination. We compute the
AUC by obtaining the prediction of each student in the testing
data across all concepts.

Compared Methods. To demonstrate the effectiveness of
our proposed model, we compare its AUC results with
existing methods the reported results on the same Cognitive
Tutor data sets. The methods are:

- DAS3H [Chofin et al.,2019]: incorporates item-skills

relationships and forgetting effects.

- ¢DKT [Sonkar et al., 2020]: models every learner’s
success probability on individual questions over time.
gDKT incorporates graph Laplacian regularization to
smooth predictions and uses an initialization scheme in-
spired by the fastText algorithm.

- DynEmb [Xu et al.,2020]: enables the tracking of stu-
dent knowledge without the concept/skill tag infor-
mation that other KT models require.

- Transformer-based DKT [Pu,et al.,2020]: a Trans-
former based model that addresses the forgetting issue
by accounting for elapsed time. It also uses the ques-
tions-skills associations to learn representations of both
frequent and rare questions.

4.3 Results and Discussion

Table 2 lists the AUC performance results of our proposed
model using the three datasets of Cognitive Tutor. Including
all the model components: the engagement level, the question
difficulty and the knowledge component text embeddings,
the model performs better on the Algebra 2006-2007 dataset
with an AUC of 96.57%, followed by the Algebra 2006-2007
dataset with an AUC of 92%, and the Bridge dataset with an
AUC of 91%. As shown in Table 4, these results reflect a
significant performance gain in comparison with existing
deep KT methods.

Model AUC Result (%)
EL+QD+KCE-Algebra2005-2006 92
EL+QD+KCE-Algebra2006-2007 96.57
EL+QD+KCE-Bridge2006-2007 91

Table 2. The performance results of the proposed model and the
ablation experiments results.

Table 3 lists some examples of the results of our proposed
framework based on the engagement level and the difficulty
of the questions. As shown in the table, the engagement level
of the student has more impact on the performance in
comparison with the difficulty of the questions. Students with
high levels of engagement perform well regardless of the
difficulty of the questions. However, it is less probable that
the low engaged students perform well especially when the
question is difficult.

Engagement | Difficulty of Performance | % of testing
Level Questions data

High (1) Easy (<0.5) High 13

High (1) Easy (<0.5) Low 6

High (1) Difficult (>0.5) | High 13

High (1) Difficult (>0.5) | Low 6

Low (2) Easy (<0.5) High 0.4

Low (2) Easy (<0.5) Low 1

Low (2) Difficult (>0.5) | High 0.47

Low (2) Difficult (>0.5) | Low 2.68

Table 3. Example of the results in terms of engagement level and
difficulty of the question

Ablation experiments. To test the impact of each key
component of our model on the overall performance, we
conducted a series of ablation experiments. The ablation
experiments are:

- First, we removed the engagement level component
from the model inputs and evaluated the resulting
model on the Algebra2006-2007 dataset. The
experiments showed that the model AUC has
decreased by 1.07 %. Based on the existing literature,
this is a significant statistical drop in the AUC results
reflecting the important of this component.

- Second, we removed the question difficulty from the
model inputs. The results showed that the model
AUC has decreased by 0.01% which is not
statistically significant. Thus, the question difficulty
component is not important in the framework.

- Third, we removed the knowledge component text
embeddings from the model’s inputs. The AUC of
the model has decreased, reflecting the importance
of this component. Generally, the Universal
Sentence Encoder boosts the prediction ability of
deep learning models.



Model AUC Result (%)
EL+QD+KCE-Algebra2006-2007 96.57
DAS3H 86
qDKT 89.5
DynEmb 86
Transformer- based DKT 78.4

Table 4. Comparison of performance results between our proposed
model and the existing DKT methods using the Cognitive Tutor
datasets
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Figure 3. Evolution of knowledge states of a student over time.
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Figure 4. Mastery level of two students in six concepts.

Visualizations. Naturally, students’ knowledge states evolve
over time. To illustrate this evolution process, we generated

several visualizations which are more intuitive and user-
friendly representations of mastery levels at one moment in
time and over time. Figure 3 depicts a student’s knowledge
states over a sequence of 91 questions, covering 17 concepts
(e.g., identifying units, perform multiplication, simple frac-
tions, etc.), from the Algebra 2005-2006 dataset. At each time
step t, a knowledge state consists of an activation vector of 8
dimensions. The lighter the color the lower the mastery level
of the student on a specific concept. Figure 4 shows the mas-
tery level of two students on 6 concepts. Students can recog-
nize their poor knowledge points and the ITS makes individ-
ual learning schemes by tracing the knowledge state.

5 Conclusions

In a continuous research effort to enhance the ability of
knowledge tracing and improve the prediction of future
responses, we proposed a generic framework that includes
several important components. First, the model assesses
dynamically the engagement level of students across
concepts and incorporates this information into the learned
knowledge embeddings. Second, it includes the semantics of
the knowledge concepts through learning embeddings using
a the recently proposed method called the Sentence User
Encoder. Third, the model calculates the difficulty of each
question and uses this information together with the other
inputs to make predictions. Knowledge embeddings of
students are then learned by concatenating all these
components. Finally, students’ knowledge states over time
are modeled using an LSTM neural network. These learned
sequences of the hidden states are then passed to a Temporal
Convolutional =~ Network to predict the future performances
of students. The experimental results showed the
effectiveness of our proposed model in comparison with
existing deep KT methods, yielding high AUC results on
Cognitive Tutor datasets. The conducted ablation
experiments demonstrated the importance of the engagement
level , the text embeddings of the knowledge components and
the Temporal Convolutional Network algorithm. Their
elimination or substitution led to a decrease in the AUC
results. More specifically, the students showing high levels
of engagement perform very well for both the difficult
(difficulty rate >0.5) and easy questions (difficulty rate <0.5).
However, it is less probable that students with low levels of
engagement perform well, especially, when a question is
difficult. This probability increases slightly when the
question is easy.

In our future work, we will apply this proposed framework
on other educational datasets. We will also investigate
additional ways to enhance the model’s interpretability and
improve its prediction’s performance.

Acknowledgements. "The Learner Data Institute is spon-
sored by the National Science Foundation (NSF; award
#1934745). The opinions, findings, and results are solely the
authors’ and do not reflect those of NSF."



References

[Anderson et al.,1995] Anderson, John R, Albert T Corbett,
Kenneth R Koedinger, and Ray Pelletier. “Cognitive tu-
tors: Lessons learned”. The journal of the learning sci-
ences,1995, 4 (2), 167-207.

[Casuso-Holgado et al,2013] Casuso-Holgado, M.J.,
Cuesta-Vargas, A., Moreno-Morales, N., Labajos Manza-
nares, M.T., Baron-Lopez, F.J., & Vega-Cuesta, . The as-
sociation between academic engagement and achieve-
ment in health sciences students. 2013, BMC Medical Ed-
ucation, 13, 33 - 33.

[Cer, D.M. et al.,2018] Cer, D.M., Yang, Y., Kong, S., Hua,
N., Limtiaco, N., John, R.S., Constant, N., Guajardo-
Cespedes, M., Yuan, S., Tar, C., Sung, Y., Strope, B., &
Kurzweil, R. Universal Sentence Encoder. In. Proceed-
ings of the 2018 conference of EMNLP.

[Cheng et al.,2020] Cheng, S., Liu, Q., & Chen, E.. Domain
Adaption for Knowledge Tracing. ArXiv,2020,
abs/2001.04841.

[Choffin et al.,2019] Choffin, B., Popineau, F., Bourda, Y.,
& Vie, J. J. ,2019. DAS3H: Modeling Student Learning
and Forgetting for Optimally Scheduling Distributed
Practice of Skills. In. Proceedings of the EDM confer-
ence..

[Ghosh et al.,2020] Ghosh, A., Heffernan, N., & Lan, A.S.
Context-Aware Attentive Knowledge Tracing. In
Proceedings of the 26th ACM SIGKDD. 2020

[Leaetal.,2016] ] Lea, C., Vidal, R., Reiter, A., & Hager, G.
D. Temporal convolutional networks: A unified approach
to action segmentation. In Proceedings of the European
Conference on Computer Vision , 2016(pp. 47-54).
Springer, Cham.

[Lee,2014] Lee, J.-S.. The relationship between student en-
gagement and academic performance: Is it a myth or real-
ity? The Journal of Educational Research,2014 107, 177
- 185.

[Liu et al.,2020] Liu, Y., Yang, Y., Chen, X., Shen, J.,
Zhang, H., & Yu, Y.. Improving Knowledge Tracing via
Pre-training Question Embeddings. In Proceedings of the
29" AJICAL2020.

[Minn et al., 2018] Minn, S., Yu, Y., Desmarais, M. C., Zhu,
F., & Vie, J. J.. Deep knowledge tracing and dynamic stu-
dent classification for knowledge tracing. In Proceedings
of the 2018 IEEFE International Conference on Data Min-
ing,2018 (ICDM) (pp. 1182-1187).

[Moubayed et al.,2020] Moubayed, A., Injadat, M., Shami,
A., & Lutfiyya, H.. Student Engagement Level in an
e-Learning Environment: Clustering Using K-means.
American Journal of Distance Education, 2020, 34, 137 -
156.

[Piech et al.,2015] Piech, C., Bassen, J., Huang, J., Gan
guli, S., Sahami, M., Guibas, L. J., & Sohl-Dickstein, J..
Deep knowledge tracing. In Advances in neural infor-
mation processing systems (pp. 505-513),2015.

[Pu,et al.,2020] Pu, S., Yudelson, M., Ou, L., & Huang, Y.
2020. Deep Knowledge Tracing with Transformers. In
Proceedings of the Artificial Intelligence in Education,
12164, 252 - 256.

[Reid et al.,2012] Reid, L. F.. Redesigning a large lecture
course for student engagement: Process and outcomes.
The Canadian Journal for the Scholarship of Teaching
and Learning, 20123, 2-39

[Shailaja et al.,2014] Shailaja, J., & Sridaran, R.. Taxonomy
of e-learning challenges and an insight to blended learn-
ing. In Proceedings of the International conference on
intelligent computing applications ,2014 (icica’14) (pp.
310-314)

[Shen et al.,2020] Shen, S., Liu, Q., Chen, E., Wu, H.,
Huang, Z., Zhao, W., Su, Y., Ma, H., & Wang, S.. Convo-
lutional Knowledge Tracing: Modeling Individualization
in Student Learning Process. In Proceedings of the 43rd
ACM SIGIR,2020.

[Shin et al.,2020] Shin, D., Shim, Y., Yu, H., Lee, S., Kim,
B., & Choi, Y.. SAINT+: Integrating Temporal Features
for EdNet Correctness Prediction. ArXiv,2020
abs/2010.12042.

[Sonkar et al., 2020] Sonkar, S., Waters, A., Lan, A.S.,
Grimaldi, P.J., & Baraniuk, R. 2020. gDKT: Question-
centric Deep Knowledge Tracing. In Proceedings of the
International Conference EDM,2020.

[Stamper et al.,2010] Stamper, J., Niculescu-Mizil, A., Rit-
ter, S., Gordon, G.J., & Koedinger, K.R.. [Development]
data set from KDD Cup 2010 Educational Data Mining
Challenge,2010.

[Yangetal.,2020] Yang, S., Zhu, M., Hou, J., & Lu, X.. Deep
Knowledge Tracing with Convolutions. ArXiv,2020,
abs/2008.01169.

[Xu et al.,2020] Xu, L., & Davenport, M. 2020. Dynamic
Knowledge Embedding and Tracing. In Proceedings of
the International Conference of EDM



	Table 2. The performance results of the proposed model and the ablation experiments results.
	Table 3. Example of the results in terms of engagement level and difficulty of the question
	Figure 3. Evolution of knowledge states of a student over time.

