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Crystal graphs for shifted tableaux
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Abstract. We define crystal operators on semistandard shifted tableaux, giving a new
proof that Schur P-functions are Schur positive. We define a queer crystal operator to
construct a connected queer crystal on semistandard shifted tableaux of a given shape,
providing a new proof that products of Schur P-functions are Schur P-positive. We
also give a rectification map from shifted tableaux to Young tableaux that commutes
with the crystal operators and provides a dual algorithm to shifted insertion.
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1 Introduction

Schur polynomials are ubiquitous throughout mathematics, arising as irreducible char-
acters for polynomial representations of the general linear group, Frobenius characters
for irreducible representations of the symmetric group, and polynomial representatives
for the cohomology classes of Schubert cycles in Grassmannians. Combinatorially, Schur
polynomials are the generating polynomials for semistandard Young tableaux.

Schur P-polynomials arise as characters of tensor representations of the queer Lie su-
peralgebra [12], characters of projective representations of the symmetric group [15], and
representatives for cohomology classes dual to Schubert cycles in isotropic Grassmanni-
ans [10]. They enjoy many properties parallel to Schur polynomials. Combinatorially,
Schur P-polynomials are the generating polynomials for semistandard shifted tableaux.

Stanley conjectured that Schur P-polynomials are Schur positive, and this follows
from Sagan’s shifted insertion [11] independently developed by Worley [16]. Assaf [2]
gave another proof using the machinery of dual equivalence graphs [1]. In this ex-
tended abstract, we present a new proof using the machinery of crystal graphs [7] and
Stembridge’s local characterizations thereof [14], and we provide a dual construction to
shifted insertion that rectifies a shifted tableau to a Young tableau.

Kashiwara [7] introduced crystal bases to study representations of quantized univer-
sal enveloping algebras. A crystal graph is a directed, colored graph with vertex set given
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by the crystal basis and directed edges given by deformations of the Chevalley genera-
tors. Crystal graphs encode important information, for example tensor decompositions,
for the corresponding representations. The crystal basis for the general linear group
can be indexed by semistandard Young tableaux, and there is an explicit combinatorial
construction of the crystal graph on tableaux [8, 9]. Recently, Grantcharov, Jung, Kang,
Kashiwara, and Kim [5] developed crystal bases for the quantum queer superalgebra
and gave an explicit construction of the queer crystal on semistandard decomposition
tableaux [13], another combinatorial model for Schur P-polynomials. In this extended
abstract, we give an explicit construction of the queer crystal on semistandard shifted
tableaux and use this to give a local characterization of queer crystals.

In Section 2, we review Young tableaux and crystal graphs. In Section 3, we review
shifted tableaux and define our crystal operators on semistandard shifted tableaux. In
Section 4, we extend our crystal on semistandard shifted tableaux to a queer crystal
graph. In Section 5, we define a shifted rectification map from shifted tableaux to Young
tableaux that commutes with the crystal operators. For further details, see [3].

2 Crystal graph on semistandard Young tableaux

A partition A is a weakly decreasing sequence of positive integers, A = (A1, Az, ..., Ay),
where Ay > Ay > --- > Ay > 0. We identify a partition A with its Young diagram, the
collection of left-justified cells with A; cells in row i indexed from the bottom.

The semistandard Young tableaux of shape A, denoted by SSYT(A), are fillings of the
Young diagram for A with positive integers such that entries weakly increase along rows
and columns and each column has at most one entry i. For example, see Figure 1.

1]1]1) [2]1[2) [a1]1) [2]2]2] [2[1]3] [1]1]2] [1]2]3] [1[1]3]

11212) [1]2]3] [1]3[3] [2]2]2] [1]3]3] [2]2]3] [2[3]3]

Figure 1: The semistandard Young tableaux of shape (3,1) with entries {1, 2,3}.

Definition 2.1. The Schur polynomial indexed by the partition A is given by

i) = Y g g 2.1)
TESSYT,(A)

where wt(T) is the weak composition whose ith part is the number of entries i in T.
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For example, from Figure 11, we compute

S(3,1) (x1,%0,%3) = x3x0 + x3x3 + x3x3 4 2x3x0x3 + X343 + X1 %5 + 2x1X3%3
421 X035 + xlxg + X33 + x3x3 + xzxg’.
For a word w of length k, a positive integer r < k, and a positive integer i, define
m;(w,r) = wt(wiws - - - wy); — wt(wywy -+ - Wy )iy 1, m;(w) = mrax(mi(w,r)). (2.2)

For T a Young tableau, the row reading word of T, denoted by w(T), is the word
obtained by reading the entries of T along rows, left to right, from top to bottom.

Definition 2.2. The lowering operators, denoted by f;, on semistandard Young tableaux
act by: fi(T) = 0 if m;(w(T)) < 0; otherwise, letting p be the smallest index such that
m;i(w(T),p) = m;(w(T)), fi(T) changes the entry in T corresponding to w, to i + 1.

2
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2] 3]
) 1]1]2] 1]1]1]
it |1

[2] [2] 3]
1]2]2] . 1]1]3] 1]1]2]
_2] /_jz _11

2 3 3
1]2]3] 1]1]3] ) 1]2]2]
_2] _11 /_11

2 3 3
1/3]3] 1]2]3] ) 2[2]2]
; |2

(3] (3]
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3]
2[3]3]

Figure 2: The crystal graph on SSYT(3, 1) with entries {1,2,3}.

Note that if m;(w) > 0 and w, is the leftmost occurrence of this maximum, then
wy = i. In particular, this makes f; well-defined. For examples, see Figure 2.
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Theorem 2.3 ([8, 9]). The lowering operators { f; }1<i<n are well-defined maps f; : SSYT, (1) —
SSYT,,(A) U {0} that define a crystal graph on semistandard Young tableaux.

Stembridge [14] gave a local characterization of the crystal graphs on semistandard
Young tableaux in terms of six local axioms. This gives a powerful tool for establishing
the symmetry and Schur positivity of a given polynomial by defining lowering operators
on the generating objects and proving that they satisty Stembridge’s axioms.

Say that X" has degree n if the largest color for an edge is n — 1. If xéy (resp. x#z),
write y = E;x (resp. z = F;x). The i-string through x is the maximal path

Pl._dxﬁ e QFi_lexélFixQ e #E-rx.
In this case we write 6;(x) = d and ¢;(x) = r. Whenever E;, F; is defined at x, we set
A,-(Sj(x) = §j(x) — (Sj(E,-x), Vi(Sj(x) = (Sj(Fix) — (Sj(x),
Aiej(x) = ej(Eix) —gi(x), Vigi(x) = gi(x) —¢;(Fx).
Definition 2.4 ([14]). A directed, colored graph X is regular if the following hold:
(A1) all monochromatic directed paths have finite length

(A2) for every vertex x, there is at most one edge x<-y and at most one edge x—>z
2 ifj=i
(A3) assuming E;x is defined, A;d;(x) + Ajej(x) = ¢ —1 if j=i+1 ;
0 if [i—j|>2
(A4) assuming E;x is defined, A;d;(x), Azej(x) < 0 for j # i;
(A5) Ai(Sj(x) =0= El-E]'x = E]-Eix =Y and V]El(y) =0;
VZ'E]'(X) =0= FiF]'x = F]'Fix =Y and Ajél(y) =0
(A6) Aidj(x) = Ajdi(x) = -1 = El-E]ZEix = E;E?Ejx = y and Vej(y) = V]sl (y) =
Viej(x) = Vjei(x) = =1 = EFFx = FF/Fx = y and Ai6;(y) = A;6i(y) =

Theorem 2.5 ([14]). A graph is a regular graph if and only if every connected component is
isomorphic to the crystal graph on SSYT,,(A) for some A, n.

3 Crystal graph on semistandard shifted tableaux

A partition vy is strict if y; > 72 > -+ > ¢, > 0. We identify a strict partition 7 with its
shifted diagram, the diagram with -y; cells in row i shifted /() — i cells to the left.

The semistandard shifted tableau of shape <y, denoted by SSHT(vy), are fillings of the
shifted diagram for o with marked or unmarked positive integers such that entries
weakly increase along rows and columns according to the ordering 1" < 1 < 2/ <
2 < ---,and for each i, at most one unmarked i per column and at most one marked i’
per row and none on the main diagonal. For example, see Figure 4.
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Figure 3: An illustration of axioms A5 and A6, where F]-/ , Fie.

2] 2] 3] 2] 2] 2 3
(11]1] [1[1]2] [alxd1] [af1l27 [12712] [1]1]3] [1]1]2] [1]1]2]]
2] 2] 3] 3] 3] 3] 2] 3]
(1]11]3] [112713] [1]1]3] [1]2]2] [1]2/]2] [1]1]37] [1]2/]3"] [1]2']3]
3] 3] 3] 3] 3] 3] 3] 3]
(112[3] [2]2]2] [1]2]3] [112/[3] [1]3/[3] [2]2[3] [2]2]3"] [2]3/]3]

Figure 4: The semistandard shifted tableaux for (3,1) with entries {1’,1,2/,2,3/,3}.

Definition 3.1. The Schur P-polynomial indexed by the strict partition <y is given by

Py(x1,...,xu) = ), th(T)l WD (3.1)
TESSHT(7)

where wt(T); is the number of occurrences of i and 7’ in T.
For example, from Figure 4, we compute
3 3 2,2 2 2,2 3
Py (x1,%2,x3) = X% + x7X3 + 2x7x5 + 4x7200%3 + 2X7X3 + X125
+4x1x%x3 + 4x1x2x§ + xlxg’ + x%xg + Zx%xg + xzxg.

Theorem 3.2 ([11, 16]). For <y a strict partition, the coefficients g, ) defined by

Py(x1,. .o Xn) =Y _8yasa (X1, .-, Xn) (3.2)
)

are nonnegative integers. That is, Schur P-polynomials are Schur positive.
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We give a new proof of the Schur positivity of Schur P-polynomials by constructing
a crystal graph on semistandard shifted tableaux. Hawkes, Paramonov, and Schilling
recently gave a type A crystal for semistandard shifted tableaux [6] implicitly using
mixed insertion. Our independent construction below coincides (though the proof of
this is quite involved), but our proof is direct using Stembridge’s axioms.

Definition 3.3. For T a shifted tableau, the hook reading word of T, denoted by w(T), is the
word obtained by reading the marked entries of T up the ith column then the unmarked
entries of T along the ith row, left to right, for i from max (71, ¢(7)) to 1.

Note that the cells with entries i/,i must form a ribbon, i.e. contain no 2 x 2 block.

Definition 3.4. The shifted lowering operators, denoted by f/, act on semistandard shifted
tableaux by: f/(T) = 0 if m;(w(T)) < 0; otherwise, letting p be the smallest index such
that m;(w(T),p) = m;(w(T)), letting x denote the entry of T corresponding to w,, and
letting y be the entry north of x and z the entry east of x, we have

1. (a) if x=iand z=i+1/, then f/ changes x to i + 1’ and changes z to i + 1;
(b) else if x =i and y does not exist or y > i+ 1, then f/ changes x to i +1;

(c) elseif x =i, then f/ changes x to i + 1’ and removes the marking (if any) from
northwestern-most cell on the (i + 1)-ribbon containing y;

G - p2z] 19 @ERE
7 y y 7 > >
12/] 2'12] 1]z] 2]z] 1]z] 2'z]

Figure 5: An illustration of the shifted lowering operators with x =i = 1.

2. (a) if x =i"and y =i, then f/ changes x to i and changes y to i +1’;
(b) else if x =i’ and z does not exist or z > i + 1/, then f/ changes x to i + 1/;

(c) else if x = i, then f/ changes x to i and changes the first entry i southwest
along the i-ribbon containing x that is not followed by i or i +1' to i + 1.

1] P v 8 ] 7] 9 m
1'z] 1]z] 1'[z] 2/|z] Vap’ T[A[1]2
1'[1 12

Figure 6: An illustration of the shifted lowering operators with x =i’ =1’

The rules for the shifted lowering operators are illustrated case by case in Figures 5
and 6, with examples on semistandard shifted tableaux shown in Figure 7.
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Figure 7: The crystal graph on SSHT(3, 1) with entries {1',1,2/,2,3/,3}.

Theorem 3.5. The shifted lowering operators { fi }1<i<n are well-defined maps f! : SSHT,(y) —
SSHT, () U {0}. Moreover, f! is injective on {T € SSHT, () | f/(T) # 0}.

Using Stembridge’s local characterization of the crystal graphs on Young tableaux
[14], we establish that the shifted lowering operators define a crystal on shifted tableaux.

Theorem 3.6. The shifted lowering operators satisfy Stembridge’s axioms. In particular, they
define a crystal graph on semistandard shifted tableaux.

From this, we give a new proof of Theorem 3.2. Note that this characterization of the
Schur coefficients of a Schur P-polynomial is simpler than Sagan’s shifted insertion rule
[11] and more explicit than Assaf’s dual equivalence characterization [2].

Corollary 3.7. For vy a strict partition, let Yam(vy) denote the set of semistandard shifted
tableaux T of shape v such that m;(T) = O for all i. Then

Py(x1, .., xn) = ) sy (X1, .., xn). (3.3)
TeYam(y)

In particular, the Schur P-polynomial is Schur positive.
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For example, from Figure 7, we have

P(3,1) (x1,%2,x3) = 5(3,1) (x1,x2,x3) + 5(2,2) (x1,x2,x3) + 5(2,1,1) (x1, x2, x3).

4 Queer crystal graph on semistandard shifted tableaux

Since semistandard shifted tableaux describe tensor representations of the queer Lie
superalgebra, the connected queer crystal that combinatorializes these representations
becomes a powerful tool in proving Schur P-positivity. We may extend our crystal graph
to a queer crystal by augmenting our lowering operators as follows.

Definition 4.1. The queer lowering operator, denoted by f{, acts on semistandard shifted
tableaux by: f}(T) = 0 if T has no entry equal to 1 or has an entry equal to 2; otherwise
f§(T) changes the rightmost 1 in T to 2’ if not on the main diagonal or to 2 otherwise.

Figure 8 demonstrates the queer lowering operator on semistandard shifted tableaux.

2]
. [1]1]1] .
/ 12
2] 3] 2]
) 1]1]2] [1]1]1] . [1[1]27]
Z IE 12 _
H§2| H%3| H%2| H%zl |1%M
0 2
2| % |2 | IE 1lfo
2 3 3 3 3 2
[1]2/[3] [1]1]3] ) [1]2]2] [1]2/]2] [1][1]3] 0 [1]2/]3']
2L ‘/0 L1/1ﬂ0 lz‘/1 \ lz
3 3 3 3 3
[1]2/[3] [1]2]3] [2]2]2] [1]2]3] [1]2/]3]
e N 2 1l
3 3 3
[1]3/]3] ) [2]2]3] [2[213]
R
3
1213/[3]

Figure 8: The queer crystal graph on SSHT(3, 1) with entries {1/,1,2/,2,3,3}.

Using the definition of an abstract queer crystal from [5], we have the following.
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Theorem 4.2. The queer and shifted lowering operators { f; }o<i<n define an abstract queer crys-
tal graph on semistandard Young tableaux.

Stembridge [15] expanded on Sagan’s shifted insertion [11] in his study of projective
representations of the symmetric group, and ultimately established that the product of
Schur P functions expands positively in the Schur P basis. More recently, Cho [4] built
on work of Serrano [13] to give another proof of positivity, and Assaf [2] gave another
proof using the machinery of combinatorial graphs.

Using the combinatorial rule for tensoring queer crystals together with the character-
ization of highest weights given in [5], we have the following explicit expansion.

Corollary 4.3. For v, d strict partitions, the coefficients f, ; defined by
Py(x1,. ., xn)Ps(x1, ..., xn) = Zf;;éPs(xl, oo Xn), 4.1)
3

where f, 5 is the number highest weight tableaux S @ T of highest weight ¢ in the tensor product
of the queer crystal graphs B(7y) @ B(0). In particular, f2 ; is a nonnegative integer. That is,
products of Schur P polynomials are Schur P positive.

A queer crystal is a regular crystal together with additional queer edges. Following
Stembridge [14], we give a local characterization of the queer crystal graphs on semis-
tandard shifted tableaux by augmenting Stembridge’s axioms with the following.

Definition 4.4. A directed, colored graph X is queer regular if the following hold:

(BO) the subgraph X; generated by all edges with non-zero labels is regular;
(B1) all 0 paths have length 1;
if 51(x) +e1(x) + e2(x) > 1 then dp(x) +eo(x) = 1;

(B2) for every vertex x, there is at most one edge x U y and at most one edge x 2z

2 ifi<1
(B3) assuming Eox is defined, Ayd;(x) + Apei(x) = ¢ —1 if i=2;
0 ifi>3

Aoéi(x) >0, A()Ei(x) >0 ifti=1
(B4) assuming Eyx is defined, Apd;(x) < 0,Ape;(x) <0 if i=2
Aoé,-(x) =0, Ao&'i(x) 0 if 1 >3
(B5) Fori > 2, E;x = Egy = z = FFyz = RyFz;
Fori=1ori >3, Fx = Fhy =zand x # y = E;Eyz = EoE;z ;
Apd1(x) =1 = ¢1(x) =0and Egx = E1x
" Apea(x) =0 e(x) =0 '

(B6) assuming Egx is defined

Theorem 4.5. The queer crystal on semistandard shifted tableaux is a queer regular graph.

We anticipate that we will soon prove that the converse holds as well, namely that
every connected component of a queer regular graph is isomorphic to the queer crystal
on SSHT, () for some strict partition v and some positive integer 7.
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o — 0 o — 0
.0 .0
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Figure 9: Illustration of the queer axioms relating queer and regular edges.

5 Rectification of shifted tableaux

In [5], the authors construct an explicit queer crystal graph on Serrano’s semistandard
decomposition tableaux [13]. They chose this less common indexing set claiming that
“the set of shifted semistandard Young tableaux of fixed shape does not have a natu-
ral crystal structure.” We argue that the shifted crystal operators of Definition 3.4 are
indeed natural by defining a rectification map from semistandard shifted tableaux to
semistandard Young tableaux that commutes with the corresponding crystal operators.

A partition v is self-conjugate if its diagram is symmetric about the main diagonal.
For < a strict partition, the symmetric diagram for v, denoted by sym(7), is the shifted
diagram for 7y union with its transpose. For example, see Figure 10.

Figure 10: The shifted (left) and symmetric (right) diagrams for (6,4, 3,1).

The semistandard symmetric tableaux of self-conjugate shape v, denoted by SSST(v), are
partial fillings of the diagram for v such that each diagonal cell is filled, for each non-
diagonal cell (j, k) € v with j # k, exactly one of (j, k) and (k, j) is filled, and when entries
in above-diagonal cells (j, k) with j < k are reflected to position (k, j), the resulting filling
satisfies the row and column conditions for Young tableaux. For example, see Figure 11.

Proposition 5.1. The map on semistandard shifted tableaux that reflects each marked entry in
position (j, k) to be an unmarked entry in position (k, j) of the corresponding symmetric shape is
a weight-preserving bijection SSHT(y) — SSST(sym(7)).
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2
2 2 3 2 212 2 3 3
1[1]1) [1[2[2] [2f2f2] [alal] [af02] (afa[3) [1[1]2] [2[1[]
3] ] ] N ] 3] 3] N
2 2|2 3 3 213 3 212 2|3
11l ] [a[ ]3] [al1[3] [1l2]2] [a[12] [afa[] [1[[] [2[ ]3]
_ _ - 3 _ _ _ _
3 3 3 2|3 313 3 3 313
1[2[3] [2]2]2] [1l2[] [l 1] [a[13] [2]2]3]) [2[2[] [2] [3]

Figure 11: The semistandard symmetric tableaux for sym(3,1) with entries {1,2,3}.

For example, compare Figures 4 and 11, respectively. Notice that the hook reading
word of a semistandard shifted tableau precisely corresponds to the usual row reading
word of the corresponding semistandard symmetric tableau.

Definition 5.2. The rectification map, denoted by rect(T'), acts on partial fillings of parti-
tion shape with nonempty diagonal cells by: letting d be the maximum row plus column
coordinates of empty cells of T, letting x be an empty cell at (c,r) with r 4+ ¢ = d such
that r is maximal (resp. minimal) among such empty cells if r > ¢ (resp. r < c), we have

1. if there is no cell above and no cell to the right, then delete x;

2. if the cell above is filled with i and either there is no cell to the right or it is filled
with j > i, then fill x with i and empty the cell above;

3. if the cell to the right is filled with i and either there is no cell above or it is filled
with j > i, then fill x with i and empty the cell to the right;

then continue to rectify the newly vacated cell until it is deleted from the shape.

To see an example of rectification together with an illustration of the following the-
orem, the images of the semistandard shifted tableaux of shape (3,1) on the leftmost
component of the crystal in Figure 7 under the map to semistandard symmetric tableaux
rectify to the semistandard Young tableaux of shape (3,1) in Figure 2, respectively.

Theorem 5.3. Rectification induces a well-defined, weight-preserving bijection

rect : SSHT(y) = | | SSYT(wt(T)).
TeYam(y)

Moreover, for T € SSHT(vy) and i > 0, we have rect(f/(T)) = fi(rect(T)).
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