
Experimental Study of Lifecycle Management Protocols for

Batteryless Intermittent Communication

Vishal Deep∗, Mathew L. Wymore∗, Alexis A. Aurandt, Vishak Narayanan, Shen Fu, Henry Duwe, Daji Qiao
Electrical and Computer Engineering, Iowa State University, Ames, IA, USA

{vdeep, mlwymore, aurandt, vishakn, shenfu, duwe, daji}@iastate.edu

Abstract—Batteryless energy-harvesting sensor nodes can op-
erate indefinitely, but if the harvesting rate is too low, they
must operate intermittently. Intermittent operation imposes var-
ious challenges upon the system. One of the least-studied is
communication—if nodes are unpowered for long, unpredictable
periods of time, how can they reliably communicate with each
other? In prior work, we proposed the concept of lifecycle
management protocols (LMPs) to mitigate this issue and enable
wireless communication directly between intermittent sensor
nodes using active radios. In this paper, we propose a design
framework for a class of LMPs. We then provide analytical
models for the delay and throughput of two-node communication
using this framework. Finally, we implement this framework on
hardware and validate our models in an experimental setting.
To the best of our knowledge, this is the first design framework
for, and implementation of, protocols for enabling and improv-
ing general-purpose communication between intermittent sensor
nodes using active radios.

Index Terms—Lifecycle Management Protocols (LMPs), Bat-
teryless, Energy Harvesting, Intermittent Communication

I. INTRODUCTION

Ubiquitous sensing could revolutionize a broad array of

applications, from infrastructure management to public health

to disaster mitigation. However, traditional deployments of

sensor networks suffer from the battery problem: battery-

powered devices have a finite lifetime, and when the bat-

tery dies, replacing it is costly and in some environments,

dangerous or prohibitive. Sensor nodes can use a variety of

energy harvesting techniques to replenish their energy supply

over time, but matching the energy needs of a node with

harvesting typically requires significant physical space, as well

as cost. Additionally, traditional high-energy harvesting tech-

niques such as solar are severely compromised or unavailable

in some environments (indoors, in the dark, embedded in

concrete, etc.). Finally, batteries themselves have longevity and

robustness concerns [1], as well as environmental concerns

regarding manufacturing and end-of-life processes [2].

Recent research has thus considered replacing the battery

of a sensor node with a small energy buffer, such as a small

capacitor (e.g. 50 mF or less). In conjunction, the energy

requirements for harvesting in these batteryless systems are

relaxed—instead of harvesting with the goal of maintaining an

energy balance and remaining constantly on, the node harvests

energy with the goal of charging its capacitor so that it can

eventually turn on. Fig. 1 illustrates this intermittent operation.

When the voltage on the capacitor reaches the on threshold, the

∗The first and second authors contributed equally to the paper.

TOFF

Sy
st

em
 E

ne
rg

y
Ca

pa
cit

or
 V

ol
ta

ge

ON THRESHOLD

OFF THRESHOLD

Time
TON

Fig. 1: Illustration of lifecycling behavior of an intermittent sensor
node. As shown here, the available harvesting power can change over
time, resulting in varying off-times.

node turns on and operates for a limited time (TON), until the

energy store can no longer support operation. Then the node

will die, with the CPU becoming completely unpowered, and

it will remain off until the energy harvesting is able to recharge

the capacitor to the on threshold again (TOFF in the figure). We

refer to this repeated on-time/off-time pattern as lifecycling.

Batteryless intermittent nodes could be small, inexpensive,

robust, and effectively zero-maintenance, and therefore could

be deployed at scale even in harsh and inaccessible environ-

ments. However, the challenges faced by intermittent systems

are clear. Intermittent nodes lose all volatile state when they

die. They have trouble keeping track of time across off-times.

And, of particular interest in this work, direct communication

between intermittent nodes is especially challenging. Not only

do both nodes’ wireless radios need to be on (as in a traditional

duty-cycled wireless communication problem), but the nodes
themselves need to be on at the same time in order to achieve

communication. We refer to such a time as overlap. For

intermittent nodes, “natural” overlap may be very rare—for

example, a node’s on-time may be hundreds of milliseconds

at most, while its off-time may easily be tens of seconds, or

minutes or hours in a very low-energy environment.

In prior work [3], we have proposed the concept of lifecycle
management protocols (LMPs) for communication directly be-

tween batteryless intermittent nodes using active radios. These

protocols can influence the lifecycling of a node to improve

overlap and present more communication opportunities. In

this paper, we explore this idea in more depth by proposing

and implementing a general framework for the design of

stateless LMPs. By stateless, we mean these LMPs do not

retain information across off-times, making them simpler than

stateful LMPs and a good starting point for implementation.

Specifically, our contributions are:

• We propose the first framework to reason about and

evaluate the LMP design space, focusing on stateless

LMPs.
• We propose formal metrics to quantify the constraints

intermittency imposes on communication delay and
throughput.

• We present analytical models to quickly estimate these
metrics for communications between two intermittent
nodes using our LMP framework.

• We present the first physical implementation of (stateless)
LMPs used for active communication between two nodes
powered solely by RF harvesting. We use this implemen-
tation to experimentally validate our analytical models.

II. BACKGROUND & RELATED WORK

Intermittent systems are an emerging research area, and to
this point, there is little work on active communication directly
between intermittent nodes. Our related work discussion first
focuses on approaches to low-energy communication at the
physical and MAC layers that may be relevant to intermittent
systems. We then present background information on LMPs.

A. Physical Layer Approaches
Significant work in wireless sensor networks (WSNs) and

the Internet of Things focuses on how to improve the energy
efficiency of communication at the physical layer. One popular
approach is backscatter modulation with reflective radios, in-
cluding conventional RFID (reader-to-tag) backscatter commu-
nication [4], [5] and ambient backscatter communication [6],
[7]. Instead of generating its own RF carriers as in traditional
modulation, a backscatter transmitter modulates and reflects
received RF signals, saving energy. Backscatter is traditionally
used for a single hop between a “tag” and an always-on sink.
“Tag-to-tag” backscatter communication also has been studied
[8], [9], but only with nodes powered by constant sources or
larger-scale energy harvesting.

In general, this type of physical layer technology is orthogo-
nal to the intermittent node communication problem we study
in this paper (i.e., it could be used in conjunction with an LMP
to improve energy efficiency). That said, we design our LMPs
with traditional active radio communication in mind, with the
intent of enabling general-purpose wireless communication
between intermittent nodes, even when powered solely by
small-scale energy harvesting such as RF.

B. MAC Layer Approaches
Wireless sensor networks have a rich history of research

into MAC layer approaches for reducing energy consumption
in communication, most notably through duty-cycled MAC
protocols (e.g. [10]–[12]). In these protocols, nodes turn their
radios off when not communicating in order to conserve
energy. At first glance, this appears conceptually similar to the
lifecycling we study in intermittent nodes. However, in duty-
cycling, only the radio is cycled, while the rest of the system
(including the CPU, timers, etc.) remains powered. This means
the node can duty-cycle at will, whereas an intermittent node
in off-time is entirely subject to the unpredictable and uncon-
trollable charging rate. We therefore emphasize that lifecycling
is a new and distinct problem for wireless communication.

Another approach that has been studied for WSNs is wakeup
radios (WuR) [13], [14], where nodes operate a secondary,
very-low-power radio that listens for a wakeup signal from a
transmitter. When a wakeup signal is received, the node turns
on its main radio for communication of data. Like duty-cycled
MACs, WuR schemes assume some portion of the system is
powered, so lifecycling is a separate problem. Still, as with the
physical layer approaches, both WuRs and duty-cycled MACs
could be used in conjunction with an LMP to further improve
communications in intermittent nodes.

C. Lifecycle Management Protocols

LMPs manipulate the lifecycling of an intermittent node in
order to maximize the utility of the limited energy available
to the node. The concept of LMPs was introduced in [3]. [15]
explores a similar concept of aligning overlap in the context of
a neighbor discovery protocol, whereas we focus on general-
purpose communication.

We define the lifecycle ratio of an intermittent node as:

L =
TON

TON + TOFF
(1)

This describes the balance between the node’s power consump-
tion and its ability to harvest energy from its environment. For
a given system, a larger lifecycle ratio means a more energy-
rich environment.

For our baseline system, described in more detail in Sec-
tion V, the on and off thresholds from Fig. 1 are fixed by
a voltage supervisor. The size of the system energy store
(assumed here to be a capacitor) is also fixed. When the
on threshold is reached, the capacitor has a fixed amount of
energy stored. Therefore, the (maximum) on-time TON of the
system is determined primarily by the size of the capacitor
and the power consumption of the system in operation. The
charging rate also affects the maximum on-time, but in our
target scenario, the charging power is dominated by the on-
time power consumption of the system. On the other hand,
the off-time TOFF of the system is determined by the charging
power, which is often unpredictable and uncontrollable. Eq. (1)
is thus a dynamic quantity.

In order to manage lifecycling, LMPs need a control mech-
anism. In our work, we use a mechanism we call early-
die: during on-time, a node can turn itself off before voltage
reaches the off threshold. This shortens the on-time and saves
energy, effectively shortening the following off-time (fluctua-
tions in charging rate aside), because not as much charging
is required to reach the on threshold again. This lifecycling
control mechanism can be found in off-the-shelf hardware and
is available on our implementation platform. Other potential
control mechanisms include a dynamic on threshold [16], [17]
or a dynamically-sized energy store [18], [19].

The LMP should be part of a comprehensive energy
management solution for the entire system (communication,
sensing, and computation). In this work we focus on com-
munication, where the LMP can be conceptualized as an
additional layer between the network and data link layers in

the network stack. Using whatever mechanism is available, the
LMP controls the lifecycle as best as possible to maximize
communication opportunities. Due primarily to fluctuations in
charging rate, this control is fuzzy at best. However, simulation
results have shown that even a simple LMP could greatly
improve communication performance [3]. In this paper, we
verify these results both analytically and on hardware.

In general, LMPs can be classified as either stateless or
stateful. Stateful LMPs keep track of protocol information,
such as timing information, across off-times. However, mea-
suring off-times requires a specialized timekeeping mechanism
known as a persistent clock [20]–[22]. In contrast, stateless
LMPs do not track information across off-times, and are
generally simpler to design and implement. A stateful LMP
could potentially outperform a stateless LMP [3], but we
concentrate on stateless LMPs in this work as our first step in
formalized design and implementation on devices.

III. STATELESS LMP FRAMEWORK

In this section, we first present our framework for stateless
LMP design, and then propose formal metrics for the evalua-
tion of this framework and LMPs in general.

A. Framework

We propose a framework that defines a general format
and set of behaviors for stateless LMPs. To the best of our
knowledge, this is the first general framework to aid the
design and analysis of protocols that manage lifecycling of
intermittent nodes for direct node-to-node communication.

Our framework assumes the availability of the early-die
control mechanism discussed in Section II-C. With this mech-
anism, the decision of the LMP is when to early-die. This
results in an on-time for the node somewhere between a τmin,
determined by the boot time of the node and the minimum time
required to attempt communication, and τmax, determined by
the on-time power consumption PON of the node, the size of
the energy store, and the on threshold.

As shown in Fig. 2, in our stateless LMP framework, each
node chooses an on-time τ ∈ [τmin, τmax]. For each on-time
beginning at t = 0, the LMP schedules an early-die operation
at t = τ and then allows the MAC to attempt communication.
The details of communication are left to the MAC layer,
preserving the network stack model. If the node is not commu-
nicating at t = τ , the early-die operation is executed and the
node turns itself off. But if the node is communicating at t = τ ,
the early-die operation is cancelled and the node remains on to
maximize the communication opportunity; it early-dies when
the communication is finished (either because all packets for
this neighbor have been sent/received, or because a node is
running out of energy). This scheme prioritizes successful
communication over LMP operations—after all, the purpose
of this framework is to facilitate communication.

Nodes using our framework need to select a τ . A key finding
from [3] is that, ignoring boot overhead, L from Eq. (1) is
constant across all choices for τ . Put another way, ignoring
boot overhead, early-dying does not waste energy. We explore

ON

OFF

S
ys

te
m

 S
to

re
d

 E
n

e
rg

y

On-time Overlap

τ τmax

Bootup time

Tboot

Fig. 2: Illustration of the proposed stateless LMP framework. Each
node selects an on-time of length τ ∈ [τmin, τmax]. This choice affects
the node’s frequency of on-times. When overlap (i.e. successful
communication) occurs, the nodes extend their on-times to maximize
the communication opportunity.

the design space for τ in detail, including the effect of boot
overhead, in Section IV.

B. Metrics

As with any protocol, an LMP should be designed with
a goal. However, we must first define metrics for measuring
communication performance of an LMP. From the commu-
nication perspective, intermittency constrains performance—
within a period of overlap, intermittency has no effect on
communication performance. The purpose of the LMP is then
to relax the constraints of intermittency as much as possible.
We thus define two metrics:

1) TTO: time-to-overlap, the time between successive in-
stances of overlap. This metric measures the commu-
nication delay introduced by the intermittency of the
devices. This measures only time between overlap, the
domain of the LMP. The MAC or physical layers may
introduce additional delay in communication.

2) OPS: amount of overlap per second. This metric mea-
sures intermittency’s constraint on the throughput of
the communication channel. OPS measures overlap at
the LMP level. Given this much overlap, throughput is
further limited by the MAC, the physical layer, etc.

These metrics are related, but they are not equivalent. A short
TTO may be useful in achieving a high OPS, but it is also
possible for nodes to reach a high OPS by overlapping less
frequently but for longer periods of time.

IV. ANALYTICAL MODELS

LMPs within our proposed framework are parameterized
simply by the selected on-time τ . In this section, we analyze
how the performance (TTO and OPS) of LMPs in our stateless
framework is affected by the selection of τ . We focus our
analysis on a two-node case. The intuitive tradeoff is that
longer on-times provide a higher probability of overlap for any
given on-time, while shorter on-times can happen much more
frequently. Compounding the decision, τ could be the same
for both nodes (symmetric on-times), or it could be longer
on one node and shorter on the other (asymmetric on-times).
Finally, the best value for τ may change depending on the
application’s needs. Therefore, we present analytical models
that explore the design space of our framework (selection of
τ) in terms of expected TTO and expected OPS.

A. Assumptions and Simplifications

To streamline the models, we assume that the on-time power
consumption PON for a node is constant, regardless of whether
the node is booting or running the radio, and that PON is the
same for all nodes in the network. Similarly, we assume τmax
is the same for all nodes in the network. We also assume
boot time Tboot is constant and the same for all nodes in
the network, and that communication cannot occur until the
boot process (both hardware and software) has finished. Since
our target metrics measure only overlap, we do not model
communication issues at the MAC or physical layers.

Our models consider a particular on-time of a node A. At
a high level, we assume p, the probability that overlap occurs
during a given on-time of node A, is independent of all other
on-times. More specifically, as shown in Fig. 3, we consider
some interval of length TB (the average lifecycle period of a
node B) that contains this on-time of A. We discretize this
interval into slots of fixed length s. Node A’s on-time begins
at some slot (i.e., the rebirth slot) within this interval. For our
models, we assume that node A’s rebirth slot is randomly and
uniformly distributed within the interval TB .

In theory, the probabilities of overlap with a node B during
on-times for node A are not independent. As an extreme
example, if the charging rates of nodes A and B are constant,
then the time between overlaps is predetermined and the
probability of overlap at an on-time depends on the time since
the last overlap. However, in our target scenario, the charging
rates can fluctuate unpredictably, and these fluctuations can
affect off-times significantly (with respect to the length of
an on-time). This makes the assumption of independence
reasonable in practice, a claim supported by the experimental
results in Section VI.

B. TTO Model

In this section, we model the expected TTO of the design
space of our stateless LMP framework in a two-node case.
Our approach is to first model p, the probability of overlap
for any given on-time of one of the nodes. Using p, we then
model the expected number of on-times before overlap, which
we directly translate to the expected TTO.

1) Probability of Overlap: We first discretize the time
domain into slots of fixed length s. For logical convenience,
we make s the duration of a single communication attempt,
e.g. the time required to transmit a packet and receive an
acknowledgement (or time out). We model an on-time of
length τ as a sequence of τ

s slots, with the first b of those slots
spent booting the node. These b slots are thus not available
for communication and cannot count as overlap.

Consider any given on-time for a node A, and an interval of
length TB encompassing that on-time, as shown in Fig. 3. As
TB is the average length of B’s lifecycle period, we assume
an on-time for node B falls somewhere within this interval.
As discussed in the assumptions, we assume the probability of
B’s rebirth slot being a particular slot is uniformly distributed
within this interval. We can then model the probability of
overlap with node B in any given on-time for a node A by

counting the number of B’s rebirth slots for which A and
B have overlap, and dividing this quantity by the number of
slots in TB . As illustrated in Fig. 3, the sum of this count is
n+m−2b−1, where m is the number of slots in B’s on-time
and n is the number of slots in A’s on-time.

τA

m-b-1

n-b

...1 b b+1 n......1 b b+1 n...

...1 b b+1 m......1 b b+1 m...

...1 b b+1 m......1 b b+1 m...

...1 b b+1 m......1 b b+1 m...

TB

Fig. 3: Consider any interval TB , divided into slots, surrounding an
on-time for node A (green, shown at the top). With our model’s
assumptions, somewhere within this interval, node B (blue) has an
on-time, with equal probability that it begins in any given slot. This
figure enumerates the rebirth slots for B that produce overlap with
node A. In the leftmost rebirth slot for node B that produces overlap,
the final slot of B’s on-time (slot m) overlaps with the first non-boot
slot of node A (slot b+1). In the rightmost rebirth slot that produces
overlap, the first non-boot slot of node B (slot b+1) aligns with the
final on-time slot of node A (slot n). All rebirth slots between these
two slots produce overlap, for a total of n+m− 2b− 1 rebirth slots
with overlap.

The total number of slots in the interval is TB

s . Therefore,
the probability of overlap for any given on-time of node A is:

p =
n+m− 2b− 1

TB

s

. (2)

We can express Ti, the average lifecycle period for a node i,
as a function of PON, τi, and the node’s average charging
power Pi, as follows:

Ti = TON + TOFF = τi +
PONτi − Piτi

Pi
=
PONτi
Pi

, (3)

where the off-time is expressed as the energy consumed during
on-time (minus the energy harvested during on-time) divided
by the charging rate. Substituting Eq. (3) into Eq. (2) and
translating number of slots to continuous time, we obtain:

p =
PB(τA + τB − 2Tboot − s)

PONτB
. (4)

2) Expected Number of On-times until Overlap: Under our
assumptions, we can model the on-times of node A as a series
of independent Bernoulli trials with probability of success p.
If we define X as the number of on-times until the next
overlap, then X is a geometrically-distributed random variable
with parameter p. Thus, from the geometric distribution, the
expected number of on-times until overlap is:

E[X] =
1

p
=

PONτB
PB(τA + τB − 2Tboot − s)

. (5)

3) Expected TTO: We model the expected time to overlap

as the expected number of on-times of node A until overlap,

multiplied by node A’s lifecycle period TA from Eq. (3):

E[TTO] = E[X] · TA =
PON

2τAτB
PAPB(τA + τB − 2Tboot − s)

. (6)

We plot the expected TTO versus values of τA and τB as a

contour map in Fig. 4a. Our first observation is that the contour

map is symmetric across the positive diagonal. This means that

A and B can be swapped in the model, with the same results—

even if the nodes have different lifecycles. In fact, examining

Eq. (6), we observe that the charging rates of the two nodes

(PA and PB) are simply scaling factors for the expected TTO.

This is a striking finding—it implies that values for τA and τB
that minimize expected TTO are the same across all charging

rates for the two nodes. This suggests that an LMP using our
framework does not need to adapt to the lifecycle ratios of the
two nodes in order to maintain expected optimal performance.

(a) Expected TTO. (b) Expected OPS.

Fig. 4: Contour plots of our modeled metrics vs. τ for nodes A and
B, with lifecycle ratios of 13.3% and 7.6% respectively (to match
Section VI). On-time shown on the axes is in number of 5 ms slots
and does not include boot time. Other parameters are set to match
the experimentally-measured values described in Section V.

Returning to Fig. 4a, the best performance (smallest TTO)

is in the upper left and lower right corners, where one node

has an on-time of τmin and the other has an on-time of τmax.

For symmetric on-times, around 5 slots (25 ms) provides the

best performance. Intuition might suggest that τmin would be

the optimal symmetric on-time, but it is not, due to the Tboot

term. Boot time is an overhead—it is on-time where energy is

being consumed but overlap cannot happen. While shorter on-

times lead to more frequent on-times, they also lead to a larger

proportion of on-time energy being spent on boot overhead.

C. OPS Model

Our OPS model takes a similar approach as our TTO model.

We discretize time into slots of length s, and consider a given

on-time of node A falling in an interval of length TB . We

model OPS as the expected number of overlapping slots in a

given time period.

We first find the expected number of overlapping slots for an

on-time of node A. This is S, the total number of overlapping

slots for all possible rebirth slots of B, divided by the number

of slots in TB . The count for S is complicated by the fact

that, in our framework, on-times with overlap are extended

until one node or the other runs out of energy. In Fig. 5, we

illustrate how we find S, with the following result:

S =
m−1∑

i=b

(K − i) +
n−1∑

i=b+1

(K − i) , (7)

where K is the number of slots in the maximum on-time τmax.

K-(n-1)

K-(b+1)

K-b

K-(m-1)

...b+1 m...

...b+1 n K

K

...

...b+1 m... K...b+1 m... K

...b+1 m... K...b+1 m... K

...b+1 m... K...b+1 m... K

Fig. 5: Counting S, the number of overlapping slots for nodes A
(green) and B (blue) for all possible rebirth slots of node B. The
overall setup is the same as Fig. 3. For clarity, boot slots are not
shown. Here we illustrate a case where m and n are different. The
hatched areas indicate the amount that a node can extend its on-
time after overlap is detected (up to K, the number of slots in τmax,
assumed to be the same for both nodes). In the leftmost rebirth slot for
node B that produces overlap, the overlap begins at B’s slot m, and
the overlap extends for K− (m−1) slots (limited by B’s remaining
on-time). In the rightmost rebirth slot that produces overlap, the
overlap begins at B’s slot b+ 1, but here, the overlap is constrained
by A’s remaining on-time, for K − (n − 1) slots of overlap. The
alignments between these two extremes can be enumerated using the
two midpoints shown, resulting in ranges [K − b,K − (m− 1)] and
[K − (b + 1),K − (n − 1)]. All other rebirth slots for B produce
zero overlapping slots, so summing over these ranges produces S.

To find the expected number of overlapping slots for an on-

time of node A, we divide S by the number of slots in TB .

Using Eq. (3), we obtain:

E[overlapping slots] =
S
TB

s

=
sPBS

PONτB
. (8)

Finally, to get OPS, we divide this quantity by the lifecycle

period of node A. Again using Eq. (3), we obtain:

E[OPS] =
sPAPBS

PON
2τAτB

. (9)

A contour plot of this quantity, using the same parameters as

Fig. 4a, is shown in Fig. 4b. As with the TTO model, the plot

is symmetric across the diagonal. Also as before, the lower-left

and upper-right corners show the worst performance, and about

5 slots provides the best symmetric on-time. However, the OPS
is maximized when one node chooses τ = τmin and the other
node chooses an on-time of around 15 slots. To understand

this, we first note that if a node has a small τ and overlap

occurs, on average, that overlap will begin earlier in its on-time

than for a node with a larger τ . This means the node with a

smaller τ can typically extend its on-time further, allowing for

more overlapping slots per successful overlap, on average. The

point at 15 slots optimally balances the tradeoff between this

phenomenon and the shorter TTO (more frequent on-times)

achieved in the lower-right/upper-left corners of Fig. 4a.

D. Discussion

These models are intended to help analyze the design space

of our stateless LMP framework. The trends depicted by

these models are reflected in reality, as shown in Section VI.

The models can also be useful for an order-of-magnitude

estimation of TTO and OPS, given input parameters. However,

they are not expected to accurately predict absolute values.

For example, the Ti used in the models does not take into

account the longer off-times experienced by nodes that extend

their on-times after overlap. Thus, the model may overestimate

performance, particularly for τ values that lead to frequent

overlap (though in our target scenario, most on-times do not

have overlap, so the effect is small).

By helping to understand the design space, these models can

be used to design specific protocols for a variety of scenarios.

They could even be used to create an adaptive protocol,

where one node dynamically adjusts its on-time to maximize

communication opportunities with another node, depending on

that node’s τ . We leave the design and evaluation of such

protocols to future work, and use the remainder of this paper

to validate these models.

V. LMP IMPLEMENTATION

In order to evaluate our stateless LMP framework, we

prototyped a system capable of performing communication

between two batteryless, intermittent nodes solely powered

by RF energy harvesting. We describe this system in detail

below. We emphasize that this system is built entirely using

commercial off-the-shelf hardware.

A. LMP-Capable Batteryless Sensor Node

Our prototype batteryless sensor node, pictured in Figure 6,

consists of a main microcontroller (MSP430FR5994 [23]), a

radio chip (CC1352R [24]), and an energy-harvesting unit

(PowerCast 915 MHz RF energy harvester [25]). The micro-

controller supports LMP control and portions of the applica-

tion that need to be persisted across multiple lifecycle periods.

 RF Harvester

SPI

FAST-DIE PIN

POWER – RADIO

CC1352R

M
SP430FR5994

Fig. 6: Diagram of our prototype batteryless sensor node, with an
MSP430FR5994 as the main microcontroller and a CC1352R as the
radio. The node is powered solely using an RF harvester.

We selected the MSP430 as our main MCU due to its ultra-

low power consumption (6.3 mW active and 2.31–3.3 μW

standby), fast boot times (< 1 ms from cold boot and

< 1.0 μs from standby LPM2/LPM3 modes), and integrated

FRAM [26].

Due to the intermittent nature of execution, the main appli-

cation may require frequent writes to non-volatile memory to

persist data and system state between lifecycle periods [27]–

[30]. In our prototype setup, we need to store the current LMP

configuration and the successfully-transmitted data packets.

Writing this frequently to common embedded non-volatile

memory, such as NAND flash, is not feasible because of write

limitations. For example, in CC1352, the flash is organized as

sets of 8 kB blocks, and a 64-bit word can only change the bits

from 1’s to 0’s (a block reset writes 1’s). At the same time,

only 83 writes can be done within a 256B row before a full

sector erase is required (we measured 180 ms to erase a sector

– longer than many of our LMP on-times). Any number of

writes greater than this may cause programming of unwritten

bits in the rows previously erased [31].

While emerging non-volatile technologies like ferroelectric

RAM (FRAM), magnetoresistive RAM (MRAM), and resis-

tive RAM (ReRAM) are promising technologies for future

intermittent sensor nodes, MSP430 is the only commercially-

available MCU that integrates one of these technologies

(FRAM). Each byte location in FRAM can be independently

updated in one to two MCU cycles without ever erasing any

other location. This allows for in situ non-volatile checkpoint-

ing of program contents like the stack, the register contents,

and other values that are updated during each on-time.

We selected the CC1352R radio chip because it natively

supports a wide range of frequencies (169–2480 MHz ISM

band with 4 kHz bandwidth) and most of the low-energy, two-

way communication protocols across these bands, especially

in sub-1 GHz. The MSP430 is connected to the radio chip via

SPI to send LMP control commands and data to transmit.

We used the PowerCast 915 MHz energy harvester to

harvest and regulate RF power from an RF transmitter. The

harvester module charges a capacitor (we used the default

50 mF capacitor in our experiments) to an “on” threshold of

1.23 V, at which point the regulator is enabled. The regulator

is disabled once the capacitor voltage reaches 1.02 V again.

Critically, the PowerCast harvester also allows the MSP430

to disable the regulator early via a reset pin. This provides

the early-die capability used as the control mechanism by our

stateless LMP framework. Given the capacitor size, voltages,

and power consumption, the node’s experimental τmin and τmax

are 18 ms and 293.5 ms, respectively.1Note that the latter

value varies with the harvesting power (and therefore, lifecycle

period) since the PowerCast regulator uses current from both

the harvester and the capacitor to power the MCU and radio.

B. LMP System Software

While LMPs can be implemented bare metal on a sensor

node, we chose to develop our prototype on top of an operating

system to allow applications to be easily built on top of the

LMP+OS implementation. However, the boot time of the OS

is a major consideration for an intermittent node, especially

1τmin is the minimum observed on-time, including boot-time, when a node
is configured to only be on for one slot. τmax is the maximum observed on-
time duration of a node when it does not early-die.

one running an LMP that is configured to repeatedly turn on,

quickly attempt communication, and turn off again. Table I

compares the boot times of two popular OSes for wireless

sensor nodes (Contiki OS [32] and TI-RTOS [33]) across

three MCUs (MSP430, CC1352, and CC2650 [34])2. On

the CC2650, we observed that Contiki in its out-of-the-box

configuration has a boot time of at least 100 ms—over 5×
our typical τmin, even before the radio is initialized. According

to our measurements, it takes an additional 50 ms to initialize

the radio on Contiki. In contrast, for TI-RTOS, we measured a

boot time of less than 28 ms on the CC2650 and below 25 ms

on the CC1352, and initializing the radio requires less than

1 ms. TI-RTOS also boots similarly quickly on the MSP430.

Therefore, we use TI-RTOS as the OS for both MCUs.

TABLE I: Comparison of OS boot times (in ms) of MSP430, CC1352,
and CC2650 devices using TI-RTOS and Contiki.

Device MSP430 CC1352 CC2650
OS TI-RTOS Contiki

W/radio × × � × � × �
Min 3.4 5.7 7.1 12.8 13.2 100.8 147.9

Average 8.5 14.1 14.7 20.5 20.7 107.9 153.2
Max 16.7 23.9 24.9 27.1 27.4 113.7 160.3

In our software, nodes communicate using TI’s EasyLink

radio driver [35]. The radios are configured to transmit and

receive in the sub-1GHz (779–930 MHz) band. The com-

munication consists of a two-way handshake: the sender

unicasts a packet to the receiver, and the receiver responds

with a software acknowledgement (ACK). For a particular

LMP configuration (LMP-X), the sender transmits X packets,

waiting for an ACK after each packet transmission. If it does

not receive an ACK after X packets, it early-dies (i.e., disables

the energy harvester’s voltage regulator). On the other hand,

if the sender receives an ACK, it continues to communicate

until it runs out of energy or times out (i.e., it does not receive

an ACK for a packet and thus assumes the receiver has run

out of energy). Correspondingly, the receiver running LMP-X
listens for X × 5 ms to receive a packet from the sender.3

As the receiver successfully receives packets, it extends its

listening time by 5 ms until it runs out of energy; otherwise it

disables its regulator. We also implement a special case we call

LMP-Null. In this configuration, instead of counting packets

(or receive slots), the node simply remains on until it dies. We

consider this as the baseline case, as it is the default behavior

of a typical intermittent system that does not use an LMP.

C. Evaluation Setup

To validate our stateless LMP framework, we used two of

our prototype intermittent nodes. One node acts as a sender

and the other node acts as a receiver. Both sender and receiver

harvest energy from a PowerCast 915 MHz RF transmitter [36]

and have no other power source. Communication occurs as

2We initially considered using the CC2650 while choosing our OS. The
CC1352 boot times for Contiki would likely be similar.

3The slot time of 5 ms was chosen by experimentally measuring the round-
trip time of a packet sent and ACKed.

described in the previous section, using data packets and ACKs

with a 4-byte payload.

As shown in Fig. 7, a USB-powered sniffer node (connected

via diodes to avoid artificially increasing the on-time of

nodes) records the experimental statistics, such as the num-

ber of packets transmitted, the number of acknowledgements

received, and on-times and off-times of both nodes. The

sniffer timestamps these events using an on-board timer and

sends them to a host computer via UART for logging and

analysis. We target a particular lifecycle ratio by tweaking

the distance and orientation between the RF transmitter and

each node until the desired lifecycle ratio is observed. The

lifecycle ratio varies over time, but we found that it remains

relatively stable for the duration of the experiments. When

an experiment runs, the nodes automatically (as controlled by

the sniffer) sweep through different LMP configurations of

both sender and receiver. In an experiment, each lifecycle ratio

configuration runs for either 30 minutes when nodes have a

relatively high lifecycle ratio or 120 minutes for lower lifecycle

ratios where our model predicts significantly larger TTOs (i.e.,

20 × longer). Our longest experiments ran for 50 hours total.

Sender
Node 1

Receiver
Node 2

RF Transmitter

Sniffer
5

5

Fig. 7: Evaluation setup for the stateless LMP implementations.

VI. EXPERIMENTAL EVALUATION

We evaluate our LMP implementations using two metrics—

time-to-handshake (TTH) and throughput. These metrics are

analogous to TTO and OPS, described in Section III-B.

The difference is that TTH measures the time from the last

successful communication in an overlapping on-time until

the first successful communication of the next overlapping

on-time. Throughput measures the overall amount of data

(payload) successfully sent from the sender to the receiver.

Successful communications are those where the sending node

receives an ACK—therefore, these metrics are conservative,

measurable estimates of TTO and OPS (which only consider

overlap in an ideal sense). Aside from demonstrating our

implementation, the purpose of our experiments is to validate

the models presented in Section IV. We reiterate that the goal

of the models is not to perfectly predict the actual TTH and

throughput of our system, but to correctly predict which LMP

configurations should be used to optimize these metrics.

A. LMP Communication Performance

In our first experiment, the sender has an average lifecycle

ratio of 13.3% and the receiver has an average lifecycle ratio

of 7.6%. Fig. 8 shows the TTO, as predicted by the model,

and TTH, as measured by the experiments, at select LMP con-

figurations (LMP-1, -5, -10, -15, and Null). The experimental

results clearly follow the trends predicted by the model. The

best median TTH (2.85 s) occurs at extreme asymmetry, when

Fig. 8: TTO (model) and TTH (prototype) vs. LMP configurations,
with avg. lifecycle ratio of 13.3% for sender and 7.6% for receiver.

Fig. 9: OPS (model) and throughput (prototype) vs. LMP config, with
avg. lifecycle ratio of 13.3% for sender and 7.6% for receiver.

one node uses LMP-1 and the other uses Null-LMP, since

this increases the probability on-times overlap. Relatively low

TTHs can be achieved when one node is executing Null-LMP,

having longer on-times, and the other uses shorter on-time

LMPs (LMP-1 to LMP-10). Symmetric LMP-5 and LMP-10

configurations also produce low TTHs.

Figure 9 shows the respective OPS and throughput for

the selected LMP configurations with the 13.3% (Tx) and

7.6% (Rx) lifecycle ratios. As our model predicts, the lowest

latency LMP combination (1-Null) does not match the highest

throughput LMP combination (1-15). This happens because

the 1-Null combination has a lower average overlap per on-

time, since the node running Null-LMP, on average, has

already consumed approximately half of its on-time energy

by the time overlap occurs. This behavior, predicted in the

model, can be seen in Fig. 9, where the maximum throughput

of 146.16 kB/hr is observed when the sender does LMP-15

and the receiver does LMP-1.

B. Lifecycle Ratio and Boot Time Sensitivity Study

Given that our LMPs are capable of communicating at an

already low lifecycle ratio, we test a more severe lifecycle

scenario, where the receiver has an average lifecycle ratio

of 5.55% and the sender only has a lifecycle ratio of 1%.

Figure 10 and Fig. 11 show the impact of these decreases

when compared to the previous figures. The change in lifecycle

ratio directly increases the TTH and reduces the throughput

of the system, since the nodes can only be on for a more

limited amount of time. In other words, the intermittency

imposes tighter constraints on the system. For the experimental

Fig. 10: TTO (model) and TTH (prototype) vs. LMP configurations,
with avg. lifecycle ratio of 1% for sender and 5.55% for receiver.

Fig. 11: OPS (model) and throughput (prototype) vs. LMP config,
with avg. lifecycle ratio of 1% for sender and 5.55% for receiver.

results, at the optimal LMP configurations (1-Null for TTH

and 1-15 for throughput), TTH increased 17.6× and through-

put decreased 20.8×. However, crucially, the overall trend

for both throughput and TTH remain similar to the model

and to the results with higher lifecycle ratios. Indeed, these

experimental results confirm the finding in Section IV-B that a

LMP using our stateless framework does not need to adapt to

lifecycle ratios to maintain expected optimal communication

performance.

Finally, we investigate how boot time impacts our LMP im-

plementation. Table II shows the effect of artificially increasing

the boot time on TTH and throughput when both nodes run

LMP-10 and the sender and receiver have lifecycle ratios of

13.3% and 7.6%, respectively. As the boot time increases

from 15 ms to 95 ms, TTH increases 17× and throughput

decreases 126×, because the node wastes time and energy

booting during the relatively frequent on-times, rather than

spending that energy attempting to communicate. This has a

compounding effect, since that extra wasted energy also must

be replaced, increasing the off-time of the node for a given

LMP configuration. This degradation in TTH and throughput

demonstrates the critical importance of a small boot time for

a communication LMP.

TABLE II: TTH and throughput vs. boot time for two nodes, both
running LMP-10.

Boot time (ms) TTH (s) Throughput (kB/hr)
15 5.33 118.47
35 12.272 42.246
55 20.372 19.92
75 40.65 5.644
95 91.33 0.941

VII. CONCLUSION AND FUTURE WORK

In conclusion, we see lifecycling of intermittent nodes
as a new, distinct problem, particularly in the realm of
communication—and we believe this problem needs to be ad-
dressed in order to unlock the potential benefits of intermittent
sensor nodes. Our first step is to formulate the problem as
a protocol problem, to be solved by lifecycle management
protocols. In this work, we began a formal exploration of
LMPs by proposing a generic framework for stateless LMPs,
then analytically modeling expected performance across the
design space of the framework. Finally, we implemented this
framework on hardware devices and validated our models in
a two-node testbed.

Going forward, we believe this space is rich. Lifecycling
is a major challenge, but instead of passively accepting the
limitations of lifecycling, LMPs actively try to squeeze as
much useful on-time as possible out of the system. Our
protocol-based approach abstracts the problem, making it ripe
for research within the community. We have identified many
specific future directions of our research. We plan to use our
proposed framework and models to develop concrete protocols
for communication between multiple nodes. With the models
presented here, we can design protocols to produce opti-
mal behavior under a variety of different scenarios. Another
direction is further exploration of stateful LMPs, including
design, modeling, and implementation. At a higher level, we
are also interested in integrating the concept of LMPs into an
embedded OS, and studying the effect that LMPs have not
only on communication and the network stack, but also task
scheduling, computation, and sensing.

ACKNOWLEDGMENT

This work was supported in part by the U.S. National
Science Foundation under Grants 1730275 and 2008548.

REFERENCES

[1] L. M. Feeney, C. Rohner, P. Gunningberg, A. Lindgren, and L. Anders-
son, “How do the dynamics of battery discharge affect sensor lifetime?”
in IEEE WONS 2014.

[2] J. F. Peters, M. Baumann, B. Zimmermann, J. Braun, and M. Weil, “The
environmental impact of li-ion batteries and the role of key parameters–a
review,” Renewable and Sustainable Energy Reviews, vol. 67, pp. 491–
506, 2017.

[3] M. L. Wymore, V. Deep, V. Narayanan, H. Duwe, and D. Qiao,
“Lifecycle management protocols for batteryless, intermittent sensor
nodes,” in IEEE IPCCC 2020.

[4] M. A. Khan, M. Sharma, and B. R. Prabhu, “A survey of RFID tags,”
International Journal of Recent Trends in Engineering, vol. 1, no. 4,
p. 68, 2009.

[5] X. Jia, Q. Feng, T. Fan, and Q. Lei, “RFID technology and its
applications in Internet of Things (IoT),” in IEEE CECNet 2012.

[6] G. Wang, F. Gao, R. Fan, and C. Tellambura, “Ambient backscatter
communication systems: Detection and performance analysis,” IEEE
Transactions on Communications, vol. 64, no. 11, pp. 4836–4846, 2016.

[7] Y. Karimi, A. Athalye, S. R. Das, P. M. Djurić, and M. Stanaćević,
“Design of a backscatter-based tag-to-tag system,” in IEEE RFID 2017.

[8] J. Ryoo, J. Jian, A. Athalye, S. R. Das, and M. Stanaćević, “Design
and evaluation of “bttn”: A backscattering tag-to-tag network,” IEEE
Internet of Things Journal, vol. 5, no. 4, pp. 2844–2855, 2018.

[9] A. Y. Majid, M. Jansen, G. O. Delgado, K. S. Yildirim, and P. Pawełłzak,
“Multi-hop backscatter tag-to-tag networks,” in IEEE INFOCOM 2019.

[10] Y. Sun, O. Gurewitz, and D. B. Johnson, “RI-MAC: a receiver-initiated
asynchronous duty cycle MAC protocol for dynamic traffic loads in
wireless sensor networks,” in ACM SenSys 2008.

[11] A. Dunkels, “The ContikiMAC radio duty cycling protocol,” 2011, SICS.
[12] S. Duquennoy, B. Al Nahas, O. Landsiedel, and T. Watteyne, “Orchestra:

Robust mesh networks through autonomously scheduled TSCH,” in
ACM SenSys 2015.

[13] R. Piyare, A. L. Murphy, C. Kiraly, P. Tosato, and D. Brunelli, “Ultra
low power wake-up radios: A hardware and networking survey,” IEEE
Communications Surveys & Tutorials, vol. 19, no. 4, 2017.

[14] J. Oller, I. Demirkol, J. Casademont, J. Paradells, G. U. Gamm, and
L. Reindl, “Has time come to switch from duty-cycled MAC protocols to
wake-up radio for wireless sensor networks?” IEEE/ACM Transactions
on Networking, vol. 24, no. 2, pp. 674–687, 2015.

[15] K. Geissdoerfer and M. Zimmerling, “Bootstrapping battery-free wire-
less networks: Efficient neighbor discovery and synchronization in the
face of intermittency,” in USENIX NSDI 2021.

[16] Y. Wang, Y. Liu, C. Wang, Z. Li, X. Sheng, H. G. Lee, N. Chang, and
H. Yang, “Storage-less and converter-less photovoltaic energy harvesting
with maximum power point tracking for internet of things,” IEEE
Transactions on Computer-Aided Design of Integrated Circuits and
Systems, vol. 35, no. 2, pp. 173–186, 2016.

[17] A. Hoseinghorban, M. R. Bahrami, A. Ejlali, and M. A. Abam, “Chance:
Capacitor charging management scheme in energy harvesting systems,”
IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, vol. 40, no. 3, pp. 419–429, 2021.

[18] A. Colin, E. Ruppel, and B. Lucia, “A reconfigurable energy storage
architecture for energy-harvesting devices,” in ACM ASPLOS 2018.

[19] J. de Winkel, C. Delle Donne, K. S. Yildirim, P. Pawełczak, and
J. Hester, “Reliable timekeeping for intermittent computing,” in ACM
ASPLOS 2020.

[20] V. Deep, V. Narayanan, M. Wymore, D. Qiao, and H. Duwe, “HARC:
A Heterogeneous Array of Redundant Persistent Clocks for Batteryless,
Intermittently-Powered Systems,” in IEEE RTSS 2020.

[21] J. Hester, N. Tobias, A. Rahmati, L. Sitanayah, D. Holcomb, K. Fu,
W. P. Burleson, and J. Sorber, “Persistent clocks for batteryless sensing
devices,” ACM TECS, vol. 15, no. 4, pp. 1–28, 2016.

[22] V. Deep, A. Mishra, D. Qiao, and H. Duwe, “Revisiting time remanence
clocks for energy harvesting wireless sensor nodes,” in ACM ENSsys
2019.

[23] MSP430FR5994 LaunchPadTM Development Kit, Texas Instruments,
Sep. 2019.

[24] CC1352R SimpleLinkTM High-Performance Multi-Band Wireless MCU,
Texas Instruments, Jan. 2018.

[25] P2110B – 915 MHz RF Powerharvester Receiver, Powercast, 12 2016.
[26] MSP430FR58xx, MSP430FR59xx, and MSP430FR6xx Family User’s

guide, Texas Instruments, Oct. 2017.
[27] K. Maeng and B. Lucia, “Adaptive dynamic checkpointing for safe

efficient intermittent computing,” in USENIX OSDI 2018.
[28] B. Ransford, J. Sorber, and K. Fu, “Mementos: System support for long-

running computation on RFID-scale devices,” in ACM ASPLOS 2011.
[29] M. Hicks, “Clank: Architectural support for intermittent computation,”

ACM SIGARCH Computer Architecture News, vol. 45, no. 2, pp. 228–
240, 2017.

[30] H. Jayakumar, A. Raha, and V. Raghunathan, “QUICKRECALL: A low
overhead HW/SW approach for enabling computations across power
cycles in transiently powered computers,” in 2014 27th International
Conference on VLSI Design and 2014 13th International Conference on
Embedded Systems.

[31] CC13x2, CC26x2 SimpleLinkTM Wireless MCU Technical Reference
Manual, Texas Instruments, Aug. 2019.

[32] A. Dunkels, B. Gronvall, and T. Voigt, “Contiki—a lightweight and
flexible operating system for tiny networked sensors,” in IEEE LCN
2004.

[33] Texas Instruments, “TI-RTOS: Real-Time Operating System (RTOS) for
Microcontrollers (MCU),” https://www.ti.com/tool/TI-RTOS-MCU.

[34] CC2650 SimpleLinkTM Multistandard Wireless MCU, Texas Instruments,
Feb. 2015.

[35] Texas Instruments, “EasyLink RF API for CC13xx/CC26xx family.”
2019.

[36] TX91501B – 915 MHz Powercaster Transmitter, Powercast, Oct. 2018.

