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Abstract
Serverless computing, or Function-as-a-Service (FaaS), en-

ables a new way of building and scaling applications by al-
lowing users to deploy fine-grained functions while provid-
ing fully-managed resource provisioning and auto-scaling.
Custom FaaS container support is gaining traction as it en-
ables better control over OSes, versioning, and tooling for
modernizing FaaS applications. However, providing rapid
container provisioning introduces non-trivial challenges for
FaaS providers, since container provisioning is costly, and
real-world FaaS workloads exhibit highly dynamic patterns.

In this paper, we design FAASNET, a highly-scalable mid-
dleware system for accelerating FaaS container provisioning.
FAASNET is driven by the workload and infrastructure re-
quirements of the FaaS platform at one of the world’s largest
cloud providers, Alibaba Cloud Function Compute. FAAS-
NET enables scalable container provisioning via a lightweight,
adaptive function tree (FT) structure. FAASNET uses an
I/O efficient, on-demand fetching mechanism to further re-
duce provisioning costs at scale. We implement and integrate
FAASNET in Alibaba Cloud Function Compute. Evaluation
results show that FAASNET: (1) finishes provisioning 2,500
function containers on 1,000 virtual machines in 8.3 sec-
onds, (2) scales 13.4× and 16.3× faster than Alibaba Cloud’s
current FaaS platform and a state-of-the-art P2P container
registry (Kraken), respectively, and (3) sustains a bursty work-
load using 75.2% less time than an optimized baseline.

1 Introduction
In recent years, a new cloud computing model called server-
less computing or Function-as-a-Service (FaaS) [40] has
emerged. Serverless computing enables a new way of building
and scaling applications and services by allowing developers
to break traditionally monolithic server-based applications
into finer-grained cloud functions. Developers write func-
tion logic while the service provider performs the notoriously
tedious tasks of provisioning, scaling, and managing the back-
end servers [36] that the functions run on.

Serverless computing solutions are growing in popular-
ity and finding their way into both commercial clouds (e.g.,
AWS Lambda [5], Azure Functions [7], Google Cloud
Functions [12] and Alibaba Cloud Function Compute1 [2],
etc.) and open source projects (e.g., OpenWhisk [54], Kna-
tive [15]). While serverless platforms such as AWS Lambda

1We call Function Compute throughout the paper.

and Google Cloud Functions support functions packaged as
.zip archives [8], this deployment method poses constraints
for FaaS applications with a lack of flexibility. One constraint
is a maximum package size limit (of up to 250 MB uncom-
pressed for AWS Lambda functions).

A recent trend is the support of packaging and deploying
cloud functions using custom container images [3, 13, 19, 20].
This approach is desirable as it greatly enhances usability,
portability, and tooling support: (1) Allowing cloud functions
to be deployed as custom container runtimes enables many
interesting application scenarios [4], which heavily rely on
large dependencies such as machine learning [23, 47], data an-
alytics [31, 32, 58], and video processing [26, 35]; this would
not have been possible with limited function package sizes.
(2) Container tooling (e.g., Docker [9]) simplifies the software
development and testing procedures; therefore, developers
who are familiar with container tools can easily build and
deploy FaaS applications using the same approach. (3) This
approach will enable new DevOps features such as incremen-
tal update (similar to rolling update in Kubernetes [18]) for
FaaS application development.

A potential benefit that makes the FaaS model appealing is
the fundamental resource elasticity—ideally, a FaaS platform
must allow a user application to scale up to tens of thousands
of cloud functions on demand, in seconds, with no advance
notice. However, providing rapid container provisioning for
custom-container-based FaaS infrastructure introduces non-
trivial challenges.

First, FaaS workloads exhibit highly dynamic, bursty pat-
terns [50]. To verify this, we analyzed a FaaS workload from
a production serverless computing platform managed by one
of the world’s largest cloud providers, Alibaba Cloud. We
observe that a single application’s function request through-
put (in terms of concurrent invocation requests per second
or RPS) can spike up to more than a thousand RPS with a
peak-to-trough ratio of more than 500× (§2.2.1). A FaaS plat-
form typically launches many virtualized environments—in
our case at Function Compute, virtual machines (VMs) that
host and isolate containerized functions—on demand to serve
request surges [5, 24, 56]. The bursty workload will create a
network bandwidth bottleneck when hundreds of VMs that
host the cloud functions are pulling the same container images
from the backing store (a container registry or an object store).
As a result, the high cost of the container startup process2

2A container startup process typically includes downloading the container
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makes it extremely difficult for FaaS providers to deliver the
promise of high elasticity.

Second, custom container images are large in sizes. For
example, more than 10% of the containers in Docker Hub are
larger than 1.3 GB [60]. Pulling large container images from
the backing store would incur significant cold startup latency,
which can be up to several minutes (§2.2.2) if the backing
store is under high contention.

Existing solutions cannot be directly applied to our FaaS
platform. Solutions such as Kraken [16], DADI [42], and
Dragonfly [10] use peer-to-peer (P2P) approaches to acceler-
ate container provisioning at scale; however, they require one
or multiple dedicated, powerful servers serving as root nodes
for data seeding, metadata management, and coordination.
Directly applying these P2P-based approaches to our existing
FaaS infrastructure is not an ideal solution due to the follow-
ing reasons. (1) It would require extra, dedicated, centralized
components, thus increasing the total cost of ownership (TCO)
for the provider while introducing a performance bottleneck.
(2) Our FaaS infrastructure uses a dynamic pool of resource-
constrained VMs to host containerized cloud functions for
strong isolation; a host VM may join and leave the pool at
any time. This dynamicity requires a highly adaptive solution,
which existing solutions fail to support.

To address these challenges, we present FAASNET, a
lightweight and adaptive middleware system for accelerating
serverless container provisioning. FAASNET enables high
scalability by decentralizing the container provisioning pro-
cess across host VMs that are organized in function-based tree
structures. A function tree (FT) is a logical, tree-based net-
work overlay. A FT consists of multiple host VMs and allows
provisioning of container runtimes or code packages to be
decentralized across all VMs in a scalable manner. FAASNET
enables high adaptivity via a tree balancing algorithm that
dynamically adapts the FT topology in order to accommodate
VM joining and leaving.

Note that the design of FAASNET is driven by the specific
workload and infrastructure requirements of Alibaba Cloud
Function Compute. For example, Function Compute uses
containers inside VMs to provide strong tenant-level isolation.
A typical FaaS VM pool has thousands of small VM instances.
The scale of the FaaS VM pool and the unique characteristics
of FaaS workloads determine that: (1) a centralized container
storage would not scale; and (2) existing container distribution
techniques may not work well in our environment as they have
different assumptions on both workload types and underlying
cluster resource configurations.

We make the following contributions in this paper.
• We present the design of a FaaS-optimized, custom con-

tainer provisioning middleware system called FAASNET.
At FAASNET’s core is an adaptive function tree abstraction
that avoids central bottlenecks.

image manifest and layer data, extracting layers, and starting the container
runtime; in our paper we call the startup process container provisioning.
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Figure 1: Overview of Alibaba Cloud’s FaaS container workflows.

• We implement and integrate FAASNET in Alibaba Cloud
Function Compute. FAASNET is, to the best of our knowl-
edge, the first FaaS container provisioning system from a
cloud provider with published technical details.

• We deploy FAASNET in Alibaba Cloud Function Compute
and evaluate FAASNET extensively using both production
workloads and microbenchmarks. Experimental results
show that FAASNET: finishes provisioning 2,500 function
containers within 8.3 seconds (only 1.6× longer than that
of provisioning a single container), scales 13.4× and 16.3×
faster than Alibaba Cloud’s current FaaS platform and a
state-of-the-art P2P registry (Kraken), respectively, and
sustains a bursty workload using 75.2% less time than an
optimized baseline.

• We release FAASNET’s FT and an anonymized dataset
containing production FaaS cold start traces at https://
github.com/mason-leap-lab/FaaSNet.

2 Background and Motivation
In this section, we first provide an overview of the FaaS
container workflows in Alibaba Cloud Function Compute.
We then present a motivational study on the FaaS workloads
to highlight the bursty patterns and their demands of a scalable
and elastic FaaS container runtime provisioning system.

2.1 FaaS Container Workflows in Alibaba
Cloud Function Compute

Function Compute allows users to build and deploy FaaS
applications using custom container images and container
tools. Figure 1 shows a typical workflow of function deploy-
ment and invocation. To deploy (or update) a containerized
function, a user sends a create/update request in order to
push the container image to a centralized container registry
(Step 1 in Figure 1). To invoke a deployed function, the user
sends invoke requests to the frontend gateway (Step 2), which
checks the user’s request and the status of the container im-
age in the registry (Step 3). The frontend then forwards the
requests to the backend FaaS VM cluster for servicing the re-
quests (Step 4). Finally, host VMs create function containers
and pull their container data from the registry (Step 5). After
all the previous steps are successfully completed, host VMs
become ready and start serving the invocation requests.

2.2 Workload Analysis
Step 5 in Figure 1, container runtime provisioning, must
be fast and scalable in order to enable high elasticity for
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Figure 2: 2-hour throughput timelines of example FaaS applications.
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(b) Proportion of image pull in cold start.
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(c) Inter-arrival time of cold starts.
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(d) Function duration.

Figure 3: Performance characteristics of container image pulls (a, b) and function invocations (c, d) in CDF.

FaaS workloads. To obtain a better understanding of the
workload requirements, we analyze the workload traces that
were collected from Function Compute.

2.2.1 Workload Burstiness
FaaS providers charge users using a fine-grained, pay-per-use
pricing model—they bill on a per invocation basis (e.g., $0.02
per 1 million invocations for AWS Lambda) and charge the
CPU and memory bundle resource usage at the millisecond
level. This property is attractive to a broad class of appli-
cations that exhibit highly fluctuating and sometimes unpre-
dictable loads; compared to traditional VM-based deployment
approach that charges even when the VM resources are idle,
FaaS is more cost-effective as tenants do not pay when the
load is zero. Therefore, we analyzed the workload traces and
verified that bursty behaviors are indeed common. Figure 2 re-
ports the behaviors of three representative FaaS applications:
gaming, IoT, and VOS (video processing).

Figure 2(a) shows that a request spike shoots from 22 to
485 RPS with a peak-to-trough ratio of 22×. As well as being
bursty, IoT and VOS show different patterns. As shown in
Figure 2(b), IoT exhibit a sustained throughput of around
682 RPS, but the throughput suddenly increased to more than
1460 RPS; the peak throughput lasts for about 40 minutes and
the second peak starts 15 minutes after the first peak ends.
Whereas for VOS (Figure 2(c)), for the first 30 minutes, it
observes an average throughput of 580 RPS with a maxi-
mum (minimum) throughput of 982 (380) RPS; the average
throughput increases to 920 RPS at 30 minutes, and gradually
reduces back to an average of 560 RPS.

Implication 1: Such dynamic behaviors require scalable
and resilient provisioning of large numbers of function con-
tainers to rapidly smooth out the latency spikes that a FaaS
application may experience during a request burst.

2.2.2 Cold Start Costs of Containerized Functions
Next, we focus on cold start costs of containerized functions.
A cold start, in our context, refers to the first-ever invocation
of a custom-container-based function; a cold start latency is
typically long, ranging from a few seconds to a few minutes
as it requires the FaaS provider to fetch the image data and
start the container runtime before executing the function. As
noted in prior work [25, 48, 50, 56], the high cold start penalty
is a notorious roadblock to FaaS providers as it hurts elasticity.
The cold start issue is exacerbated when custom container
feature with sizeable dependencies is supported.

We analyzed the container downloading costs in two FaaS
regions, Beijing and Shanghai, managed by Function Com-
pute. We retrieved a 15-day log, which recorded the statistics
of the function container registry and reported the perfor-
mance characteristics of 712,295 cold start operations for
containerized functions. As shown in Figure 3(a), for Beijing,
about 57% of the image pulls see a latency longer than 45
seconds, while for Shanghai more than 86% of the image
pulls take at least 80 seconds.

We next examined the proportion of time spent on image
pull with respect to the total function cold start latency. Fig-
ure 3(b) shows that more than 50% and 60% of function
invocation requests spend at least 80% and 72% of the overall
function startup time on pulling container images, for Beijing
and Shanghai respectively. This indicates that the cost of
image pull dominates most functions’ cold start costs.

To put the cold start costs into perspective, we further in-
spected cold starts’ inter-arrival time and function duration.
Figure 3(c) plots the interval distribution of consecutive cold
start requests. In both of the two regions, about 49% of func-
tion cold starts have an inter-arrival time less than 1 second,
implying a high frequency of cold start requests. As shown in
Figure 3(d), about 80% of the function executions in Beijing
region are longer than 1 second; in Shanghai region, about
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Figure 4: FAASNET architecture. Our work is in the gray
boxes. Function invocation requests (solid arrow: invoke, VM ctrl,
get(image manifest), and pull(image layers)) are online operations.
FAASNET minimizes the operation of I-4: pull(image layers) and
efficiently decentralizes container provisioning (i.e., image load and
container start) across VMs. Function deployment requests (dashed
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layers)) are offline operations.

80% of the function duration is less than 32.5 seconds, with a
90th percentile of 36.6 seconds and a 99th percentile of 45.6
seconds. This distribution indicates that cold start costs are
of the same magnitude as the function duration, stressing a
need for optimizing container startups.

Implication 2: Optimizing the performance of container
provisioning will provide a huge benefit on reducing the cold
start costs of container-based cloud functions.

3 FAASNET Design
3.1 Design Overview
This section provides a high-level overview of FAASNET’s
architecture. Figure 4 illustrates the architecture of the FaaS
platform running FAASNET. FAASNET decentralizes and
parallelizes container provisioning3 across VMs. FAASNET
introduces an abstraction called function trees (FTs) to enable
efficient container provisioning at scale. FAASNET integrates
a FT manager component and a worker component into our
existing FaaS scheduler and VM agent for coordinated FT
management. Next, we describe the main components in our
FaaS platform.

A gateway is responsible for (1) tenant identity access man-
agement (IAM) authentication, (2) forwarding the function
invocation requests to the FaaS scheduler, and (3) converting
regular container images to the I/O efficient data format.

A scheduler is responsible for serving function invocation
requests. We integrate a FAASNET FT manager into the
scheduler to manage function trees (§3.2), or FTs for short,
through FT’s insert and delete APIs. A FT is a binary tree
overlay that connects multiple host VMs to form a fast and

3While this paper mainly focuses on container runtime provisioning,
FAASNET supports provisioning of both containers and code packages.

scalable container provisioning network. Each VM runs a
FaaS VM agent, which is responsible for VM-local function
management. We integrate a FAASNET worker into the VM
agent for container provisioning tasks.

On the function invocation path, the scheduler first com-
municates with a VM manager to scale out the the active VM
pool from a free VM pool, if there are not enough VMs or all
VMs that hold an instance of the requested function are busy.
The scheduler then queries its local FT metadata and sends
RPC requests to FAASNET workers of the FT to start the
container provisioning process (§3.3). The container runtime
provisioning process is effectively decentralized and paral-
lelized across all VMs in a FT that do not yet have a container
runtime locally provisioned. The scheduler sits off the critical
path while FAASNET workers fetch function container layers
on demand and creates the container runtime (§3.5) from the
assigned peer VMs in parallel.

As described in §2.1, on the function deployment path, the
gateway converts a function’s regular container image into an
I/O efficient format (§3.5) by pulling the regular image from a
tenant-facing container registry, compresses the image layers
block-by-block, creates a metadata file (an image manifest)
that contains the format-related information, and writes the
converted layers and its associated manifest to an Alibaba
Cloud-internal container registry and a metadata store, respec-
tively.

3.2 Function Trees
We make the following design choices when designing FTs.
(1) A function has a separate FT; that is, FAASNET manages
FTs at function granularity. (2) FTs have decoupled data
plane and control plane; that is, each VM worker in a FT
has equivalent, simple role of container provisioning (data
plane), and the global tree management (control plane) to the
scheduler (§3.3). (3) FAASNET adopts a balanced binary tree
structure that can dynamically adapt to workloads.

These design choices are well aligned with Alibaba Cloud’s
existing FaaS infrastructure and are attuned to achieve three
goals: (1) minimizes the I/O load of container image and layer
data downloading on backing container registry, (2) elimi-
nates the tree management bottleneck and data seeding bot-
tleneck of a central root node, and (3) adapts when VMs join
and leave dynamically.
Managing Trees at Function Granularity. FAASNET man-
ages a separate, unique tree for each function that has been
invoked at least once and has not been reclaimed. Figure 5
illustrates the topology of a three-level FT that spans five host
VMs. Function container images are streamed from the root
VM of the tree downwards until reaching the leaf nodes.
Balanced Binary Trees. At FAASNET’s core is a balanced
binary tree. In a binary tree, except for the root node and
leaf nodes, each tree node (in our case a host VM)4 has one
incoming edge and two outgoing edges. This design can

4We use “node”/“VM” interchangeably when describing tree operations.
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effectively limit the number of concurrent downloading op-
erations per VM to avoid a network contention. A balanced
binary tree with N nodes has a height of blog(N)c. This is
desirable as a balanced binary tree guarantees that the im-
age and layer data of a function container would traverse
at most blog(N)c hops from the top to the bottom. This

: Function container

: Host VM

Root VM

Figure 5: An example
FAASNET FT.

is critical as the height of a
FT would affect the efficiency
of data propagation. Further-
more, the structure of a bal-
anced binary tree can dynami-
cally change in order to accom-
modate the dynamicity of the
workloads. To this end, FAAS-
NET organizes each FT as a bal-
anced binary tree. The FT man-
ager (Figure 4) calls two APIs,
insert and delete, to dynamically grow or shrink a FT.

insert: The very first node of a FT is inserted as a
root node. The FT manager tracks the number of child nodes
that each tree node has via BFS (breadth-first search) and
stores all nodes that has 0 or 1 child in a queue. To insert a
new node, the FT manager picks the first node from the queue
as the parent of the new node.

delete: The scheduler may reclaim a VM that has
been idling for a period of time (15-minute in Alibaba Cloud
configuration). Thus, FaaS VMs have a limited lifespan. To
accommodate VM leaving caused by reclamation, the FT
manager calls delete to delete a reclaimed VM. The delete

operation rebalances the structure of FT if needed. Different
from a binary search tree such as an AVL-tree or a red-black
tree, nodes in a FT do not have a comparable key (and its
associated value). Therefore, our tree-balancing algorithm
only needs to hold one invariant—a balancing operation is
triggered only if the height difference between any node’s
left and right subtree is larger than 1. The FT implements
four methods to handle all imbalance situations—left_rotate,
right_rotate, left_right_rotate, and right_left_rotate. Due to
the space limit, we omit the details of the tree balancing algo-
rithms. Figure 6 and Figure 7 show the process of right_rotate
and right_left_rotate operations, respectively.

3.3 Function Tree Integration
In this section, we describe how we integrate the FT scheme
into Alibaba Cloud’s FaaS platform. The integration spans
two components of our existing FaaS platform, the scheduler
and the VM agent. Specifically, we integrate FAASNET’s
FT manager into Alibaba Cloud’s FaaS scheduler and FAAS-
NET’s VM worker into Alibaba Cloud’s FaaS VM agent,
respectively (Figure 4). The scheduler manages VMs of a FT
via the FT manager. The scheduler starts a FAASNET worker
on each VM agent. A FAASNET worker is responsible for
(1) serving scheduler’s commands to perform tasks of image
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Figure 6: An example right_rotate operation. The FT manager de-
tects that Node 6 was reclaimed and calls delete to remove it. Re-
moval of Node 6 causes an imbalance, which triggers a right_rotate
rebalancing operation. The FT manager then performs right rotation
by marking Node 2 as the new root and marking Node 5 as Node 1’s
left subtree.
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Figure 7: An example right_left_rotate operation. FT manager
detects that Node 2 gets reclaimed and calls delete to remove it.
Removal of Node 2 triggers a rebalancing operation. FT manager
first right-rotates the right subtree of Node 1 by marking Node 5 as
the parent of Node 3. FT manager then performs a left_rotate by
marking Node 5 as the root.

downloading and container provisioning, and (2) managing
the VM’s function containers.
FT Metadata Management. The scheduler maintains an
in-memory mapping table that records the < f unctionID, FT>
key-value pairs, which map a function ID to its associated
FT data structure. A FT data structure manages a set of in-
memory objects representing functions and VMs to keep track
of information such as a VM’s address:port. The scheduler
is sharded and is highly available. Each scheduler shard pe-
riodically synchronizes its in-memory metadata state with a
distributed metadata server that runs etcd [11].
Function Placement on VMs. For efficiency, FAASNET
allows one VM to hold multiple functions that belong to the
same user. Function Compute uses a binpacking heuristic
that assigns as many functions as possible in one VM host
as long as the VM has enough memory to host the functions.
As such, a VM may be involved in the topologies of multiple
overlapping FTs. Figure 8 shows an example of a possible FT
placement. In order to avoid network bottlenecks, FAASNET
limit the number of functions that can be placed on a VM—in
our deployment we set this limit to 20. We discuss a proposal
of the FT-aware placement in §5.
Container Provisioning Protocol. We design a protocol to
coordinate the RPC communications between the scheduler
and FAASNET VM workers and facilitate container provision-
ing (Figure 9). On an invocation request, if the scheduler de-
tects that there are not enough active VMs to serve the request
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Figure 8: Example function placement on VMs. The color codings
of trees and tree edges are red for tree 1 (left), blue for tree 2 (center),
and purple for tree 3 (right). Arrows denote provisioning flows.

or all of current VMs are busy serving requests, the scheduler
reserves one or multiple new VMs from the free VM pool
and then enter the container provisioning process. Without
loss of generality, we assume only one VM (V M1) is reserved
in this case. In Step 1, the scheduler creates a new metadata
object for V M1 and inserts it to the FT associated with the
requested f unctionID. The scheduler then queries the FT in
order to get the address:port of the upstream peer VM (V M2).
In Step 2, the scheduler sends the function metadata and ad-
dress:port of V M2 to V M1. Once receiving the information,
V M1 performs two tasks: (1) downloads the .tar manifest
file of the function container image from the metadata store
(§3.1), and (2) loads and inspects the manifest, fetches the
URLs of the image layers, and persists the URL information
on V M1’s local storage. In Step 3, V M1 replies back to the
scheduler that it is ready to start creating the container runtime
for the requested function. The scheduler receives the reply
from V M1 and then sends a create container RPC request to
V M1 in Step 4. In Step 5 and 6, V M1 fetches the layers from
upstream V M2 based on the manifest configuration processed
in Step 2. In Step 7, V M1 sends the scheduler an RPC that
the container has been created successfully.
FT Fault Tolerance. The scheduler pings VMs periodically
and can quickly detect VM failures. If a VM is down, the
scheduler notifies the FT manager to perform tree balancing
operations in order to fix the FT topology.

3.4 FT Design Discussion
FAASNET offloads the metadata-heavy management tasks to
the existing FaaS scheduler, so that each individual node in a
FT serves the same role of fetching data from its parent peer
(and seeding data for its child nodes if any). FT’s root node
does not have a parent peer but instead fetches data from the
registry. FAASNET’s FT design can completely eliminate the
I/O traffic to the registry, as long as a FT has at least one active
VM that stores the requested container. Earlier, our workload
analysis reveals that a typical FaaS application would always
have a throughput above 0 RPS (§2.2). This implies that, in
practice, it is more likely for a request burst to scale out a FT
from 1 to N rather than from 0 to N.

An alternative design is to manage the topology at finer-
grained layer (i.e., blobs) granularity. In this approach, each
individual layer forms a logical layer tree; layers that belong

Scheduler VM1
(Downstream)

VM2
(Upstream)

2. Send metadata

3. Agent ready

4. Create container

5. Fetch data

1. Update & query FT

Invoke

6. Fetch success
7. Create container

 success

MDS

Download 
manifest

Figure 9: Container provisioning protocol. MDS: metadata store.

to a function container image may end up residing on different
VMs. Note that FAASNET’s FT is a special case of a layer
tree model. Figure 10 shows an example. In this example,
one VM stores layer files that belong to different function
container images. Thus, a network bottleneck may occur
when many downstream VM peers are concurrently fetching
layers from this VM. This is because many overlapping layer
trees form a fully-connected, all-to-all network topology. An
all-to-all topology might scale well if VMs are connected with
high-bandwidth network. However, the all-to-all topology
can easily create network bottlenecks if each VM is resource-
constrained, which is our case in Alibaba Cloud. We use
small VMs with 2-core CPU, 4 GB memory, and 1 Gbps
network in our FaaS infrastructure.

Existing container distribution techniques [16, 42] rely on
powerful root node to serve a series of tasks including data
seeding, metadata management, and P2P topology manage-
ment. Porting these frameworks to our FaaS platform would
require extra, dedicated, possibly sharded, root nodes, which
would add unnecessary cost to the provider. FAASNET’s FT
design, on the other hand, keeps each VM worker’s logic
simple while offloading all logistics functions to our existing
scheduler. This design naturally eliminates both the network
I/O bottleneck and the root node bottleneck. In §4.3 and §4.4
we evaluate and compare FAASNET’s FT design against a
Kraken-like approach [16, 21], which adopts a layer-based
topology with powerful root nodes.

3.5 Optimizations
We present the low-level optimizations that FAASNET uses
to improve the efficiency of function container provisioning.

I/O Efficient Data Format. Regular docker pull and
docker start are inefficient and time-consuming as the
whole container image and the data of all the layers must
be downloaded from a remote container registry [37] before

448    2021 USENIX Annual Technical Conference USENIX Association



… 

: Image layer : Host VM

… 

Root VM

Tree level 1

Tree level 2

Image layers of Function A

Image layers of Function B
… 

Figure 10: An example tree that manages the topology at layer gran-
ularity and relies on root node for data seeding and tree management.

the container can be started. To solve the issue, we design a
new block-based image fetching mechanism within Alibaba
Cloud. This mechanism uses an I/O efficient compression
data file format. Original data is split into fixed-sized blocks
and compressed separately. An offset table is used to record
the offset of each compressed block in the compressed file.

FAASNET uses the same data format for managing and
provisioning code packages. A code package is compressed
into a binary file, which will be extracted by VM agent and
eventually mounted inside of a function container. FAASNET
distributes code packages the same way as it does for con-
tainer images. §4.5 evaluates the performance benefit of I/O
efficient data format on code package provisioning.

On-Demand I/O. For applications that do not need to read
all the layers at once on startup, our block-based image fetch-
ing mechanism provides them with an option to fetch layer
data at fine-grained block level, in a lazy manner (i.e., on-
demand), from a remote storage (in our case, a container
registry or a peer VM). First, the application, in our case, a
FAASNET VM worker, downloads the image manifest file
from a metadata store and does an image load locally to load
the .tar image manifest. Second, it calculates the indices
of the first and last (compressed) block and then consults
with the offset table to find the offset information. Finally,
it reads the compressed blocks and decompresses them until
the amount of data that has been read matches the requested
length. Since a read to the underlying (remote) block storage
device must be aligned to the block boundary, the application
may read and decompress more data than requested, causing
read amplification. However, in practice, decompression al-
gorithm achieves much higher data throughput than that of a
block storage or network. Thus, trading extra CPU overhead
for reduced I/O cost is beneficial in our usage scenario. We
evaluate the effectiveness of on-demand I/O in §4.6.

RPC and Data Streaming. We build a user-level, zero-
copy RPC library. This approach leverages non-blocking
TCP sendmsg and recvmsg for transferring an struct iovec

incontinuous buffer. The RPC library adds an RPC header di-
rectly to the buffer to achieve efficient, zero-copy serialization
in the user space. The RPC library tags requests in order to
achieve request pipelining and out-of-order receiving, similar

to HTTP/2’s multiplexing [14]. When a FAASNET worker
receives a data block in its entirety, the worker immediately
transfers the block to the downstream peer.

4 Evaluation
In this section, we evaluate FAASNET using production traces
from Alibaba Cloud’s FaaS platform. We also validate FAAS-
NET’s scalability and efficiency via microbenchmarks.

4.1 Experimental Methodology
We deploy FAASNET in Alibaba Cloud’s Function Compute
platform using a medium-scale, 500-VM pool and a large-
scale, 1,000-VM pool. We follow the same deployment con-
figurations used by our production FaaS platform: all VMs
use an instance type with 2 CPUs, 4 GB memory, 1 Gbps
network; we maintain a free VM pool where FAASNET can
reserve VM instances to launch cloud functions. This way,
the container provisioning latency does not include the time to
cold start a VM instance. FAASNET uses a block size of 512
KB for on-demand fetching and streaming. Unless otherwise
specified: we use a function that runs a Python 3.8 PyStan
application for about 2 seconds; the size of the function con-
tainer image is 758 MB; the function is configured with 3008
MB memory; each VM runs one containerized function.

System Comparison. In our evaluation, we compare
FAASNET against the following three configurations:

1. Kraken: Uber’s P2P-based registry system [16, 21]. We
deploy a Kraken devcluster [17] with one origin node
on our resource-constrained VM infrastructure.

2. baseline: Alibaba Cloud Function Compute’s current
production setup. baseline downloads container images
using vanilla docker pull from a centralized container
registry.

3. on-demand: An optimized system based on baseline but
fetches container layer data on demand (§3.5) from the
container registry.

4. DADI+P2P: Alibaba’s DADI [1, 42] with P2P enabled.
This approach uses one resource-constrained VM as the
root node to manage the P2P topology.

Goals. We aim to answer the following questions:

1. Can FAASNET rapidly provision function containers
under bursty FaaS workloads with minimum impact on
workload performance (§4.2)?

2. Does FAASNET scale with increasing invocation con-
currency levels (§4.3)?

3. How does function placement impact FAASNET’s effi-
ciency (§4.4)?

4. How does FAASNET’s I/O efficient data format perform
(§4.5)?

5. How effective is FAASNET’s on-demand fetching
(§4.6)?
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Figure 11: IoT trace timeline.
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Figure 12: Synthetic trace timeline.
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Figure 13: Distribution of container provisioning latency.

4.2 FaaS Application Workloads
In this section, we evaluate FAASNET using (scaled-down)
application traces collected from our production workload
(detailed in §2.2).
Trace Processing and Setup. We evaluate FAASNET us-
ing two FaaS applications: an IoT app and a gaming app.
Since the original gaming workload exhibits a gradual ramp-
up in throughput (Figure 2(a)), we instead create a synthetic
bursty workload based on the gaming workload to simulate
a sharp burst pattern for stress testing purpose. Our testing
cluster has up to 1,000 VMs, so we scale down the peak
throughput of both workload traces proportional (about 1/3
of the original throughput) to our cluster size and shorten the
duration from 2 hours to less than 1 hour.
IoT Trace. The IoT trace exhibits two invocation request
bursts. The first burst happens at 9 minute and the throughput
increases from 10 RPS to 300-400 RPS; the peak throughput
lasts for about 18 minutes and returns back to 10 RPS at
28 minute. The second burst happens at 40 minute and the
throughput increases to 100 RPS, and then in about 2 minutes,
jumps to around 400 RPS. Figure 11(a) plots the 55-minute
timeline of the workload’s throughput and latency changes.

At 10 minute, the instantaneous throughput increase causes
a backlog of function invocation requests at the FaaS sched-
uler side. Thus, the scheduler scales out the active VM pool
by reserving a large number of free VMs from the free VM
pool and starts the function container provisioning process. In
baseline case, all newly reserved VMs start pulling container
images from the registry, which creates a performance bottle-
neck at the registry side. As a result, the application-perceived
response time—the end-to-end runtime that includes the con-
tainer startup latency and the function execution time of
around 2 seconds—increases from 2 seconds to about 28
seconds. Worse, the registry bottleneck inevitably prolongs
the time that baseline requires to bring the response time back
to normal. As shown in Figure 11(b), baseline finishes the
whole container provisioning process and brings the response
time back to normal in almost 113 seconds.

In contrast, FAASNET avoids the registry bottleneck—
instead of downloading the container image from the registry,
each newly reserved VM fetches image data block-by-block
from its upstream peer in the FT, forming a data streaming
pipeline. As long as a VM fetches enough data blocks, it starts
the container. FAASNET reduces the maximum response time
from 28 seconds to 6 seconds. Out of the 6 seconds, around 4
seconds are spent on fetching image layers from the upstream
peer VM. (We present the container provisioning latency later
in Figure 13.) More importantly, FAASNET requires only 28
seconds to bring the service back to normal, an improvement
of 4× compared to the on-demand case.

Synthetic Trace. In the synthetic trace test, we simulate
two function invocation request bursts and evaluate FT’s adap-
tivity. Figure 12(a) shows the timeline of a FAASNET FT’s
height changes. At 11 minute, the throughput suddenly grows
from 1 RPS to 100 RPS. FAASNET detects the burst and
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Figure 14: Container provisioning scalability test.

rapidly scales the FT from a height of 2 (one root VM and
one peer VM) to 7 (82 VMs in total). The FT starts parallel
container provisioning instantly at 11 minute and sustains the
latency spikes in about 10 seconds (Figure 12(b)). After the
first burst, the throughput drops back to 1 RPS. Some VMs
become cold and get reclaimed by the VM manager in about
15 minutes since the first burst. The number of VMs gradually
reduces to 30 before the second burst arrives. Correspond-
ingly, the height of the FT reduces from 6 to 5 (Figure 12(a)).
When the second burst comes at 21 minute, the FT manager
decides to grow the FT by adding another 62 VMs. With a
total of 102 VMs, the height of the FT reaches up to 7 for
serving the concurrent requests of the second burst.

Container Provisioning Cost We next analyze the con-
tainer provisioning latency seen in the two workloads. As
shown in Figure 13, since the registry in on-demand incurs a
performance bottleneck, on-demand sees highly variant con-
tainer provisioning latency, ranging from around 7 seconds
to as high as 21 seconds. About 80% of the containers take
at least 10 seconds to start. The container startup latency is
highly predictable in FAASNET, with significantly less varia-
tion. For the synthetic workload, around 96% of the functions
require only 5.8 seconds to start. For the IoT workload, al-
most all the functions start execution within a short time range
between 6.8-7.9 seconds. This demonstrates that FAASNET
can achieve predictable container startup latency.

4.3 Scalability and Efficiency
Next, we evaluate FAASNET’s scalability and efficiency via
microbenchmarking.

Scaling Function Container Provisioning. In this test, we
measure the time FAASNET takes to scale from 0 to N concur-
rent invocation requests, where N ranges from 8 to 128. Each
invocation request creates a single container in a VM. Fig-
ure 14 reports the detailed results. As shown in Figure 14(a),
Kraken performs slightly better than baseline under 8 and 16
concurrent requests but scales poorly under 32-128 concur-
rent requests. This is because Kraken distributes containers
at layer granularity using a complex, all-to-all, P2P topology,
which creates bottlenecks in the VMs. Kraken takes 100.4
seconds to launch 128 containers.

baseline achieves slightly better scalability than Kraken.
The average container provisioning latency reaches up to
83.3 seconds when baseline concurrently starts 128 functions.
Two factors contribute to the delay: (1) the registry becomes
the bottleneck, and (2) baseline’s docker pull must pull the
whole container image and layers (758 MB worth of data)
from the registry and extract them locally.

Adding on-demand container provisioning to baseline im-
proves the latency significantly. This is because on-demand
eliminates most of the network I/Os for image layers that will
not be instantly needed container startup. Despite pulling
much less amounts of data from the registry, on-demand still
suffers from the registry bottleneck; provisioning 128 func-
tion containers requires 2.9× longer time than provisioning 8
containers in on-demand system.

DADI+P2P enables VMs to directly fetch image layers
from peers, further avoiding downloading a large amount of
layer blocks from the registry. However, DADI+P2P still
has two bottlenecks: one at the registry side—image pulls
are throttled at the registry, and layer-wise extract operation
may also be delayed in a cascading manner by local VMs;
the other bottleneck at the P2P root VM side—in addition to
seeding data, the root VM in DADI+P2P is responsible for a
series of extra tasks such as layer-tree topology establishment
and coordination, thus forming a performance bottleneck.
This can be evidenced from Figure 14(b) that the fractions of
DADI+P2P’s image pull and container start maintain at the
same level when scaling from 64 to 128 function starts.

Figure 14(a) shows that FAASNET scales perfectly well
under high concurrency and achieves a speedup of 13.4×
than baseline and 16.3× than Kraken. FAASNET is 5× and
2.8× faster than on-demand and DADI+P2P, respectively.
As shown in Figure 14(b), FAASNET’s average container pro-
visioning latency is dominated by two operations: image load
and container start. FAASNET eliminates the bottleneck on
both the two operations—on image load, FAASNET enables
decentralized image loading (functionality-wise equivalent to
image pull) at each VM by allowing each FAASNET worker
to fetch the image manifest from the metadata store (with neg-
ligible overhead) and then starting the image loading process
locally in parallel; on container start, each FAASNET VM
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Figure 15: Container provisioning scalability test: wall clock time
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Figure 16: A timeline of the VM network bandwidth usage.

worker directly fetches layer blocks from peer VM and starts
the function container once enough blocks are fetched. With
all these optimizations, FAASNET maintains almost identical
latency when scaling from 8 to 128 function startups.
Function Container Provisioning Pipeline. We next ex-
amine how long the whole container provisioning process
spans. Figure 15 plots the timeline process that each system
goes through to start N function containers. We only report the
128-function concurrency case. We observe that FAASNET
starts the first function at 5.5 second and the 128th function
at 7 second respectively. The whole container provisioning
process spans a total of 1.5 seconds. Whereas on-demand
and DADI+P2P span a total duration of 16.4 and 19 seconds,
respectively. Specifically, it takes DADI+P2P a total of 22.3
seconds to start all the 128 containers, which is 14.7× slower
than that of FAASNET. This demonstrates that FAASNET’s
FT-based container provisioning pipeline incurs minimum
overhead and can efficiently bring up a large amount of func-
tion containers almost at the same time.

Figure 16 shows the bandwidth usage timeline for a VM
that we randomly select from the 128-function concurrency
test. Recall that a FAASNET worker along a FT path (i.e.,
not the root VM nor the leaf VM) performs two tasks: (1)
fetches layer data from the upstream VM peer, and (2) seeds
layer data to the two children VM peers in its downstream
paths. We observe that the bandwidth usage of the inbound
connection (fetching layers from upstream) is roughly half
of that of the two outbound connections (sending layers to
downstreams) during container provisioning. The aggregate
peak network bandwidth is 45 MB/s, which is 35.2% of the
maximum network bandwidth of the VM. We also observe
that, the outbound network transfer is almost perfectly aligned
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Figure 17: Large-scale function container provisioning: the wall
clock time (X-axis) for starting N functions (Y-axis).
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Figure 18: Container provisioning latency as a function of various
function placement situations. For FAASNET and DADI+P2P, the
latency is normalized to that of provisioning a single container in
one VM in their own case.

with the inbound network transfer, again demonstrating the
efficacy of FAASNET’s block-level data streaming scheme.
Large-Scale Function Startup. In this test, we create
1,000 VMs and concurrently invoke 2,500 functions on them.
Each function uses a container of 428 MB and is configured to
run with 1024 MB memory. Each VM runs two or three func-
tions in this test. Figure 17 shows that all function containers
finish provisioning and start running between 5.1 second and
8.3 second, again demonstrating FAASNET’s superb scalabil-
ity. None of on-demand and DADI+P2P finishes the test due
to timeout errors.

4.4 Impact of Function Placement
We conduct a sensitivity analysis to quantify the impact of
function placement on container provisioning. In this test, we
concurrently invoke 8 functions on N VMs, where N varies
from 4 to 1. Each function has a different container (75.4 MB)
and is configured to use 128 MB function memory (since a
VM has 4 GB memory, it is allowed to host as much as 20
functions with 128 MB memory). We compare the container
provisioning latency between FAASNET and DADI+P2P. As
shown in Figure 18, DADI+P2P sees much higher latency
variation when 4 functions and 8 functions are placed on the
same VM, because DADI+P2P’s root VM is overloaded by
the establishment processes of many small layer trees.

4.5 I/O Efficient Data Format
We next evaluate how the I/O efficient format helps with code
package provisioning. We choose three functions: a simple,
Python-written HelloWorld function that sleeps for 1 second
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Figure 19: End-to-end invocation latency and code package size
comparison between I/O efficient format and .zip.

(Helloworld), an FFmpeg video encoding function (Video),
and a TensorFLow Serving function (AI), and compare FAAS-
NET’s I/O efficient format with the baseline .zip format.

Figure 19(a) plots the end-to-end function invocation per-
formance including the latency of code package downloading
and function duration. Our I/O efficient format performs the
same as .zip for Helloworld, since Helloworld’s code pack-
age has only 11 KB in size (Figure 19(b)). The I/O efficient
format achieves better performance compared to .zip for
Video and AI since the I/O efficient format fetches data on de-
mand rather than extracting all data as .zip does. Figure 19(b)
shows the code package sizes. Functions have a larger code
package size when using I/O efficient format, because I/O
efficient format’s compression incurs extra storage overhead.

4.6 On-Demand I/O: Sensitivity Analysis
Finally, we evaluate on-demand I/O and compare the impact
of block sizes on read amplification. With on-demand fetch-
ing, a FAASNET worker only needs to fetch enough layer
data blocks in order to start the function container. We choose
three different function container images: (a) a 195 MB hel-
loworld image with a Python 3.9 runtime pulled from Docker
Hub; (b) a 428 MB PyStan image based on an AWS Lambda
Python 3.8 base image; and (c) a 728 MB PyStan image based
on an Alibaba Cloud Python 3.8 base image.

As shown in Figure 20, on-demand fetching can reduce
the amount of data transferred via network. The reduction is
especially profound for image b and c, because base images
are dependency-heavy and are commonly used in the image
building process. For example, with a block size of 512 KB
(the block size configuration that we use in our evaluation),
on-demand fetching sees a 83.9% reduction in network I/Os,
compared to that of regular docker pull.

We also observe different levels of read amplification under
different block sizes. This is because the starting and ending
offset position is likely to be misaligned with the boundary of
the (compressed) blocks in the underlying block device, the
larger the block size is, the more useless data the FAASNET
worker may read from the starting and ending blocks. The
actual amount of data read (for starting a container) after
decompression is even smaller, indicating that most of the
dependencies included in the original container image is not
used at the container startup phase. Exploring optimization
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Figure 20: Amounts of data fetched (on-demand) as a function
of block sizes. Left-most bar in each bar cluster represents the
size of the original container image; right-most bar in each bar
cluster represents the actual amount of data read from the data blocks
fetched via network.

to reduce the read amplification is part of our future work.

5 Discussion
In this section, we discuss the limitations and possible future
directions of FAASNET.
FT-aware Placement. When the number of functions
grows, the contention of network bandwidth ensues. Though
§4.4 proves it less a concern in FAASNET than prior work,
for the sake of safety in production, we program the system to
avoid co-locating multiple functions if the cluster resources
permit. Anticipating a future demand increase of custom
containers, we plan to address the problem by extending the
container placement logic. The general goal is to balance the
inbound and outbound communication of each VM when mul-
tiple functions are being provisioned. Intuitively, by adjusting
container placement, we can control the number of FTs that
a VM is involved in and the role (e.g., leaf vs. interior node)
a VM serves, and thus the bandwidth consumption. A fur-
ther optimization is to co-locate functions that share common
layers, so they could reduce the amount of data transfer.
Multi-Tenancy. As mentioned, Alibaba Cloud achieves
strong, tenant-level function isolation using containers and
VMs. As such, our FaaS platform cannot share VMs among
tenants. This means that FAASNET’s FTs are naturally iso-
lated between different tenants. Porting FAASNET to other se-
cure and lightweight virtualization techniques [24, 45, 52, 57]
is our ongoing work.
FAASNET for Data Sharing. Technically, our work can
enable the sharing of container images among VMs through
P2P communication, There is potentiality for it to generalize
to a broader scope: data sharing for general container orches-
tration systems such as Kubernetes [27]. Such a need is aris-
ing in FaaS platforms with the emergence of data-intensive
applications, such as matrix computation [31, 51], data ana-
lytics [39, 49], video processing [26, 35], and machine learn-
ing [30, 38], etc. Most of them rely on a centralized storage
for data exchange, which is a similar bottleneck as the con-
tainer registry in our work. Hence we believe the design of
FAASNET can also accelerate data sharing, only with two
additional challenges: (1) how to design a primitive interface
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for users; (2) how to adapt the tree management algorithms
for more frequent topology building and change. We leave
the exploration as a future work.

Adversarial Workloads. Extremely short-lived functions
with a duration at sub-second level and sparse invocations
may be adversarial to FAASNET and custom-container-based
FaaS platforms. Function environment caching and pre-
provisioning [22, 48, 50] can be used to handle such work-
loads but with extra infrastructure-level costs.

Portability. FAASNET is transparent to both upper-level
FaaS applications and underlying FaaS infrastructure. It
reuses Function Compute’s existing VM reclaiming policy
and could be applied to other FaaS platforms without introduc-
ing extra system-level costs. Porting FAASNET to Alibaba
Cloud’s bare-metal infrastructure is our ongoing work.

6 Related Work
Function Environment Caching and Pre-provisioning.
FaaS applications face a notoriously persisting problem of
high latency—the so-called “cold start” penalty—when func-
tion invocation requests must wait for the functions to start.
Considerable prior work has examined ways to mitigate the
cold start latency in FaaS platforms. FaaS providers such as
AWS Lambda and Google Cloud Functions pause and cache
invoked functions for a fixed period of time to reduce the num-
ber of cold starts [22, 55, 56]. This would, however, increase
the TCO for providers. To reduce such cost, researchers pro-
pose prediction methods that pre-warm functions just in time
so that incoming recurring requests would likely hit on warm
containers [50]. SAND shares container runtimes for some or
all of the functions of a workflow for improved data locality
and reduced function startup cost [25]. SOCK caches Python
containers with pre-imported packages and clones cached con-
tainers for minimizing function startup latency [48]. PCPM
pre-provisions networking resources and dynamically binds
them to function containers to reduce the function startup
cost [46]. While function requests can be quickly served
using pre-provisioned, or cached, virtualized environments,
these solutions cannot fundamentally solve the issue of high
costs incurred during function environment provisioning.

Sandbox, OS, and Language-level Support. A line of
work proposes low-level optimizations to mitigate FaaS cold
start penalty. Catalyzer [34] and SEUSS [29] reduce the
function initialization overhead by booting function instances
from sandbox images created from checkpoints or snapshots.
Systems such as Faasm [53] and [28] leverage lightweight
language-based isolation to achieve speedy function startups.
Unlike FAASNET, these solutions either require modified
OSes [29, 34] or have limited compatibility and usability in
terms of programming languages [28, 53].

Container Storage. Researchers have looked at optimiz-
ing container image storage and retrieval. Slacker speeds
up the container startup time by utilizing lazy cloning and

lazy propagation [37]. Images are stored and fetched from
a shared network file system (NFS) and referenced from a
container registry. Wharf [61] and CFS [44] store container
image layers in distributed file systems. Bolt provides registry-
level caching for performance improvement [43]. These work
are orthogonal in that FAASNET can use them as backend
container stores. Kraken [16] and DADI [42] use P2P to ac-
celerate container layer distribution. These systems assume a
static P2P topology and require dedicated components for im-
age storage, layer seeding, or metadata management, which
leave them vulnerable to high dynamicity (demanding high
adaptability of the network topology) and unpredictable bursts
(requiring highly scalable container distribution).
AWS Lambda Containers. AWS announced the launch
of container image support for AWS Lambda [19] on De-
cember 01, 2020. Limited information was revealed via
a re:Invent 2020 talk [6] about this feature: AWS uses
multi-layer caching to aggressively cache image blocks:
(1) microVM-local cache, (2) shared, bare-metal server cache,
and (3) shared, availability zone cache. The solution, while
working for powerful, bare-metal server-based clusters that
can co-locate many microVMs [24], is not suitable for our
FaaS platform, which is based on thousands of small VMs
managed by Alibaba Cloud’s public cloud platform.
P2P Content Distribution. VMThunder uses a tree-
structured P2P overlay for accelerating VM image distribu-
tion [59]. A BitTorrent-like P2P protocol is proposed for
achieving similar goals [33]. Bullet uses an overlay mesh for
high-bandwidth, cross-Internet file distribution [41]. FAAS-
NET builds on these works but differs with a new design that
is attuned to the FaaS workloads.

7 Conclusion
Scalable and fast container provisioning can enable fundamen-
tal elasticity for FaaS providers that support custom-container-
based cloud functions. FAASNET is the first system that pro-
vides an end-to-end, integrated solution for FaaS-optimized
container runtime provisioning. FAASNET uses lightweight,
decentralized, and adaptive function trees to avoid major plat-
form bottlenecks. FAASNET provides a concrete solution that
is attuned to the requirements of a large cloud provider’s FaaS
platform (Alibaba Cloud Function Compute). We show via
experimental evaluation that FAASNET can start thousands
of large function containers in seconds. Our hope is that this
work will make container-based FaaS platforms truly elas-
tic and open doors to a broader class of dependency-heavy
FaaS applications including machine learning and big data
analytics.

To facilitate future research and engineering efforts, we
release the source code of FAASNET’s FT prototype as well
as an anonymized dataset containing production FaaS cold
start traces collected from Alibaba Cloud Function Compute
at: https://github.com/mason-leap-lab/FaaSNet.
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