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Abstract—We propose NSYNC, a practical framework to
compare side-channel signals for real-time intrusion detection in
Additive Manufacturing (AM) systems. The motivation to develop
NSYNC is that we find AM systems are asynchronous in nature
and there is random variation in timing in a printing process.
Although this random variation, referred to as time noise, is very
small compared with the duration of a printing process, it can
cause existing Intrusion Detection Systems (IDSs) to fail.

To deal with this problem, NSYNC incorporates a dynamic
synchronizer to find the timing relationship between two sig-
nals. This timing relationship, referred to as the horizontal
displacement, can not only be used to mitigate the adverse
effect of time noise on calculating the (vertical) distance between
signals, but also be used as indicators for intrusion detection.
An existing dynamic synchronizer is Dynamic Time Warping
(DTW). However, we found in experiments that DTW not only
consumes an excessive amount of computational resources but
also has limited accuracy for processing side-channel signals. To
solve this problem, we propose a novel dynamic synchronizer,
called Dynamic Window Matching (DWM), to replace DTW.

To compare NSYNC against existing IDSs, we built a data
acquisition system that is capable of collecting six different types
of side-channel signals and performed a total of 302 benign
printing processes and a total of 200 malicious printing processes
with two printers. Our experiment results show that existing IDSs
leveraging side-channel signals in AM systems can only achieve
an accuracy from (.50 to 0.88, whereas our proposed NSYNC
can reach an accuracy of 0.99.

Index Terms—side channel, intrusion detection, dynamic syn-
chronization, additive manufacturing, cyber-physical system

I. INTRODUCTION

Side channels are gaining popularity for intrusion detection
in Additive Manufacturing (AM) systems due to their non-
invasiveness and often air-gapped threat models [4], [5], [9],
[12], [13], [18], [27]. To perform intrusion detection in AM
systems, many existing Intrusion Detection Systems (IDSs)
compare an observed side-channel signal against a reference
signal point by point or window by window. For each pair
of points or windows, a distance is calculated between the
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Fig. 1: Side-channel signals for three printing processes using the same G-
code file and the same printer. The signals are aligned at the beginning. The
misalignment in the end is caused by time noise.

signals to determine if they are similar or not [4], [5], [9],
[12], [13], [18] (the acoustic layer in [4]), or a classifier can
be employed to determine whether the signals are alike or not
[4] (the spatial layer in [4]).

This approach to compare signals works well if the two
signals are aligned for every pair of points or windows. It
appears that when the same printing process is performed on
the same AM system, the timing should be the same. If this
assumption is true, when an observed signal is aligned with
a reference signal at the beginning, they should align at other
points. However, our experiments show that this assumption is
not true. Fig. 1 shows side-channel signals from three printing
processes with the same G-code file and the same printer.
Although the signals are aligned at the beginning, the signals
do not end at the same time.

AM systems are asynchronous. When executed multiple
times, the duration for the same instruction can vary slightly.
In addition, there can be random gaps between instructions.
This random variation in timing is referred to as time noise.
Time noise can be a result of frame drops in data acquisition
systems, mechanical and thermal delays in devices, and task
scheduling in operating systems (if equipped).

Time noise can invalidate any IDS that is based on com-
paring a side-channel signal against a reference signal point
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Fig. 2: Correlation distances of a benign process and a malicious
process. Due to time noise, the distances of a benign process are
very large, and even larger than the distances of a malicious process.

by point or window by window. When comparing two signals
that are out of alignment, the distances can become very large.
Fig. 2 shows the correlation distances of a benign process and
a malicious process. Without the consideration of time noise,
we can see that the distances of the benign process are as large
as the distances of the malicious process.

A practical IDS using side channels must be able to tol-
erate time noise. One approach to tolerate time noise is to
dynamically synchronize (or align) two signals, and an existing
method to do so is Dynamic Time Warping (DTW) [20], [22].
However, DTW does not natively support real-time operations,
consumes excessively computational resources, and has lim-
ited accuracy for side-channel signals in AM systems, as will
be demonstrated in Section VIII-E.

To overcome the problems of DTW, we propose a novel al-
gorithm called Dynamic Window Matching (DWM) to replace
DTW. DWM finds the timing relationship between two signals
by establishing a sliding window for each signal. As the pair
of windows slides across the signals, the relative displace-
ments (aka horizontal displacements) between the windows
are determined by Time Delay Estimation (TDE). To stabilize
the process, we introduce bias in the TDE process, and we
introduce inertial when adjusting the relative displacements
between the windows. DWM is a window-by-window algo-
rithm. In contrast, DTW is a point-by-point algorithm.

For a complete IDS, we propose NSYNC (Noise SYNC), a
framework to practically compare a side-channel signal against
a reference signal for real-time intrusion detection in AM
systems. NSYNC starts with two signals that are aligned
at the beginning. The horizontal displacements between the
two signals are then determined by either DTW or DWM.
A comparator then generates the vertical distances for each
pair of points or windows. Finally, a discriminator looks at
both the horizontal displacements and the vertical distances to
automatically determine if there is an intrusion.

In NSYNC, the thresholds are learned by One-Class Clas-
sification (OCC) [19]. In contrast, many existing IDSs either
use binary classification [4], [9], [27] (the spatial layer in
[4]) or magic numbers for thresholds [4], [5] (the acoustic
layer in [4]). Some existing IDSs do not have an automatic
decision module [12]. Binary classification requires knowing
the malicious processes in advance, which can be impractical
to achieve. In contrast, OCC does not require such knowledge.

To our best knowledge, we are the first one in the litera-

ture to consider time noise for side-channel based intrusion
detection for AM systems. Our contributions are as follows:

« We propose a novel algorithm, called Dynamic Window
Matching (DWM), to dynamically align two signals in
real time.

o We present NSYNC, a practical framework to compare
side-channel signals for intrusion detection in AM sys-
tems.

o We empirically demonstrate that signals to be compared
lose synchronization over time due to time noise, and, if
not compensated for, will cause inaccurate classification.

II. BACKGROUND INFORMATION

In this section, we introduce background information about
AM and side channels.

A. Additive Manufacturing

Additive Manufacturing (AM), also known as 3D printing,
refers to a manufacturing process where material is joined
together layer by layer to make objects directly from design
models [3]. The operation of an AM system is also called
printing and the machine where materials are joined together
is also called a printer. There are many types of AM systems.
This paper focuses on the most common type of AM systems,
namely Fused Deposition Modeling (FDM) [10].

AM systems are controlled by computers and typically
require programming to work. G-code is a common pro-
gramming language supported by almost all FDM systems.
G-code instructions specify the target coordinates and target
velocities of all movements in a printing process. However,
G-code instructions do not specify timing. An AM system has
freedom in determining the acceleration for any given G-code
instruction. As a result, it could take a slightly different amount
of time for the same instruction to be executed. In addition,
when a G-code instruction is sent to an AM system for
execution, the instruction is put into a queue. The AM system
is allowed to delay the execution of any instruction. As a
result, there can be random gaps between G-code instructions,
although this gap is typically very small.

B. Side Channels

Side channels are unintentional means of communication
by which information about a computer or a cyber-physical
system can be leaked to an outsider [8]'. Side-channel signals
are the carriers of information inside channels. AM systems
have a variety of side channels. For example, when an AM
system is printing an object, the system emits acoustic waves
[1], [15], [24] and electromagnetic waves (including quasi-
static electric fields and quasi-static magnetic fields) that can
be sensed to infer information about the printing process. The
acceleration of any moving part in the AM system can be mea-
sured by accelerometers to infer information about the printing

'In this paper, side channels exclusively refer to analog side channels. In
addition to analog side channels, there are other types of side channels, such
as cache in a shared memory system. In this paper, we are only concerned
with analog side channels.



process [4], [12]. Other examples of side channels in an AM
system include, but are not limited to, power consumption
measured by power sensors [13], [18], temperature measured
by thermometers, optical videos captured by cameras [12],
[27], and infrared videos captured by infrared cameras [11].

III. RELATED WORK

This section describes existing IDSs that use side channels
to perform intrusion detection in AM systems. We do not find
any existing IDS that is aware of time noise.

Chbhetri et al. came up with the idea of using the acoustic
side channel in a printing process to detect zero-day cyberat-
tacks on AM systems [9]. They first use machine learning to
estimate the velocities and positions of the nozzle by analyzing
the acoustic side-channel signal. Afterwards, they interpret
the G-code instructions to determine the intended velocities
and positions. Finally, the estimated velocities and positions
are compared against the intended ones to determine if there
is an intrusion. However, this method is not practical unless
the side-channel signal can be segmented with each segment
corresponding to a single G-code instruction. Currently, it is
not clear how to perform this segmentation.

Bayens et al. presented a method to compare an acoustic
side-channel signal against a reference signal window by
window with Dejavu, a music retrieval engine that is similar
to Shazam [26], to detect malicious infill patterns [4]. They
also presented a method to compare the position signal (the
position of the nozzle with respect to time) against a pre-
recorded reference signal layer by layer to detect intrusion.
However, they used binary classification in this process, which
requires knowing the malicious processes in advance.

Moore et al. proposed an IDS that observes electric currents
delivered to actuators, and compares the observed signal
against a pre-recorded reference signal point by point to detect
malicious activities [18]. As with other existing IDSs, this IDS
is not aware of time noise. In addition, the current sensors are
invasive. In fact, it is very hard to access the wire of motors
in many commercially available printers.

Later, Gatlin et al. improved Moore’s IDS [18] in two ways
[13]. On the one hand, the new IDS analyzes the electric
currents in the Z motor to determine the moments when a
layer change happens. On the other hand, instead of comparing
power side-channel signals directly, the new IDS first extracts
fingerprints of the power side-channel signals for each layer
and then compares the fingerprints. An intrusion is declared if
the layer changing moments differ from the expected values
by pre-determined thresholds, or the number of fingerprint
mismatches exceeds pre-determined thresholds.

Gao et al. presented a process monitoring system that ob-
serves multiple side-channel signals to safeguard AM systems
against cyberattacks [12]. Based on the observed signals, state
variables, such as the position and velocity of the nozzle,
the height of each layer, and the fan speed, are estimated.
Afterwards, the G-code file is interpreted to obtain the intended
state variables. The estimated state variables are compared
against the intended ones layer by layer, and the comparison
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Fig. 3: Threat model. An attacker attempts to maliciously modify the
G-code file in the network or the firmware in the printer. An air-
gapped intrusion detection system monitors the side-channel signals
in the printing process to determine if there is any attack.

results are displayed. There is no module in the IDS to
automatically determine if a printing process is benign or
malicious. To segment side-channel signals layer by layer,
they used a dedicated accelerometer on the printing bed to
determine the moments when a layer change happens.

Belikovetsky et al. presented an IDS based on the acoustic
side channel and the Principle Component Analysis (PCA) [5].
In this IDS, an acoustic side-channel signal is first transformed
into a spectrogram, which is then compressed by PCA into a
signal with only three channels [5]. The compressed signal is
compared against a reference signal (derived from a benign
printing process) to detect intrusion.

IV. THREAT MODEL

The threat model, as shown in Fig. 3, is similar to the threat
models found in [4], [5], [9], [12], [13], [18], [27]. In the threat
model, an AM system is manufacturing a functional object.
An attacker wants to compromise the structural integrity of
the printed object without being detected. We assume that the
attacker can either modify the G-code instructions to be sent
to the printer or the firmware of the printer. By modifying
the firmware, the printer behaves maliciously despite being
sent benign G-code instructions. The attacker knows how to
strategically modify the G-code or the firmware to weaken the
structural integrity of the object and let the object pass existing
quality checks, such as the attack demonstrated in [6].

In the AM system, an air-gapped IDS using side channels
is deployed. The IDS is composed of an analyzer, reference
signals, and sensors to observe side-channel signals. We as-
sume that the attacker cannot tamper with any element in the
IDS. The analyzer, essentially a digital computer, continuously
compares the observed signals against the reference signals.
If an observed signal is determined to be different from



its corresponding reference signal at any moment, then an
intrusion is declared and the IDS alerts AM operators, and
automatically stops the printing process if necessary.

Acquirement of Reference Signals. A reference signal
is a side-channel signal recorded from a benign process. A
challenge to obtain a reference signal is to ensure that it indeed
comes from a benign process. One way to do this is to subject
the printed object to stringent tests and if the printed object
passes the tests, the printing process can be considered benign
[5], [13]. An alternative way to obtain a reference signal is to
simulate a process with its G-code file [9], [12].

Requirements of Side Channels. In order for the aforemen-
tioned IDS to work, the selected side-channel signals must be
highly correlated with the state of the printer. On the one hand,
when the state of the printer is modified, this change should
be reflected in the side-channel signals. Otherwise, the IDS
will likely result in false negatives. On the other hand, when
the state of the printer is not altered, the side-channel signals
should remain almost the same. Otherwise, the IDS will likely
result in false positives.

V. SIGNAL PROCESSING FOR NSYNC

In this section, we introduce signal notation and Time Delay
Estimation (TDE). They are needed to understand NSYNC.

A. Signal Notation

A signal is denoted by x[n], where n = 0,1,--- ,N — 1
is the time index and N is the number of samples. Suppose
fs is the sampling frequency. Then, n corresponds to time
t = n/fs. The whole signal x[n],n =0,1,--- ,N —1 can be
simply denoted by .

For each time index n, x[n] is a vector of one or more
components. For example, the acceleration measured by an
accelerometer is a vector of three components (az,ay,a.).
Each component of x[n] as a function of n is defined as a
channel. The number of channels in x is denoted by C.

We use x[n, ] to refer to the nth sample at the cth channel,
where ¢ = 0,1,--- ,C — 1. We use x[n; : ns] to refer to a
slice of & from index n; (inclusive) to index no (exclusive).
We use [:, ¢] to refer to all samples at the cth channel.

B. Time Delay Estimation (TDE)

Suppose x and y are signals with finite samples and the
length of x is longer than that of y. Time Delay Estimation
(TDE) is a process to determine the best location of y in x,
assuming that y appears in  once. TDE is the prerequisite
of DWM, which will be introduced in the next section. One
way to perform TDE is the sliding method [7], [16].

The Sliding Method. Suppose the length of x is NV, the
length of y is N, (N, > N, ), and the number of channels for
both  and y is C'. One way to perform TDE is to compare
y against z[n : n+ N,] forn =0,1,--- , N, — N,,. For each
n, we measure the similarity between x[n : n + N,| and y
by a score s[n|. The similarity scores s[n| form a new array
with a length of N, — N, + 1. We have

S[n]:f(m[n:n+Ny]7y)7n:O71a”'7N:E_Ny7 (1)

where f is a function to calculate the similarity score, also
known as the similarity function.
Since a higher similarity score indicates more similarity, the
best location of y in x is given by
Ndelay = argmax s[n/, 2)
n
which means that y[0] corresponds to Z[nqelay]-
Similarity Functions. Suppose u and v are two 1-D vectors

of the same length V. One similarity function is the correlation
coefficient [17]

(u — p) - (v = )

T = ol ol @
where ||-||2 is the L2 norm operator and
1 N—-1 1 N—-1
fou = 35 ; u[n), o = ;) v[n]. (€))

The similarity function in Eq. (3) requires the two inputs
be 1-D, whereas x[n : n+ N,] and y are 2-D, unless C' = 1.
When C > 1, we calculate the similarity score between x[n :
n+ Ny, c] and y[:,c] for c=0,1,--- ,C —1, and average the
similarity scores across the channels. We found in experiments
that this approach can reach a relatively high Signal-to-Noise
Ratio (SNR) because it discards channel-wise information, and
focuses on time-wise information.

In NSYNC, we use the correlation coefficient as the default
similarity function.

VI. DYNAMIC SYNCHRONIZATION FOR NSYNC

Dynamic Synchronization (DSYNC) refers to any process
that continuously identifies corresponding points or windows
in two signals (a and b). DSYNC is needed when there is time
noise in a and b. In this section, we first discuss Dynamic
Time Warping (DTW), an existing method to perform point-
based DSYNC. We then discuss Dynamic Window Matching
(DWM), a novel method to perform window-based DSYNC.

A. Dynamic Time Warping (DTW)

Point-Based Comparison. Suppose a and b have been
aligned at the very beginning with a reasonable accuracy (not
necessarily perfect), and we want to compare a and b point by
point. One may calculate the distance between a[n] and b[n]
forn =0,1,---. However, due to time noise, the comparison
between a[n| and b[n] is meaningless since they may not be
corresponding points.

Overview of DTW. Dynamic Time Warping (DTW) is an
existing method to find the corresponding points between a
and b [22]. DTW requires a distance metric d(-, -) be provided,
and then outputs a list of tuples where a tuple (i, j) specifies
that a[i] and b[j] are corresponding points.

FastDTW. Due to the time complexity of DTW, a variation
of DTW, called FastDTW, is typically used [23]. FastDTW
requires an additional parameter called the radius. Because
FastDTW is an approximation to DTW, this parameter controls
the trade-off between speed and accuracy. We always use the



smallest radius for the fastest speed because it takes a very
long time to analyze side-channel signals by FastDTW. In this
paper, we simply use DTW to refer to FastDTW.

Online DTW. DTW requires knowing the whole a and the
whole b before they can be analyzed. In other words, DTW
does not support real-time analysis. Fortunately, there is an
ongoing effort to create a version of DTW that supports real-
time analysis [21].

Horizontal Displacement hg;s,. For a tuple (i,7), we
define j — ¢ as the horizontal displacement of b with respect
to @ at index i. In other words, we have hgipli] = j — 0. If
there are multiple tuples with the first index being ¢, such as

(7;7j1)7 (7:7j2)7 R (/La]KI)s we define
1 &
hasplil = 7= ;jk —i. (5)

B. Dynamic Window Matching (DWM)

Window-Based Comparison. Instead of comparing a and
b point by point, we can alternatively compare a and b window
by window. To be specific, we calculate the distance between
a{i} and b{:}, where

a{z} = a[i * Thhop * 7 Thop 1 nwin], (6)
b{i} = bli - nhop : ¢ - Nhop + Nwinl, 7)

i =0,1,--- is the window index, n;i, is the window width,
and nyep is the number of samples by which the windows
move forward each time. a{i} is referred to as the ith window
of a, whereas b{i} is referred to as the ith window of b. Due
to time noise, the comparison between a{i} and b{i} can be
meaningless, even if a[0] is aligned with b[0] perfectly.

Overview of DWM. To solve this problem, for each a{i},
instead of comparing it with b{i}, we attempt to find a better
window of b to compare with. Suppose such a window does
exist and it can be expressed by

b{l, hdisp [Z]} - b[l *Mhop + hdisp [Z] 1 Nhop + hdisp [7/} + nwin] (8)

where hg;sp[i] is referred to as the horizontal displacement of
b with respect to a at index ¢ and b{i; haisp[i]} is referred to
as the ith window of b with an offset of hgjsp[i]. The absolute
value of hg;sp 4] is the horizontal distance, denoted by hgiss[4].

Dynamic Window Matching (DWM) is a novel algorithm
to find the corresponding windows between a and b. The
core of DWM is to determine the best hqis, such that a{i}
corresponds to b{%; hqispi]}.

A Basic Algorithm to Find hgisp,. We present a basic
algorithm to find hgisp. For each window index ¢, we look
for a{i} in the vicinity of b{i}, as shown in Fig. 4. To be
more precise, we perform TDE to detect a{i} in

b{Z}E = b[’L * Mhop — Mext - i Nhop + Next + nwin}a &)

where next 1S a new parameter, called the extended window
size, and b{i}g is the extended ith window of b. Suppose
TDE returns a time delay of j. As a result, TDE thinks that
a{i} is aligned with b{i; j — next }. We then let

hdisp ['L] = ] — NMext- (10)
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Fig. 4: Illustration of the DWM algorithm. The abscissas are time
whereas the ordinates are signal values. A pair of sliding windows
are established on the signals to be compared. As the windows slide
across the signals, Time Delay Estimation (TDE) is used to determine
the relative timing relationship between the pair of windows.
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Fig. 5: Illustration of Time Delay Estimation with Bias (TDEB). For
each subfigure, the abscissa is time and the ordinate is explained in
the lower right box.

Extending the Range of hgis,. The basic algorithm to
find hgisp[i] might work well if the magnitude of the actual
haisp[i] does not exceed mexy. Otherwise, the algorithm will
definitely fail. This is because, according to Eq. (10), the range
of haisp[i] iS [—TNext, Next]. Hence, if the magnitude of the
actual hgisp[i] exceeds mexs, it is impossible for the basic
algorithm to return a correct hqisp[¢].

To solve this problem, we perform TDE to detect a{i} in
b{i; haisplt — 1]}E. Suppose TDE returns j. We then perform
the assignment

hdisp M =J — Next + hdisp [Z - 1]- (11)

For i = 0, we define hgisp[i — 1] to be 0.

Time Delay Estimation with Bias (TDEB). As shown in
Fig. 5, when a{i} is mainly composed of periodic signals,
multiple time delays could be returned by TDE with equal
probability. Similarly, when a{i} is mainly composed of noise,
TDE returns a random time delay. In a word, when a{i} is
periodic or noisy, TDE is unstable.

To solve this problem, we rely on the assumption that
haisp[i] should be close to hgisp[i — 1] most of the time. In
other words, j should be close to 7.yt most of the time.

When performing TDE, as an intermediate step, we obtain
a similarity array s[j], where j = 0,1, -+ ,2ne¢ — 1. To



increase similarity scores near j = neyy, we multiply the sim-
ilarity array by a Gaussian window with a standard deviation
of Ngigma and a length of 2ne, as shown in Fig. 5. We then
continue TDE with the modified similarity array. In this way,
we introduce bias towards j = next. When a{i} is periodic
or noisy, haisp[i] will be close to haisp[i — 1].

Low Frequency Component of hgis,. There is a new
problem after extending the range of hgjsp,. If, for any reason,
the estimated value of hqjsp[i — 1] deviates significantly from
its true value, it might cause hgisp [i] to deviate significantly
from its true value, which in turn causes further deviation in
haisp[i + 1], etc. In a word, the DWM process could run
away. To mitigate this problem, we obtain a low frequency
component of hgjsp, in the following way

1])7

where 7 is a parameter that controls how fast Aqgjsp 10w can be
affected by j — next. Now, we perform TDEB to detect a{i}
in b{i; haisp,low[i — 1] }&. Suppose TDEB returns j. We then
perform the assignment

hdisp,low [Z] = round(n(j - next) + hdisp,low [Z - (12)

hdisp [Z] = .7 — Next + hdisp,low [l - 1} (13)

The Final Algorithm to Find hgis,. The final DWM
algorithm is listed below, where TDEB|[f](«, y) is a function
that finds the time delay of y in = biased by a Gaussian
window with a standard deviation of ngigma-

IHPUt: a, b7 Nwins Thops Mexts Msigmas 7]
Olltpllt: hdjsp [Z],’L = 0, 1, s
1: Define hgisp as a vector that can increase in size.
2: Define hqisp 10w as a vector that can increase in size.
3: Add a special element hgigp 1ow[—1] = 0.
4:1=0
5: Wait for the printing process to start.
6: while the printing process is not over do
7. Wait for afi - npop : % - Mhop + Nwin| to be available.
8:  j = TDEB[ngigma)(
b[Z * Nhop — Next + hdisp,low [Z - 1] :
i Nhop + Next + hdisp,low [Z - 1] + nwin}s
a[l * Mhop * X Thop + nwin}
)
9: hdisp [Z] = .7 — Next T+ hdispJow [Z - 1]
10: hdisp,low [Z] = Yound(n(j - next) + hdisp,low [Z - 1])
1: i=i+1
12: end while
3: return  hg;gp

—

C. Parameters in DWM

In this section, we explore how the parameters in DWM
(Mwin> Mhop> Mexts Msigma, and 7)) affect the performance of
DWM and how each parameter should be selected for the
best performance. The five parameters are defined in terms of
indexes. The five parameters can also be defined in terms of
seconds. We define tywin = Nwin/fs» thop = Mhop/ fs» text =

Next/ fs, and tsigma = Nsigma/fs, Where fs is the sampling
rate of the side-channel signal.

Parameters t..; and tggma. As shown in Fig. 5, the ratio
text/tsigma controls the strength of the bias in TDEB, and
a higher value of tqy/ lsigma corresponds to a stronger bias
towards the center. When teys / tsigma < 1, the bias effect is not
significant. When text /tsigma > 1, the bias effect is significant
and the extended window size is effectively determined by
tsigma instead of texr. By default, we use text/tsigma = 2 for
two reasons. First, bias is desirable. Hence tey: /tsigma > 1.
Second, when eyt / tsigma > 93, to maintain the same effective
extended window size, increasing the ratio is tantamount to
increasing text. This merely increases the consumption of
computational resources without other effects. As a balance,
we choose text/tsigma = 2.

With fext/tsigma = 2, tsigma effectively determines the
extended window size. The influence of tggma On hgisp is
shown in Fig. 6 (a). To ensure a successful DWM process,
tsigma should be larger than the absolute difference of the
actual hgis, between any two consecutive windows. At the
same time, tsigma should not be too large, as it not only
requires more computational resources but also decreases the
accuracy of DWM as a wider search area has more distraction.

To select the best tsigma, We start with a large tggma and
obtain the maximum value of the absolute difference of hqisp
between any two consecutive windows. We select tgigma to be
a value that is larger than this maximum value.

Parameter t,.,. thop controls the temporal resolution of
hgisp. The maximum value of #nop iS twin Whereas the
minimum value of ¢yop, is 1/ fs. It is desirable to have a higher
resolution by choosing a smaller t},,,. However, the compu-
tational cost increases significantly as 1o, is reduced. As a
balance between computational cost and temporal resolution,
we choose thop = twin/2 by default.

Parameter ti,. twin iS the window size in the TDE
process. Fig. 6 (b) shows how i, affects hqisp. When tyin
is very small, there are a lot of spikes in hqisp. When tyiy, is
very large, the temporal resolution of hgsp, becomes lower.

In NSYNC, we obtain the best t;, by parametric analysis.
We sweep tywin from a small value to a large value and select
the tyin such that the change of the overall shape of hgjgp, is
the smallest with respect to tyin.

Parameter 7. Fig. 6 (c) shows how 7 affects hgisp. In
general, it is necessary to have a positive 7. For rare situations,
when 7 is close to 1.0, DWM could run away.

To select the best 1, we start with a small value of 7,
typically » = 0.1. If DWM is unable to converge, we can
crank up this value until DWM converges.

VII. DESIGN OF THE NSYNC FRAMEWORK

NSYNC is a framework of IDSs, and any IDS that conforms
to the general structure outlined in Fig. 7 can be considered
an instance of the NSYNC framework.

Overall Structure of NSYNC. Suppose the observed side-
channel signal a and the reference signal b are aligned at
the beginning of their printing processes. As shown in Fig.
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7, in an NSYNC IDS, a and b first goes through a dynamic
synchronizer to obtain the horizontal displacement array hgisp,
which describes the corresponding points or windows between
a and b. Afterwards, a and b goes through a comparator to
obtain the vertical distance array vgist. Finally, both hgis, and
Vqist are used by a discriminator to determine if @ and b are
significantly different at any moment. If so, an alert is issued.
In this following sections, we describe the components
in NSYNC respectively. The first component, the dynamic
synchronizer, has already been described in Section VI.

A. Comparator: Vertical Distance Calculation

Once the corresponding points or windows between a and
b are identified, a distance value can be calculated for each
pair of points or windows, which are further used by the
discriminator for intrusion detection.

Distance Metrics. Suppose u and v are 1-D vectors of the
same length IN. One distance metric is the correlation distance

(u— pu) - (v — o)
w— prall - [[v = poll
where ||-||2 is the L2 norm operator and j,, and p,, are defined

in Eqn. (4). The second term in Eq. (14) is in fact the Pearson’s
correlation coefficient between u and v.

d(u,v) =1- (14)

When v and v are 2-D vectors with the same length N
and the same number of channels C, as with the similarity
function in Section V-B, we can calculate the distance metric
along the time axis for each channel and then average the
distance metrics across the channels.

In NSYNC, we use the correlation distance by default.
There are many other distance metrics, such as the Manhattan
distance and the Euclidean distance. However, we do not
consider the two distance metrics because they are sensitive to
the overall amplitudes (aka the gains) of @ and b, and the gains
of many side-channel signals are susceptible to changes.> If
a distance metric that is sensitive to the gains of @ and b is
used in an IDS, the gains of a and b must be strictly controlled
(which can be very hard). Otherwise, the IDS will suffer from
a lot of false alerts.

Vertical Distance vgis;. If @ and b are synchronized by
DTW, we can calculate vq4;5; between a and b point by point.
Suppose (4, j) is a tuple returned by DTW, we define vq;st[i] =
d(ali], b[j]). If there are multiple tuples with the first index
being i, such as (4, j1), (¢,J2), - - , (¢, jx, ), we define

K;
vaiwli] = 7= > d(alil, blji]). (1s)
b k=1

If @ and b are synchronized by DWM, we can calculate
the vertical distances between a and b window by window.
Suppose a{i} is the ith window of a and its corresponding
window in b is b{i; haisp[é] }. We have

Vdist [Z] = d(a{z}, b{Z7 hdisp [7’]})

B. Discriminator: Automatic Intrusion Detection

(16)

The discriminator checks a and b in real time and automati-
cally determines if a is significantly different from b. If so, an

2For example, the amplitude of the acoustic side-channel signal strongly
depends on the distance from the microphone to the printer as well as the
gain of the ADC converter, both of which are susceptible to changes.
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intrusion is declared. The discriminator is composed of three
sub-modules. If any sub-module raises an alert, an intrusion
is declared. Each sub-module is discussed as follows.

Sub-Module 1: cgisp-Based Detection. This sub-module
checks hgisp to determine if a and b are successfully syn-
chronized. When DSYNC succeeds, hgisp contains a few
fluctuations, such as the benign process in Fig. 8 (b). In con-
trast, when DSYNC fails, hgisp, contains a lot of fluctuations,
such as the malicious process in Fig. 8 (b). To capture this
feature, we calculate the Cumulative Absolute Difference of
the Horizontal Displacement (CADHD)

caispli] = Y [Paispls] — haisplj — 1], (17)
j=0

where hgisp[—1] is defined to be zero. Fig. 8 (a) shows the
CADHD arrays for a benign process where DSYNC succeeded
and a malicious process where DSYNC failed. An intrusion
is detected at index ¢ if

Cdisp [Z] > Ce, (18)

where c,. is a critical value to be determined later.
Sub-Module 2: hg;s;-Based Detection. For hg;;, as shown
in Fig. 8 (b), an intrusion is detected at index ¢ if

hdist [Z] > h07 (19)

where h. is a critical horizontal distance to be determined.
Sub-Module 3: vg;s;-Based Detection. For vg;s, as shown
in Fig. 8 (c), an intrusion is detected at index i if

Vdist M > Ve, (20)

where v, is a critical vertical distance to be determined.
Suppressing Spikes. There are spikes in hg;st and vgiss due
to time noise and amplitude noise. The spikes could cause false

positives. To mitigate this problem, we filter hgjs; and vgist in
the following ways before Eq. (19) and Eq. (20) are applied:
i=0,1,---, (21)
7::0’17"'a (22)

haise, £ 1] = min(haist[i — 1 @ 7)),
Vadist, f[1] = min(vgis [t — n 2 7)),

where hgigt, s and vgise,y are filtered arrays and n is the
window size of the filter. By default, we use a window size
of 3 for both hgist and vgjst.

C. Learning Critical Values for the Discriminator

In this section, we describe a One-Class Classification
(OCC) scheme to determine the critical values c., h., and v,
in the discriminator. For this purpose, for one reference signal
b, we need to run the benign process M times and observe
the side-channel signals a,,, m = 0,1, --- , M — 1, where M
is the number of observed signals.

Suppose Cdisp,m, Pdist,m and vgis;,m are obtained by com-
paring a,, and b. Here, we assume that hgist m and Vgist,m
are the filtered horizontal distance array the filtered vertical
distance array respectively. We have

Ceom = m?x Cdisp,m [2]7 (23)
hc,m - m?x hdist,m[i], (24)
Veym = miax Udist7m[i]- (25)
The critical distances are determined by
Cc = MAaXCepp + T (max Ce,m — Min cc,m) , (26)
m m m
he = maxhy pm + 17 (max hh,m — min hh,m> , 27
m m m
Ve = MAX Vy,ym + T (max Vy,m — Min Uv,m) , (28)
m m m

The parameter r determines the False Positive Rate (FPR) and
the False Negative Rate (FNR). The higher the value of r,
the lower the FPR, but the higher the FNR. The value of r
depends on M, the sample size. To maintain the same FPR, r
gets smaller when M becomes larger. In NSYNC, we select
an r that results in a small FPR (< 0.05) for most scenarios.

VIII. EVALUATION

This section describes experiments to evaluate the perfor-
mance of NSYNC and existing IDSs.

A. Experiment Setup

Printers. We performed experiments on an Ultimaker 3
printer (UM3) and a SeeMeCNC Rostock Max V3 printer
(RM3). The UM3 printer is the most popular desktop 3D
printer [2], whereas the RM3 printer is a popular Delta printer.

Printing Processes. We selected a gear model with a
diameter of 60 mm and a thickness of 7.5 mm. For UM3, we
used Cura 4.4 as the slicer. For RM3, we used MatterControl
1.7.5 with MatterSlice as the slicer. For both printers, we used
the default setting with a layer height of 0.2 mm.

For each printer, the benign process was repeated 151
times. One benign process served as the reference. 50 benign
processes were used for learning the critical values. The other
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Fig. 9: Experimental setups. (a) Ultimaker 3 and various sensors, (b)
SeeMeCNC Rostock Max V3 and various sensors.

100 benign processes were used for testing. We manipulated
the benign G-code file in five ways to simulate five types of
malicious printing processes in the literature. All malicious
processes were used for testing. The details of the printing
processes for each printer can be found in Table L.

TABLE I: Printing Processes for Each Printer

B/M  Process Re. Description Ref.
Benign 1 This is used for the reference.
Benign 50  These are used for training.
Benign 100 These are used for testing.
Void 20 A void is inserted. [25]

InfillGrid 20
Speed0.95 20
Layer0.3 20
Scale0.95 20

Infill pattern is changed to grid. [4]

Printing speed is decreased by 5%. [12]
Layer height is changed to 0.3 mm. [12]
The object is shrunk by 5%. [25]

EEEEREWwEW

B/M = Benign or Malicious. Re. = Repetition (for each printer). All the
malicious processes are used for testing.

Side Channels. We used six different types of side channels
in the experiments and the details are in Table II. The locations
of the sensors are shown in Fig. 9. We installed the MPU9250
sensors on the printheads of the printers. SCT013 measured
the total AC currents delivered to the printers.

TABLE II: Types of Side Channels

D Side Channel Sensor fs (Hz) CHs Bits
ACC Acceleration MPU9250 4000 6 16
TMP  Temperature MPU9250 4000 1 16
MAG  Magnetic MPU9250 100 3 16
AUD Audio AKG170 48,000 2 24
EPT Elec. Potential AKG170* 96,000 1 24
PWR  Power/Current  SCTO013 12,000 1 24

EPT = Electric Potentials. CHs = Number of Channels. * The
AKG170 for collecting electric potentials was modified by removing
the cap, inspired by the method in [14].

Spectrograms. Many existing IDSs internally transform a
side-channel signal into a spectrogram before further pro-
cessing [4], [5], [13]. For other IDSs, including NSYNC, in
addition to comparing raw signals directly, we also compared
their spectrograms. For each side-channel signal, we obtained
its spectrogram via Short-Time Fourier Transforms (STFT)
[17] and the details are shown in Table IIl. The spectrogram
of a signal can be considered a new signal with a reduced
sampling rate and an increased number of channels.

TABLE III: Spectrograms for Side Channels

1D Af (Hz) At (s) Window CHs Bits
ACC 20 1780 BH 101 x6 16
TMP 20 1/80 BH 101 16
MAG 5 1720 BH 11 x3 16
AUD 120 17240 BH 201 x2 16
EPT 120 17240 BH 401 16
PWR 60 1/120 Boxcar 101 16

Af is the spectral resolution, which is equal to the reciprocal
of the window size (in seconds) in STFT. At is the temporal
resolution, which is equal to the time by which the window moves
forward each time in STFT. BH = Blackman-Harris.

Parameters for DWM. We selected the DWM parameters
according to the methods outlined in Section VI-C. The
parameters for UM3 and RM3 are listed in Table IV. These
parameters work well for a variety of side channels and
printing processes.

TABLE IV: Parameters in DWM

Printer twin thop text tsigma n
UM3 40s 20s 20s 10s 0.1
RM3 1.0s 05s 0l1s 005s 0.1

B. Consistency of Horizontal Displacements

Fig. 10 shows hg;s, obtained by six different side channels
and two different transformations (raw signals or spectro-
grams) for a particular benign process. We can see that hqisp
obtained by ACC and AUD are almost identical, regardless
of the transformation. Although hgis, obtained by the raw
signal of EPT does not make sense, hgis, obtained by the
spectrogram of EPT is almost identical to the hgjs, obtained
by ACC or AUD. In addition, although there appears to be a lot
of noise in hgisp obtained by MAG for both transformations,
the overall shape of the hgisp is the same as the overall
shape of hgjsp obtained by ACC or AUD. In contrast, hqisp
obtained by TMP and PWR are noise like, regardless of the
transformation.

The raw signal of EPT is mostly composed of a 60 Hz
power component, which is not correlated with the state of
the printer. In contrast, the spectrogram of EPT contains 401
channels and the 60 Hz power component is only one of them.
As all channels are treated with the same level of importance,
the influence of the 60 Hz power component is not prominent.

The consistency of hgisp across side-channel signals that
are highly correlated with the state of the printer indicates
that hgisp is a property of the printing process, not the side
channels. In the rest of the paper, we drop TMP and PWR
as they are weakly correlated with the state of the printer. In
addition, we also drop the raw signal of EPT but keep the
spectrogram of EPT.

C. Results for IDSs without DSYNC

This section presents evaluation results for IDSs which do
not contain any form of DSYNC.
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Fig. 10: hqisp obtained by six different side channels and two different
transformations (raw signals and spectrograms).

TABLE V: Results for Moore’s and Gao’s IDSs

P Side Moore’s Method Gao’s Method
Ch. Raw Spectro. Raw Spectro.
ACC 0.05/0.01 0.01/0.00 | 0.01/0.02 0.03/0.03

E MAG | 0.03/0.01 0.03/0.02 | 0.01/0.08 0.12/0.12

2 | AUD | 0.05/0.01 0.05/0.05 | 0.05/0.02 0.05/0.05
EPT 0.31/0.25  0.00/0.00 | 0.30/0.25 0.01/0.00
ACC 0.00/0.00 0.02/0.03 | 0.01/1.00 0.00/0.03

E MAG | 0.08/0.15 0.03/0.07 | 0.07/0.15 0.10/0.08

& | AUD | 0.00/0.00 0.00/0.00 | 0.00/0.00 0.00/0.02
EPT 0.18/0.21 0.09/0.36 | 0.31/0.37 0.00/0.13

P = Printer. Side Ch. = Side Channel. The result format is FPR / TPR,
where FPR = False Positive Rate and TPR = True Positive Rate. We
emboldened the results where the accuracy is at least 0.95. We grayed
(and dropped) results for the raw signal of EPT.

Moore’s IDS [18]. This IDS essentially compares a[n]| and
b[n] without DSYNC to obtain wgist[n] for n = 0,1,---,
where the distance metric is the Mean Absolute Error (MAE).
The IDS is originally designed for electric currents in motors.
However, we were not able to observe this type of side-channel
signals. Instead, we applied this IDS on available side-channel
signals. The results are shown in Table V.

Bayen’s IDS [4]. This IDS compares side-channel signals
window by window (90 s or 120 s for the window size).
This IDS first checks if the windows are in sequence. If not,
an intrusion is declared. It then checks the scores for each
window. If the score of any window is below a pre-defined
threshold, an intrusion is declared. However, there are no detail
on how to obtain the thresholds for a new printer in [4]. As
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TABLE VI: Detection Results for Bayens’ IDS

. Window | Overall | Sub-Module Results
Printer
Size (s) Results ‘ Sequence Threshold
UM3 90 1.00 /1.00 | 1.00/1.00 0.18/0.31
120 1.00 /1.00 | 1.00/1.00 0.10/0.18
RM3 90 0.51/1.00 | 0.51/1.00 0.07/0.97
120 0.30/1.00 | 0.29/1.00 0.04/0.63

Results are for AUD only. See Table V for more table notes.

a result, we used the OCC method in NSYNC to determine
the thresholds. We used » = 0.0 because the TPRs for the
threshold-based sub-module are very low. We only tested this
IDS on AUD as this IDS only supports the acoustic side
channel. The results are shown in Table VI.

Belikovetsky’s IDS [5]. This IDS applies the Principle
Component Analysis (PCA) to compress the number of chan-
nels of the spectrogram of the observed signal down to three.
Suppose the result is a. The reference signal goes through
the same process. Suppose the result is b. @ and b are then
compared point by point without DSYNC using the cosine
distance metric [5]. Suppose the result is vgijst. A window of
five seconds is used to calculate the moving average of vgjst.-
If the average distances of four consecutive windows drop
below 0.63, then an intrusion is detected. As with the Bayen’s
IDS, this method only supports the acoustic side channel. The
intrusion detection results are FPR/TPR = 1.00/ 1.00 for UM3
and FPR/TPR = 0.31 / 1.00 for RM3.

D. Results for IDSs with Coarse DSYNC

This section presents evaluation results for IDSs which align
the signals at the beginning of each layer. Since a layer can be
considered a huge window, this behavior can be considered as
a form of DSYNC, but on a coarse level. Nevertheless, these
IDSs are not aware of time noise.

Gao’s IDS [12]. This IDS is similar to the Moore’s IDS
except two aspects. First, a and b are synchronized at moments
when a layer change happens. Second, there is no discrimi-
nator in the Gao’s IDS. As a result, we use the discriminator
in NSYNC. We used r = 0.0 because the TPRs are very low.
The results are shown in Table V.

Gatlin’s IDS [13]. The details of this IDS can be found
in [13] or Section III. This IDS is originally designed for the
electric currents in motors and the layer changing moments
are determined by detecting activities in the currents in the
Z motor. Since we were not able to access the currents in
any motor, we obtained the layer changing moments manually,
and we applied this IDS to the side-channel signals that we
obtained. The detection results are shown in Table VII.

E. Results for IDSs with Fine DSYNC

This section presents results for IDSs which dynamically
synchronize signals to be compared on a fine scale. The IDSs
in this section are fully aware of time noise.

NSYNC/DWM. We evaluated NSYNC with DWM as its
dynamic synchronizer. We used r» = 0.3 in the OCC training



TABLE VII: Detection Results for Gatlin’s IDS

. Side Overall Sub-Module Results
Printer
Ch. Results Time Match
ACC 0.30/1.00 | 0.15/1.00 0.17/0.62
UM3 MAG | 0.53/1.00 | 0.16/1.00 0.44/0.38
AUD | 0.22/1.00 | 0.14/1.00  0.09/0.07
EPT 0.05/0.98 | 0.05/0.98 0.00/0.02
ACC 0.29/1.00 | 0.07/1.00 0.26/1.00
RM3 MAG | 0.17/1.00 | 0.05/1.00 0.12/1.00
AUD | 0.20/1.00 | 0.10/1.00  0.11/1.00
EPT 0.08/1.00 | 0.08/1.00 0.00/0.00

See Table V for table notes.

TABLE VIII: Detection Results for NSYNC with DWM

PlT Side Overall Individual Sub-Module Results
Ch. Results Cdisp hdist Vdist
ACC 0.02/1.00 | 0.00/1.00 0.02/0.64 0.00/1.00
g2 | MAG | 0.00/1.00 | 0.00/1.00  0.00/70.93  0.00/0.51
~ AUD 0.02/1.00 | 0.00/1.00 0.02/0.47 0.00/0.08
E EPT 0.00/0.06 0.00/0.06 0.00/0.00 0.00/0.06
= 5 ACC 0.02/1.00 | 0.00/1.00 0.02/0.73  0.00/0.80
£ | MAG | 0.01/1.00 | 0.00/1.00 0.01/0.87  0.00/0.56
;)si AUD | 0.02/1.00 | 0.00/1.00 0.02/0.83  0.00/1.00
EPT 0.00/1.00 | 0.00/1.00 0.00/0.52  0.00/1.00
ACC 0.00/1.00 | 0.00/1.00 0.00/0.80  0.00/1.00
z | MAG | 0.01/1.00 | 0.01/1.00  0.00/1.00  0.00/1.00
& | AUD | 0.00/1.00 | 0.00/1.00 0.00/0.57 0.00/1.00
E EPT 0.00/0.21 | 0.00/0.05 0.00/0.00 0.00/0.21
& S ACC 0.00/1.00 | 0.00/1.00 0.00/0.91 0.00/0.03
£ | MAG | 0.00/1.00 | 0.00/1.00  0.00/0.00  0.00/0.00
3::4 AUD | 0.00/1.00 | 0.00/1.00 0.00/0.91 0.00/1.00
EPT 0.00/1.00 | 0.00/1.00 0.00/0.63  0.00/0.00

T = Transform (on Signals). See Table V for more table notes.

process to bring down the overall FPR close to zero. The
detection results are shown in Table VIII. The column cgisp
shows the results if CADHD is used alone for intrusion
detection. Similarly, the columns hgisy and vgisy show the
results if hgist and vg;se are used alone respectively.

NSYNC/DTW. We evaluated NSYNC with DTW as its
dynamic synchronizer. We used r» = 0.3 to bring down the
overall FPR close to zero. We were not able to apply DTW on
the raw signals because it took forever for DTW to synchronize
them. The detection results are shown in Table IX.

In addition, we measured the average time it took to analyze
one second of the spectrograms of the side-channel signals for
both DWM and DTW. The results are shown in Fig. 11. We
can see that DTW is much slower than DWM, even if we used
FastDTW with the fastest configuration to implement DTW.

FE. Overall Comparison between IDSs

We define the accuracy of an IDS as the number of correctly
identified processes to the number of total processes. Since in
our experiments the number of benign processes is equal to the
number of malicious processes, we can calculate the accuracy
by [(1 — FPR) + TPR]/2.
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TABLE IX: Detection Results for NSYNC with DTW

PlT Side Overall Individual Sub-Module Results
Ch. Results Cdisp hgdist Vdist
S ACC | 0.02/1.00 [ 0.02/1.00 0.00/1.00  0.00/0.00
E £ | MAG | 0.10/0.26 | 0.08/0.04  0.10/0.24  0.00/0.00
=) ;)si AUD | 0.06/1.00 | 0.06/1.00 0.06/1.00 0.00/0.00
EPT 0.04/0.24 | 0.00/0.00 0.00/0.22  0.04/0.04
S ACC | 0.02/0.40 | 0.02/0.40 0.02/0.40 0.00/0.00
E £ | MAG | 0.00/0.40 | 0.00/0.40  0.00/0.40  0.00/0.00
[~ ;& AUD | 0.00/1.00 [ 0.00/0.90 0.00/1.00 0.00/0.00
EPT 0.00/0.00 | 0.00/0.00 0.00/0.00 0.00/0.00
T = Transform (on Signals). See Table V for more table notes.
UM3 RM3
= DWM = DWM
. 0.61 a1 pTW 1z pTwW
2
< 0.4 -
[
£
" 0.2 .
0.0 B
ACC MAG  AUD EPT ACC MAG  AUD EPT

Fig. 11: Average time it took for DWM and DTW to dynamically
synchronize one second of the spectrograms of the side-channel
signals. This is also known as the time ratio. The results were
averaged over the side channels.

Figs. 12 show the average accuracy for all IDSs that we
evaluated. The results were averaged over all printers, all types
of side channels, and all transformations (except the raw signal
of EPT). As we can see in Fig. 12, as the level of DSYNC
increases from none to fine, the overall accuracy of the IDSs
increases. Any IDS labeled with the symbol “T” in Fig. 12
means that the IDS uses time as an indicator for intrusion
detection. By analyzing the results of sub-modules in Tables
VIII and IX, we can see that time is a more effective indicator
than amplitude for intrusion detection.

IX. CONCLUSION

This paper presents NSYNC, a practical framework of IDSs
that leverage side-channel signals in AM systems. The primary
motivation to propose NSYNC is that we noticed the existence
of time noise in AM printing processes, which can invalidate
existing IDSs. In addition, many existing IDSs require full
knowledge of malicious printing processes in advance, which
can be impractical. NSYNC addresses the time noise problem
by using Dynamic SYNChronization (DSYNC) and uses One
Class-Classification (OCC) for automatic intrusion detection,
which does not require knowledge of malicious printing pro-
cesses at all.

An existing method to perform DSYNC is Dynamic Time
Warping (DTW). However, our evaluation results show that
DTW is not suitable for analyzing side-channel signals in AM
systems because DTW not only has limited accuracy but also
consumes an excessive amount of computational resources.
Our newly proposed method, Dynamic Window Matching
(DWM), can successfully overcome the problems of DTW.
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Fig. 12: Average accuracy of seven different IDSs in our evaluation.
The symbol T means that the IDS uses time as an indicator for
intrusion detection.

In the experiments we performed, NSYNC/DWM can achieve
an accuracy of 0.99, beating NSYNC/DTW and all existing
IDSs that use side-channel signals in AM systems.
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