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ABSTRACT. This paper concerns cup product pairings in étale coho-
mology related to work of M. Kim and of W. McCallum and R. Sharifi.
We will show that by considering Ext groups rather than cohomology
groups, one arrives at a pairing which combines invariants defined by
Kim with a pairing defined by McCallum and Sharifi. We also prove a
formula for Kim’s invariant in terms of Artin maps in the case of cyclic
unramified Kummer extensions. One consequence is that for all inte-
gers n > 1, there are infinitely many number fields over which there are
both trivial and non-trivial Kim invariants associated to cyclic groups

of order n.
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1. Introduction

This paper concerns cup product pairings in étale cohomology which un-
derlie an important case of the arithmetic Chern-Simons theory introduced
by M. Kim in [4] as well as a pairing in Galois cohomology studied by Mc-
Callum and Sharifi in [6]. Our interest in these pairings arises from the
search for new numerical invariants of number fields which pertain to the
higher codimension behavior of Iwasawa modules (see [1]).

Suppose F' is a number field and Op is its ring of integers. Let X =
Spec(OF) and let p, be the sheaf of n-th roots of unity in the étale topology
on X. The pairing connected with Kim’s work is the natural cup product
pairing

invy,

(1.1) HY(X,Z/n) x H2(X, pi) — H3(X, up,) Z/n
in étale cohomology when inv,, is the invariant map isomorphism (see [5, p.
538]).

Suppose F' contains the multiplicative group fi,, generated by a primitive
n-th root of unity, and let G be an abstract finite group acting trivially on
fn = pn(X). Let m1(X,n) be the étale fundamental group of X relative to
a fixed base point 1. Then 71 (X, n) is the Galois group of a maximal every-
where unramified extension of F. Suppose c is a class in H*(G, fi,,), and let
f:m(X,n) — G be a fixed homomorphism. Then f*c € H3(m1(X,n), fin)
defines via Cech cohomology a class fxc € H3(X, ptn,). Kim’s invariant in
[4] in the unramified case is

(1.2) S(f,c) =inv,(fxc) € Z/n.

In the ramified case, one replaces X by the complement X’ of a non-empty
finite set of closed points of X. One must then take a different approach,
since H3(X', j1,,) = {0}; see [4]. We will return to the ramified case in a later
paper.

One way to compute (1.2) is to employ the pairing (1.1). Namely, consider
the diagram of pairings

(1.3) HYG,Z/n) x HYG,p,) — H3G, i)

s s E

HY(X,Z/n) x HX(X,pn) — H3X,u,)
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in which the vertical homomorphisms are induced by f. Picking classes
c1 € HY(G,Z/n) and ¢z € H3(G, fi,,) such that ¢ U ¢y = ¢, the pairing (1.1)
leads to a way to compute

(1.4) S(f0) = fx(e) U fx(ca).

The McCallum-Sharifi pairing, on the other hand, is defined using Galois
cohomology. It was defined in [6] using the cup product pairing

(1.5) H' (Grs, fin) x H (Grs, fin) = H*(Grys, i)

when S is a finite set of places of F' containing all the places above n and
all real archimedean places, and Grs is the Galois group of the maximal
unramified outside S extension of F'.

A pairing which incorporates both Kim’s invariant for G = Z/n and the
McCallum-Sharifi pairing is the cup product Ext pairing

(1.6) Exty (Z/n, pn) x Ext% (Z/n, pn) — Ext%(Z/n, u2?).
To explain this, consider the exact sequence
0=Z 57— Z/n—0

induced by multiplication by n. The long exact Ext sequence associated to
this sequence leads to a diagram

(1.7) 0 0 0

HO(X, 1) H'(X, 1) H2(X, u$?)

Exty (Z/n, pn) x BExti(Z/n,u,) — Ext%(Z/n,u$?)

HY (X, ) x H(X ) —= HYX p3?)

0 0 0

in which the vertical sequences are exact and the pairings in the second and
third rows are given by cup products. Note that we have natural isomor-
phisms

(1.8) H' (X, ) = H'(X, Z/n) ® fi?

for all 4,5 > 0 since fi,, = H’(X, ) has order n by assumption.
We show the following result in §2.
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Theorem 1.1. The cup product in the bottom row of (1.7) can be used to
compute Kim’s invariant via (1.3), (1.4) and (1.8). This pairing is compat-
ible with pushing forward the cup product in the middle row of (1.7). The
cup product pairing

(L9) HY (X, p) x H' (X, 1) > H2(X, 2

is compatible with the McCallum-Sharifi pairing, which results from (1.5),
via the natural inflation maps HY(X, u,) — H(GFps, fin). The pairing (1.9)
arises from the pairing in the second row of (1.7) by the natural pull back
and push forward procedure. Namely, suppose o € HY(X, p,) pulls back to
& € Exty(Z/n, py) in the first column of (1.7), and that 8 € HY (X, u,) has
boundary 08 € Ext3(Z/n, p,) under the first vertical map in the second
column of (1.7). Then

(1.10) daUB) = —(aUdp)

where on the left O is the boundary map H?(X, u®?) — Ext3(Z/n, u2?) in
the third column of (1.7).

Note that the minus sign on the right side of (1.10) comes from the def-
inition of the differential of the total complex of the tensor product of two
complexes.

Another pairing in Galois cohomology that is related to Kim’s invariants
and different from the McCallum-Sharifi pairing is described in Theorem
1.15 below.

In [3], H. Chung, D. Kim, M. Kim, J. Park and H. Yoo showed how to
compute Kim’s invariant by comparing local and global trivializations of
Galois three cocycles. Using this method they construct infinitely many
examples in which the invariant is non-trivial and the finite group involved
is either Z/2, Z./2 x Z/2 or the symmetric group Sy.

Our next results use a different approach than [3] in the unramified case.
When G is cyclic we prove in Theorem 1.3 below a formula that determines
the invariant using Artin maps. One consequence of Theorem 1.3 is the
following result. This shows that there are infinitely many number fields F’
over which there are both trivial and non-trivial Kim invariants associated
to cyclic groups of order n. The methods of this paper carry over mutatis
mutandis to the case of global function fields provided n is prime to the
characteristic of the field.

Theorem 1.2. Suppose n > 1 is an integer, G = Z/n and that ¢ is a
fized generator of H3(G, fin). Then there are infinitely many totally complex
number fields F for which there are cyclic unramified Kummer extensions
K1/F and Ko/F with the following property. Let f; : m(X,n) — G for
i =1,2 be the inflation of an isomorphism Gal(K;/F) — G. Then

(1.11) S(fi,¢) =0 and S(fz,c)#0.
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To state our formula for Kim’s invariant in terms of Artin maps, let
f:m(X,n) = G = Z/n be a fixed surjection. Let ¢; € HY(G,Z/n) =
Hom(G,Z/n) be the identity map, and let ca generate H%(G, ji,). Then
¢ = ¢1 Ucy generates the cyclic group H3(G, fi,,) of order n. We wish to use
the diagram (1.3) to calculate S(f,c) = fx(c1) U fx(c2).

The element f%(c1) € H(X,Z/n) factors through an isomorphism

Gal(K/F) - G=1Z/n
for a cyclic unramified extension K/F of degree n which we will use to
identify Gal(K/F') with G = Z/n.
Using the exact sequence of multiplicative groups

(1.12) 1= fp > K - K - K'/(K")" > 1

associated to exponentiation by n on K* we will show that there is an exact
sequence

(1.13) F* — (K*/(K*)™)GEE) s H2(Gal(K/F), fin) — 1.

Let v € K* be such that v(K*)" € (K*/(K*)")¢ has image cs in
H2(Gal(K/F), in) = H3(G, fin)

under the homomorphism in (1.13).

Theorem 1.3. The OF ideal Normg, p(v)OF is the n-th power I" of a
fractional ideal I of F. The ideal class [I] of I in the ideal class group
Cl(Or) of Of depends only on ca and is n-torsion. Let Art : Cl(Op) —
Gal(K/F) = G = Z/n be the Artin map associated to K/F. Then Kim’s
invariant of the class c=c1 Ucy € H3(G, fin) 1S

(1.14) S(f,¢) = fx(e) U fx(ea) = Art([1]) € G = Z/n.

Note that in this result, the input is f and ¢, from which one determines
K and 7. Conversely, we now show how one can start with a cyclic unram-
ified degree n Kummer extension K/F and then use this to determine an f
and ¢y for which (1.14) holds.

For the remainder of the paper we fix the following choices.

Definition 1.4. Let (, be a primitive n-th root of unity in F. If m is a

divisor of n, we let (,, = Z;/m.

Theorem 1.5. Suppose K/F is an everywhere unramified cyclic degree n
Kummer extension of number fields. By the Hasse norm theorem, (, =
Normpgp(x) for some x € K. By Hilbert’s Theorem 90, x™ = o(y)/y for
some y € K and a generator o for G = Gal(K/F). For all such y, there is
a fractional Op-ideal J such that Normg, p(y)Or = J". Let ¢; : G — Z/n
be the isomorphism sending o to 1 mod n. Let v =y in Theorem 1.3, and
let co € H2(G, fin) be the image of v(K*)™ under (1.13). Then cy generates
H2(G, jin), J is the ideal I of Theorem 1.3 and S(f,c) is given by (1.14)
when ¢ = c1 U ¢.
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This theorem leads to the following result concerning the functorality of
Kim’s invariant under base extensions.

Corollary 1.6. Suppose F' is a finite extension of F' which is disjoint from
K, andlet K' = F'K be the compositum of F' and K. The ideal I' associated
to K'/F" by Theorem 1.5 may be taken to be IOp:,. Kim’s invariant for
K'/F' is the image of the invariant for K/F under the transfer map

VerK//K : Gal(K/F) — Gal(K’/F’)
when we identify both of these Galois groups with Z/n.

Theorem 1.5 gives the following criterion for the non-triviality of Kim’s
invariant for cyclic unramified Kummer extensions.

Corollary 1.7. With the notations of Theorem 1.5, the following are equiv-
alent:
(i) The invariant S(f,c) is trivial for all f : m(X,n) - G = Z/n
factoring through Gal(K/F) and all ¢ € H3(G, fi,).
(ii) [J] is contained in Normg/r(Cl(Ok)).
(iii) The image of [J] under the Artin map Art : Cl(Or) — Gal(K/F)

s trivial.

We now describe another way to find an element v € K with the properties
in Theorem 1.3. This method will be used to show Theorem 1.2.

Theorem 1.8. Let f: 11 (X,n) - G =7Z/n = Gal(K/F) be as above with
c1: G — Z/n the identity map.
(i) There is a cyclic degree n® estension L/F such that K C L. This
extension is unique up to twisting by a cyclic degree n extension of
F, in the following sense. Write L = K(’yl/”) for some Kummer
generator . If L' is any other cyclic degree n? extension of F which
contains K, then L' = K(y'Y/™) for some ~' € ~v - (K*)" - F*, and
conversely all such ~' give rise to such L.
(ii) The coset v(K*)™ of K*/(K*)" is fized by the action of Gal(K/F).
Let ¢y € H2(Gal(K/F), ji,) = H%(G, jin) be the image of v(K*)"
under the boundary map in (1.13). The formula in (1.14) deter-
mines S(f,c) when c is the generator ¢y U ca of H3(G, uy).
(iii) Suppose the ideal I of Theorem 1.3 has the form I =1I'-J" for some
fractional ideals I' and J' of O such that any prime in the support
of J' is either split in K or unramified in L/K. Then

(1.15) S(f.¢) = fx(e1) U fx(e2) = Art([I']) € G =Z/n.

This description leads to the following corollaries, which we will show lead
to a proof of Theorem 1.2.

Corollary 1.9. Suppose K/F is contained in a cyclic degree n? extension
L/F such that every prime P of Op which ramifies in L splits completely
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in K. Then S(f,c) =0 for all surjections f : m(X,n) — Gal(K/F) =G =
Z/n and all c € H3(G, fip,).

Corollary 1.10. Suppose K/F is contained in a cyclic degree n® extension
L/F with the following properties. There is a unique prime ideal P of Op
which ramifies in L/F, P is undecomposed in L and the inertia group of P
in Gal(L/F) is Gal(L/K). Furthermore, the residue characteristic of P is
prime to n. Then S(f,c) is of order n for all surjections f : m(X,n) —
Gal(K/F) = G = Z/n and all generators c of H3(G, fin,).

Remark 1.11. These corollaries explain the examples of [3, §5.5] in the
following way. Let n = 2, and let F' = Q(y/—pt) where p is a prime such
that p = 1 mod 4 and ¢ is a positive square-free integer prime to p. Let K
be F'(y/p). Then K is contained in the unique cyclic degree 4 extension L of
F contained in F'(fi,). The unique prime P over p in F' is the unique prime
which ramifies in L. The examples in [3, §5.5] arise from Corollaries 1.9 and
1.10 because P splits in K if and only if ¢ is a square mod p since —1 is a
square mod p.

The following two results give examples in which our results show that
Kim’s invariants are trivial, where (, € F' is fixed as in Definition 1.4.

Theorem 1.12. Suppose n is a properly irregular prime in the sense that n
divides #CI(Z[(,]) but not #CUZ[C, + ¢, 1)), If K is any cyclic unramified
extension of F' = Q((,) then S(f,c) = 0 for all surjections f : m(X,n) —
Gal(K/F) =G =Z/n and all ¢ € H3(G, fi,).

Theorem 1.13. Suppose thatn > 2 is prime and K/ F is a cyclic unramified
Kummer extension of degree n such that both K and F are Galois over Q.
Then S(f,c) = 0 for all surjections f : m1(X,n) - Gal(K/F) =G = Z/n
and all c € H3(G, fiy,).

Remark 1.14. Note that in Theorem 1.12, n does not divide [F' : Q]. One
can also construct many examples of Theorem 1.13 in which [F' : Q] is prime
to n. However, the examples we will construct in Theorem 1.2 in which
Kim’s invariant is non-trivial all have n|[F : Q]. It would be interesting to
find examples in which Kim’s invariant is non-trivial when n is prime and
[F': Q] is not divisible by n.

We now describe a pairing in Galois cohomology that is different from the
McCallum-Sharifi pairing and that gives rise to Kim’s invariants.
Define

(1.16) T(F) = {a € F* : F(a"™)/F is unramified}.

Suppose a € T(F) and b € O%.. The field K = F(a'/") is a cyclic Kummer
extension of degree m dividing n. Since K/F is unramified, and b € O},
we have b = Normg/p(z) for some x € K*. Let o € Gal(K/F) be the

unique generator such that o(a'/")/a'/™ = ¢, = ;‘/m, where (, € F is as
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in Definition 1.4. Since Normg, p(2™/b) = 1, there is an element v € K*
such that 2™ /b = o(v)/v. Since K/F is unramified and b € O3, the ideal
Normg, p(val/™)Op equals I™ for some fractional ideal I of Op. We define

(1.17) (@,b)n = [I] ® Cm € CLOF) 7 fin

where [I] is the ideal class of I in C1(Op). The value (a, b),, does not depend
on the choice of ¢, in Definition 1.4.

Theorem 1.15. Suppose K = F(a'/™) has degree n = m over F for some
a € T(F). Let o € G be the generator such that o(a'/™)/a'/™ = ¢, and set
b = (. Fiz an isomorphism c¢1 : G = Gal(K/F) — Z/n by letting 0 € G
correspond to 1 € Z/n. Then as above, b = Normg p(x) for some z € K*
and /b = 2™ /C, = o(v)/v for some v € K*. When y = va'/™, the coset
y(K*)™ lies in (K*/(K*)™)Y, and its image under the homomorphism in
(1.13) is a generator co € H*(G, jin). Let ¢ = c1 Ucy € H3(G, fin). There is
a unique homomorphism

K Cl(OF) Q7 oy, — Z/n
which sends [J]®(, to Art([J]) € G = Z/n for all fractional ideals J of Op.
Kim’s invariant S(f,c) is given by
(1'18) S(f» C) = "{((aa Cn)n)
when (a, (p)p, s the pairing defined by (1.17).

By contrast, the McCallum-Sharifi pairing is defined in the following way.
Let S be the union of set of places of F' which have residue characteristics
dividing n with the real places. Let Cr g be the S-class group of F'. In [6,
§2] McCallum and Sharifi define a pairing

(1.19) (,)s:T(F)xOp — (Cprs/nCrs) ® fin.
See also [8] for further discussion.

Remark 1.16. Here is an example for which the following three statements
hold:

(i) Kim’s invariant S(f,c) in (1.18) is not trivial.

(ii) The McCallum-Sharifi pairing value (a, (,)s in (1.19) is trivial.

(iii) The homomorphism Cl(Or) — CF g is an isomorphism.
Let n =2, G = Z/2 and ¢, = —1. Define F' = Q(y/—pt) for some prime
p = 1 mod 4 and some square-free t > 0 such that ¢ is not a square mod p and
—pt = 5mod 8. When K = F(,/p) and a = p, Remark 1.11 shows (i). Since
2 is inert to F, (iii) holds when S is the set of places of F' over 2. Finally
(ii) follows from the formula in [6, Thm. 2.4] since (2 = —1 = Normg,r(¢)
when € is a fundamental unit of Q(,/p) C K.

Acknowledgements. We would like to thank the authors of [3] for sending
us a preprint of their work, which led to our correcting some errors in an
earlier version of this paper. We would also like to thank Romyar Sharifi and
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Roland van der Veen for many very helpful conversations and suggestions
about this work. After this paper was written, Theorem 1.3 as well as other
pairings related to Kim’s invariant have been investigated further in [2]. The
authors would like to thank the referee for very helpful comments.

2. Proof of Theorem 1.1

We assume in this section the notations of Theorem 1.1. We will use the
results of Swan in [9] concerning cup products. In [9, §3], Swan considers
cup products of covariant left exact functors. This can be used to define the
cup product pairings in the middle and bottom rows of (1.7). Namely, in
the category of sheaves in the étale topology on X, let

02U 2T 512 513 -
and
0=V T 5T =TT —

be pure injective resolutions. Then the total complex Z°®* ® J* is a pure, but
not necessarily injective, resolution of U ® V. Let

00UV K - K =K = K2 — -
be a pure injective resolution, and choose a morphism of resolutions
I*®J*—K*

over U® V. For étale sheaves A, B on X, the composition of the morphisms

Homx (A,Z°) ® Homx(B,J°*) — Homx(A® B,I°® J°*)

— Homx(A® B,K*)
then induces a cup product pairing
Extly (A, U) x Exth (B, V) = Ext{7(A® B,Ua V)

(see [9, Thm. 3.4, Lemma 3.6 and §7]). Given morphisms of étale sheaves
C—-ABandU®V — T, we get
(2.1) Extiy (A, U) x Ext% (B, V) — Ext” (C,T).

The first statement in Theorem 1.1 is that the cup products in the middle
and bottom rows of (1.7) are compatible with the vertical homomorphisms
from the terms of the middle row to the terms of the bottom row. The latter
homomorphisms are those associated to the natural morphism Z — Z/n of
étale sheaves on X, since H (X, u,) = Ext’ (Z, u,) and the terms of the
middle row have the form Ext’ (Z/n, ui,). So the above compatibility of the
middle and bottom rows follows from the naturality of the cup product (2.1)
with respect to morphisms of the arguments. Note that in showing this, we
have not used any compatibility of cup products with boundary maps; the
latter requires more hypotheses.

We now turn to analyzing the connection of the cup product pairing (1.9)

HY (X, pin) x HY (X, ) = H2 (X, o)
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with the diagram (1.7). We are to prove that this is compatible with pulling
back and pushing forward arguments to the second row of (1.7).

By the naturality of cup product pairings with respect to either argument,
we have a commuting diagram of pairings

(2.2) Exty (Z/n, pn) x HYX,pu,) — BExt%(Z/n,pu2?)

| |

H' (X, ) x HY(X,pn) —  HA(X,p3?)

in which the left and right vertical homomorphisms are induced by the
canonical surjection Z — Z/n. We claim that the top row of this diagram
fits into a diagram of pairings

(2.3) Exty (Z/n, pn) X HY (X, pn) ——  Ext%(Z/n, u2?)

| 5

Exty (Z/n, pn) x Exti(Z/n,u,) — Ext3(Z/n,ud?)

that commutes up to the sign (—1) and in which the middle vertical map is
the boundary map resulting from the sequence

(2.4) Be=(0—B"-B—-B -0)=0—-2"2%7—7Z/n—0)

and the right vertical map is the boundary map associated with the Bock-
stein sequence

(25) Co=(0—=C"=C—=C =0)=(0—Z/n—Z/n* = Z/n—0).

Let A = Z/n. We have a morphism Co — A® B, fitting into a commutative
diagram

0

(2.6) Z/n Z/n ——~7/n 0

ARB' — A B— A B ——=0

]

0 c” C C’ 0

0 Z/n Z/n? Z/n 0.

Choosing pure injective resolutions ,un —> 7* and p®? — K* and a morphism
of resolutions Z® ® Z® — K*® over u2?, we can apply the respective Hom
functors over X to the diagram (2.6) to obtain the commutative diagram in
Figure 2.1. It follows from [9, Lemma 3.2] that the diagram (2.3) commutes
up to the sign (—1).
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o o
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Fi1GURE 2.1. The diagram resulting from applying appropri-
ate Hom functors over X to the diagram (2.6).
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In view of diagrams (2.2) and (2.6), the last assertion (1.10) of Theorem
1.1 concerning the relation of (1.9) to the pairing in the middle row of (2.3)
will hold if we can show the following assertion. We claim that the rightmost
vertical homomorphism

A Ext}(Z/n, u$%) — Exty(Z/n, uZ)

in (2.3), which is induced by the boundary map of the Bockstein sequence
C, in (2.5), is the composition of the pullback map
P Bt (Zfn, 15?) — HA(X, u8?)

n

associated to Z — Z/n with the boundary map
v HY(X, ui?) = Ext% (Z/n, ;%)

associated to the sequence B, in (2.4).

This assertion (and the more general fact, which holds in all degrees) can
be proved by calculating A and v o 7 using a pure injective resolution of the
second argument, which in this case is u£2. To be explicit, let

0—u?2 oK 5K - K2 = K2 — -

be a pure injective resolution. The boundary map A results from taking el-
ements of Homx (Z/n, K?) which go to zero in K3, lifting these to elements
of Homy (Z/n?,K?) by the injectivity of K2, and then pushing this lift for-
ward by K2 — K3 to produce an element of Homy (Z/n,K?). The map 7
results from simply inflating a homomorphism in Hom y (Z/n, K?) to one in
Homy (Z,K?) via the natural surjection Z — Z/n. The map v results from
lifting maps from Hom x (Z, K?) to Hom y (Z, K?) through the multiplication
by n homomorphism Z — Z and then pushing the lift forward by K2 — K3
to produce an element of Homx (Z/n,K3). Since we can use the lifts in-
volved in calculating A to do the calculations to find v on maps which come
from the inflation map 7, we see that A =v o 7.

3. A reformulation of the approach via Artin maps

We describe in this section our approach to proving Theorem 1.3. Instead
of the diagram of pairings (1.3), we consider the diagram of pairings
(3.1)

HY(G, fin) x H*(G, i) — H(G, 3% = (G, fin) @ fin
lf}? lf} if}?
Hl(X» pn) X HZ(X’ pn) —>= Hs(X» N%Q) = HS(Xa fin) @ fin, = fin

in which the vertical homomorphisms are induced by f. Let ¢ : Z/n — fi,
be the isomorphism taking 1 mod n to (,, where (, € F' is as in Definition
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1.4. Then ¢ takes the generator ¢; of HY(G,Z/n) to a generator d; = ¢(c1)
of HY(G, fi,).-We have
¢(fx(0) = o(fx(c)U fx(e2)) = fx(p(er)) U fx(c2)
= fx(d1)U fx(c2).

We will show (1.14) of Theorem 1.3 by calculating the cup product of f¥(d;)
and f% (c2) using Mazur’s description in [5] of the bottom row of (3.1).

4. Analysis of f%(d:)
Lemma 4.1. There is a canonical isomorphism
HY(X, pt,) = Hom(Pic(X), fin).

The restriction of a class d € H' (X, uy,) to H(Spec(F), iu,) defines a torsor

Y (d) for the group scheme p, over Spec(F'). The scheme Y (d) is isomor-

phic to Spec <(§L[7;”]§)> as a fuy-torsor for an element & € F* which is unique

up to multiplication by an element of (F™*)".

Proof. Our choice of a primitive n-th root of unity (, in F' gives an iso-
morphism of étale sheaves from Z/n to p,. This induces an isomorphism
from H' (X, i1,) to H'(X,Z/n). The group H!(X,Z/n) classifies torsors for
the constant group scheme Z/n. Therefore

HY(X,Z/n) = Hom(m(X),Z/n) = Hom(Pic(X),Z/n)
where the last isomorphism results from class field theory. Thus

HY (X, pun) = HYX,Z/n) @z fin
= Hom(Pic(X),Z/n) Qg fin
= Hom(Pic(X), fin)

and the isomorphism between the far left and far right terms does not depend
on the choice of (,,. The last statement is clear from Kummer theory over
fields of characteristic 0; see [7, p. 125, Thm. 3.9]. O

Remark 4.2. Suppose the class d € H'(X, u,,) has order n. Then Y (d) =
Spec(K) for an everywhere unramified Z/n extension K = F(£/7) of F
for an element £ € F* as in Lemma 4.1. Associating d canonically to a
homomorphism d : Pic(X) — [, as in Lemma 4.1, the element ¢ has the
property that

Art(a)(€"/")
gl/n
where Art(a) € Gal(K/F) is the image of a € Pic(X) under the Artin map.

The equality (4.1) does not depend on the choice of n-th root £/" of ¢ in
K. Tt specifies the class of £ uniquely in the quotient group F*/(F™*)™.

(4.1) =d(a) for all a € Pic(X)
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Lemma 4.3. The Pontryagin dual H*(X,Z/n)* = Hom(H?(X,Z/n),Q/7Z)
of H2(X,Z/n) lies in an evact sequence

(4.2) 1 — 03/(03)" =5 H2(X, Z/n)* 25 Pic(X)[n] — 0

in which Pic(X)[n] is the n-torsion in Pic(X). Define T to be the subgroup
of v € F* such that yOp is the n-th power of some fractional ideal 1(7y).
Then there is a canonical isomorphism

(4.3) T/(F*)" = H*(X,Z/n)*
with the following properties.

(i) The homomorphisms T and § in (4.2) are induced by the inclusion
O} C T and the map which sends v € T to the ideal class [I(y)] of
I(y).

(i) The homomorphism h : HY(X, un) — H2(X,Z/n)* induced by the
cup product pairing

HY(X, p,) x H*(X,Z/n) — H3(X, p,) = Z/nZ

has the following description. Suppose d € H' (X, uy,) gives a puy,
torsor Y (d) over Spec(F') as in Lemma 4.1. Let £ € F* be associ-
ated to Y(d) as in Lemma 4.1, so that € is unique up to multipli-
cation by an element of (F*)". Then £ € T, and h(d) is the coset
E(F*)™ in T/(F*)" = H3(X, Z/n)*.

Proof. The exact sequence (4.2) is shown in [5, p. 539]. This utilizes
Artin-Verdier duality (c.f. [5, p. 538]), which gives a canonical isomorphism
H2(X,Z/n)* = Ext%(Z/n,Gp.x). The more precise description in (4.3),
together with properties in (i) and (ii) of this description, results from the
analysis of Ext%(Z/n,G,, x) and the computation of duality pairings by
Hilbert symbols in [5, p. 540-541]. O

Corollary 4.4. Suppose dy is a generator of H(G, fin). The class d =
fe(d1) € HYX, ) corresponds to a py,-torsor Y(d) = Spec(K) over
Spec(F) such that K = F(¢/™) of F for an element & € F* with the follow-
ing properties.

(i) The extension K/F is everywhere unramified and cyclic of degree n.
Fizing an embedding of K into the maximal unramified extension
F"™ of F determines a surjection p : Gal(F"™/F) = m(X,n) —
Gal(K/F).

(ii) There is a unique isomorphism A : Gal(K/F) — G = Z/n such that
Aop:m(X,n) — G is the homomorphism f : m(X,n) = G used
to construct Kim’s invariant.

(iii) The element & € F* is uniquely determined mod (F*)™ by the re-
quirement that (4.1) hold when we identify d with an element of
Hom(Pic(X), fin,) as in Lemma 4.1.

(iv) The image of d = f%(d1) under the homomorphism h : HY(G, fin,) —
H%(G,Z/n)* = T/(F*)" of Lemma 4.3 is the coset (F*)™.
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5. Hilbert pairings, Artin maps and H?(X, u,,)
With the notations of §3, our goal is to compute the cup product

(5.1) Fx(dr) U fx(ca) = h(fx (d1))(fx(c2)) € fin
when ¢; is a generator of H?(G, fi,,), f%(c2) is the pullback of ¢y to H2(X,, )
and h(f%(dy)) is the element of the Pontryagin dual H?(X, Z/n)* determined
in Corollary 4.4. To do this, we first develop in this section a description of
H%(X, ) = H3(X,Z/n) ® ji,, using ideles of F.

Let j : Spec(F') — X be the inclusion of the generic point of X into X.
Then jupin F = pin,x since F' contains a primitive n-th root of unity. There
is a spectral sequence

(52) Hp(X7 Rj, (:un,X» - Hp+q(F7 :uTL,F)'

Consider the (p,q) = (2,0) term. This is associated to the restriction ho-
momorphism

(5.3) H?(X, R%ji (110 x)) = H2(X, pin.x) — B2(F, pin ).
By the Kummer sequence
(5-4) 0= ptnr = Gur = Gup — 0

and Hilbert’s Theorem 90, the homomorphism H?(F, i, r) — H2(F, Gy r)
is injective. The composition of H?(X, uy, x) — H%(F, pi5, r) with this homo-
morphism factors through the homomorphism H?(X, y, x) — H?(X, G x).
However, elements of H*(X, G, x) are elements of the Brauer group of F'
with trivial local invariants everywhere since F' is totally complex, and such
elements must be trivial. Thus H?(X, Gy, x) = {0} and it follows that (5.3)
is the zero homorphism. Hence the spectral sequence (5.2) gives an exact
sequence

(5.5) HY(F, ptn, ) — HY(X, RYjuptn) == H2(X, i, x) — 0.

The homomorphism w can be realized in the following way (up to possi-
bly multiplying by —1, depending on one’s conventions for boundary maps
in spectral sequences). Taking the long exact sequence associated to the
functor j, applied to (5.4) gives an exact sequence

(5.6) 0= pinx = j«Gmr = §sGm.r — R'jupinr — 0

since R'j,Gp, r = 0 by Hilbert’s Theorem 90. Splitting (5.6) into two short
exact sequences and then taking boundary maps in the associated long exact
cohomology sequences over X produces the transgression map w in (5.5) up
to possibly multiplying by —1.

We now recall from [7, p. 36-39] some definitions.

Definition 5.1. Let z be a point of X with residue field k(z). Define
O = Ox; to be the local ring of x on X. Let T be a geometric point of X
over z, so that k(Z) is a separable closure of k(z). The Henselization O,
of O (resp. the strict Henselization O, s, of Oy) is the direct limit of all of
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all local rings D (resp. D’) which are étale O,-algebras having residue field
k(z) (resp. having residue field inside k(z)). Let O, be the completion of
O, and let O} be the direct limit of all finite étale local OI algebras having
residue field in k(x).

The following result is implicit in [5], but we will recall the argument since
the details of the computation enter into some later calculations.

Lemma 5.2. Let x be a point of X, and let T be a geometric point over x.
The stalk (R'j.pn)lz of Rjupn at T is the cohomology group HY(Fy s, pin),
where Fy s, = F @0, Og sn. The Kummer sequence

1= pup > Gn—> Gy —1

over Fy g, is ezact. The Gal(F 1/ Fy sn) cohomology of this sequence gives
an isomorphism

(5.7) Fy an/ (Fan)" = B (Foshy pin) = (R jupin)

This group s trivial if x is the generic point of X. Suppose now that x is
a closed point, with residue field k(x). We then have natural isomorphisms

Gal(Fy on/Fyp) = Gal(k(x)/k(z)) = 7, where Fpn=F ®0, Oz sn. One has

(5.8) HO(Gal(Fyon/ Fun)s (R jepin)lz) = F /Ty

where F = FYac(Ox) is the completion of F' with respect to the discrete abso-
lute value at x and T, D (F)" is the subgroup of v € F such that Fy(v"/™)
is unramified over Fy. Here T,/((E,)*)" is cyclic of order n. Finally, we
have
(5.9)
HO(Xa le*ﬂn,F) = @ HO(Gal(Fm,sh/Fw,h)a (le*ﬂn)|f) = @ F;/Tx
zeX0 zeX0

where XO is the set of closed points of X.

Proof. The isomorphism (5.7) results from the description of stalks of
higher direct images in [7, Thm 1.15] together with the long exact coho-
mology sequence of the Kummer sequence over Fj o,. If x is the generic
point of X, then F}, 4, is an algebraic closure of F' and the groups in (5.7)
are trivial. Suppose now that x is a closed point. We then have two exact
sequences

(5.10) 1= iy — F;f,sh = ( ;f,sh)” -1
and
(5.11) L= (Fyap)" = Fogn = Frgn/(Frgp)” — 1.

Taking the cohomology of the second exact sequence (5.11) with respect to
I' = Gal(Fy o1/ Fyp) = Gal(k(x)/k(z)) and then taking completions gives
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an exact sequence
(5.12) 0 = ((Fm))M" = g = (Fy ./ (Fr g)™)"
— HYT, (FF )" — HY T, FF ) =0

x,sh T

where F™ is the maximal unramified extension of the complete local field
F,. The I'-cohomology of the first exact sequence (5.10) gives

(5.13) 0=HNT, F} ;) — H(T, (F ,)") = H*(T, fin).

x,sh

The cohomology of finite modules for I' = 7 is trivial above dimension 1. So
(5.13) shows HY(T, (Frgp)") = 0. In (5.12), the group ((Fm)*yM)T consists of
those v € 7 such that Fj(yY/™) is unramified over F, so ((F')*)™)F' = T3,.
Hence (5.12) now shows (5.8).

Now R!j,u, has trivial stalk over the generic point of X, and units are n-
th powers locally in the étale topology over all closed points € X having
residue fields prime to n. We conclude from (5.6) that R!j,ju, r is the sheaf
resulting from the direct sum of the stalks (R'j.uy)|z as o ranges over X,
from which (5.9) follows. O

Corollary 5.3. The ezact sequence (5.5) is identified with

(5.14) F* /(P )" L @ Fp/Te = HX(X, ) — 0.

zeX0
Proof. By the Kummer sequence over F we have H(F, u,,) = F*/(F*)". If
B € F*, then F( 1/ ) is unramified at almost all places of F', so 5 € T, for all
but finitely many z € X°. Thus the natural homomorphisms F* — F /T,

give rise to a homomorphism r as in (5.14), and the constructions in Lemma
5.2 identify r with the first map in (5.5). O

Lemma 5.4. Suppose that in the description H?(X,Z/n)* = T/(F*)" of
Lemma 4.3 we are given an element n € T describing a class n(F*)" €
T/(F*)". Let j € J(F) be an idele of F such that the component j, of
j at almost all x € X° lies in Ty, so that j defines an element z(j) of
Bpexo(FF/Ty). Corollary 5.3 produces an element w(z(5)) of H?(X, uy).
We have H2(X, p,) = H3(X,Z/n) ®7, fin, and thus a natural non-degenerate
pairing
(5.15) () HA(X,Z/n)* x BA(X, pin) = fin
resulting from the Pontryagin duality pairing

H*(X,Z/n)* x H*(X,Z/n) — Z/n.
The value of the pairing in (5.15) on the pair n(F*)"™ and w(z(j)) s

(5.16) (n(F)" w(z(4))) = Art(5) (/™) /n*"
where Art(j) is the image of j under the Artin map J(F) — Gal(F2P/F)
when F2> > F(n/™) is the mazimal abelian extension of F.
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Proof. This follows from reducing the computation of duality pairings to
the computation of Hilbert symbols, as in [5, §2.4-2.6]. Here is one way to
carry this out explicitly.

We have a long exact relative cohomology sequence

(5.17) H'(X,Z/n) — H'(X — V,Z/n) — H2 (X, Z/n) — HX(X,Z/n)
<3 HY(X - V,Z/n) — H3(X,Z/n) 2 H3(X, Z/n)

associated to a choice of a finite non-empty set V of closed points of X which
is discussed in [5, §2.5].

Suppose we take V' large enough so that Pic(X — V) = 0 and all of the
residue characteristics of points of X — V' are relatively prime to n. Then
the Kummer sequence

1— Hn,X-V — Gmyxf\/ — Gm,XfV —1
is exact. So

HY(X = V,Gpx—v) =Pic(X - V) =0
implies H2(X — V, 1, x—v) equals the n-torsion in the Brauer group H?(X —
V, G, x—v). This n-torsion has order n#V =1 by the usual theory of elements

of the Brauer group of F' which are unramified outside of V. By local duality
(c.f. [5, p. 540, 538]),

HY (X, Z/n) = ] i
Pev
Global duality gives
H*(X,Z/n) = Ext&(Z/n,G) = fif.

By considering the orders of these groups, we see that the map b in (5.17)
has kernel exactly H?(X — V,Z/n), so the map e is trivial.
By local duality (op. cit.) we have

HY (X, Z/n) = [] (Op/(0p)")".
PV

Using these isomorphisms in (5.17) and taking Pontryagin duals gives an
exact sequence
(5.18)
0 — H*(X,Z/n)* — [] 03/(0p)" - H(X - V,Z/n)* — H'(X, Z/n)*.
PeV
By class field theory,
H'(X,Z/n) = Hom(Cl(OF),Z/n)
and
HY(X — V,Z/n) = Hom(Cly,, (OF), Z/n)
when Cl(Op) = Pic(Op) is the ideal class group of Op and Cl,,, (OF) is

the ray class group of conductor my for my a sufficiently high power of the
product of the prime ideals of O corresponding to P € V.
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Thus (5.18) becomes

7Clo (OF)  nCl(OF)

(5.19) 0—H*(X,Z/n)* — [] Op/(O5)" —
PeVv

where the right hand homomorphism is induced by the canonical surjection
Cly,,, (OF) = Cl(OF).

Now in (5.14), since H(X, py,) is finite, we can take V as above sufficiently
large so that there is a surjection
(5.20) B Fp/Tr - (X, ) = 0.

pPevcXxo

The compatibility of local and global duality pairings shows that pairing
H2(X, Z/n)" x H2(X, tn) = fin
in (5.15) results from (5.19), (5.20) and the pairings

05  Fp
5.21 L x P i
(5.21) Ouy < Tp = fin
induced by the Hilbert pairings
F F
(5.22) F P i

= X —=
(Fp) (Fp)"
Note here that (5.21) is non-degenerate since (5.22) is non-degenerate and

Tp/(F%)" corresponds by class field theory to the unique cyclic unramified

extension of degree n of Fp.
This description of (5.15) leads to (5.16) by the compatibility of the Artin
map with Hilbert pairings. U

6. Analysis of f}(c2)

Our goal now is to compute the cup product in (5.1) using Lemma
5.4. We have a reasonable description of h(f%(d1)) € H*(X,Z/n)* from
Corollary 4.4 in terms of a Kummer generator £ € F for the pu,-torsor
Y (f%(d1)) produced by the generator d; € HY(G, fi,) and the homomor-
phism f : 7m(X) — G. Recall that we assumed f to be surjective, and we
know K = F (¢ 1/ ") is a cyclic degree n Kummer extension which is every-
where unramified over F'. In this section we must develop an expression for
[ (c2) € H3(X, ) when ¢y is a generator for H%(G, fi,,). This will then be
used in Lemma 5.4.

Consider the exact sequences of G = Gal(K/F')-modules

(6.1) 1=y = K" — (K)"—>1
and

(6.2) 1= (K" — K* — K*/(K*)" — 1.
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Lemma 6.1. The composition of the boundary maps in the long exact G-
cohomology sequences associated to (6.1) and (6.2) gives an exact sequence

(6.3) F* — (K*/(K*)")Y = H(G, fin) — 0.

Here H2(G, fi,) is cyclic of order n. So there is an element v € K* such
that the coset v(K*)" is in (K*/(K*)™)%, and the image of this coset in
H2(G, fin) equals the generator cs.

Proof. Since G is cyclic, the map H%(G, fi,) — H?(G, K*) is the cup prod-
uct with a generator of H2(G, Z) of the map H°(G, fi,) — H°(G, K*) of Tate
cohomology groups. Since K/F' is everywhere unramified, every element of
i is a local norm. Hence every element of fi, is a global norm from K to
F because K/F is cyclic. Therefore HY(G, fi,) — H°(G, K*) is the trivial
map, so H?(G, ji,) — H2(G, K*) is the trivial map. Because H' (G, K*) = 0,
the G cohomology of the exact sequences (6.1) and (6.2) gives (6.3). O

Lemma 6.2. With the above notations, the extension K(yY™) is a cyclic
degree n? extension of F which contains K. There is an idele j = (j,), of
J(F) with the following properties. If v is an infinite place of F, j, = 1.
Suppose v is finite and that v corresponds to the closed point x of X. Then
for all places w of K above v, the images of j, € Fyy = F and v € K* in
[ % % Ge _ 1
(Fx,sh/( :E,sh)n) - Fa: /Tﬂ?
agree for any embedding of K,, into F%Sh over F,. Let ord, : F; — 7Z be the
discrete valuation associated to v. Then ord,(Normgp(v)) lies in nZ, and
there is a congruence of integers
ord, (Normg,p (7))

(6.4) = ordy(jy) = ordy(y) mod n,Z
n

when n, is the order the decomposition group G, C G = Gal(K/F) of any
place w over v in K and ord,, : K} — Z is the discrete valuation associated
to w. Finally, in the notation of Lemma 5.4, for all such j the element

w(z(4)) € HA(X, pin) equals f3(c2).

Proof. Since y(K*)" lies in the invariants (K*/(K*)")¢ and G = Gal(K/F)
is cyclic, the extension K (y/") is abelian over F. Since v(K*)" has image
of order n in H%(G, fi,,), it must define an element of K*/(K*)" of order n.

So K (yY/™) is a cyclic degree n extension of K.
By Kummer theory,

K*/(K*)" = Homeon (Gal(K ™ /K), i)
and
F*/(F*)" = Homeon (Gal(F™ /F), fi,)

when K is the maximal abelian exponent n extension of K and F(™ is
defined similarly for F'. The natural homomorphism F*/(F*)" — K*/(K*)"
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corresponds to the map
Homon (Gal(F™ /F), fi,) = Homeon (Gal(K™ /K), i)

which results from restricting continuous homomorphisms from Gal(F ™) /F)
to Gal(F(™ /K) and then inflating them to Gal(K( /K). The image of

is thus contained in the set H of those elements of Homont (Gal( K (n) JK), fin)
which are inflated from elements of the group Homeon (Gal(F™ /K), fi,).
Let us show that this image is precisely H. It is enough to show that any
continuous homomorphism Gal(F(™ /K) — fi,, can be extended to a contin-
uous homomorphism Gal(F™ /F) — fi,,. This is so because the sequence

1 — Gal(F™/K) — Gal(F™ /F) - Gal(K/F) — 1

splits owing to the fact that Gal(F(™ /F) is an exponent n abelian group
and Gal(K/F') is isomorphic to Z/n.

In view of (6.3) and the above discussion of Kummer theory, ~(K*)"
corresponds to a homomorphism h : Gal(K(™/K) — fi, such that the
smallest power of h which is in H is the n-th power of h. This means that
the compositum F™ K (’yl/ ™) is a cyclic degree n extension of F (") where
K c F. Now K(y'/") is an abelian extension of F of some exponent m
with n‘m‘nQ. If m # n?, then T' = Gal(K (v/")/F) would have a subgroup
H such that I'/H has exponent n and H has exponent m/n < n. Now
K(yY/™H is an exponent n abelian extension of F, so K(y"/™)# < F™,
But then

[FOE Y™ FW) < [K(Y™) : KV = H <n

contradicting the fact that F(")K(’yl/”) is cyclic of degree n over F(™). Thus
K(yY™)/F must be an exponent n? abelian extension of F, so in fact it is
a cyclic extension of degree n? of F.

Suppose now that z is a closed point of X corresponding to a finite place
v of F. As in the proof of Lemma 5.2, let O, 4, be the strict Henselization
of the local ring O, of x on X. Define F, s, = F' ®0, Oy sn- We know that
Y is etale over x so the local ring O, of each such y lies inside O, 4,. Thus
the completion K, of K at each place w over v lies inside the completion
Fz,sh of Fy sp. Fix a place w(v) of K over v and choose any embedding of
Ky vy nto Fz,sh over F, = F,. The fact that G permutes the places w of K
over v leads to a sequence of homomorphisms

(6.5)  (K*/(K*)")% —= (@) (K /(K5)")"

(B / (B ) )Y ) — (B g/ (B )™
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when G, = Gal(Fy s,/ Fy ). However, in Lemma 5.2 we showed that the
right hand side of (6.5) is just F*/T, = F*/T,. So we can choose the local
component j, associated to v to come from v € K in the way described in
Lemma 6.2. At infinite v we can certainly choose j, to be trivial. Now the
fact that v(K*)"™ has image f%(c2) in H3(X, uy,) together with the construc-
tion of Corollary 5.3 shows w(z(j)) = fx(c2).

It remains to show the congruence (6.4) for each finite place v of F. A
uniformizer of F, is one for Fx,sh and for K. Hence we have

(6.6) ordy(jy) = ordy(y) mod nZ

from the above construction of j, from ~.

We now fix a place w(v) over v in K. Since y(K*)" lies in (K*/(K*)")¢
we know that for each place w over v in K there is an integer t(w) such
that ordy, () = ordy ) (v) + nt(w). Since each K, is an unramified cyclic
extension of F;, of degree n,, we have

ord, (NOI‘Hle/Fv (’Y)) =T (Ordw(v) (’Y) + nt(w))

Hence

ord,(Normg p (7)) = ZOl"dv(NOI"mKw/Fv(’Y))

wlv

= Z Ty (Ordw(v) (’7) + nt(’LU))

wlv

= (O nu)-ordyw () +nny Y tHw)

wlv wlv

(6.7) = n-ordye)(y) +n-n, Zt(w).

w|v

Since w(v) was an arbitrary place of K over v, dividing (6.7) by n and using
(6.6) completes the proof of the congruence (6.4). O

7. Proof of Theorem 1.3

We will adopt the notations of Theorem 1.3. Thus G = Z/n and ¢; is
a generator of H'(G,Z/n) = Hom(G, Z/n) given by the identity map. The
element co generates H2(G, fi,) and ¢ = c1 U co. In Definition 1.4 we picked
a particular primitive n-th root of unity (,. Let ¢ : Z/n — [, be the
isomorphism sending 1 mod n to (,. Then di = ¢ o ¢; is a generator of
HY(G, ji,). Write K = F(¢Y/™) as in Corollary 4.4 for an element ¢ € F*
which is determined mod (F*)" by f%(d1) € HY(X, pn) = Hom(Pic(X), fin).
We have an isomorphism Gal(K/F) — G = Z/n determined by f*(c1) :
m1(X,n) = Z/n. We will use this isomorphism to identify Gal(K/F) with
G = Z/n in what follows. The element £ € F' is the Kummer generator for
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K as an everywhere unramified cyclic extension of F' for which
Art(a) (£ "
e = oata) = fx(n(@
for a € Cl(Of) = Pic(X), where Art : Cl(Or) — Gal(K/F) is the Artin
map for K/F.

The element of H2(G, Z/n)* = T/(F*)" associated to d; by Corollary 4.4
is the coset {(F™*)™. Let j be an idele of F' associated to ¢y as in Lemma 6.2.
Then w(=(7)) = fi(e2) € HA(X, ).

By Lemma 5.4, the value of the pairing

() s (X, Z/n)" x HA(X, pin) = fin

in (5.15) on the pair {(F™*)" and w(z(j)) = fx(c2) is

(7.2) (E(F)" w(=(5))) = Art(j) (/™) /e1m.
Here j is the idele constructed in Lemma 5.4, and we are also using Art
to denote the Artin map from the ideles J(F') of F' to Gal(K/F). Since
di = ¢ ocy, thisis ¢(n - (fx(c1) U fx(c2))) when

S(f.e) = fx(e) U fx(e2) € B (X, pn) = Z/nZ
is Kim’s invariant for f and c.

Combining this with the normalization of £ in Corollary 4.4 and (7.1)
gives

(7.1)

¢(S(f,¢)) = p(Art(j)).
Thus Art(j) = S(f, c¢). Hence the proof of the formula (1.14) is reduced to
showing

(7.3) Art(§) = Art([1])

for a fractional ideal I of Op having the properties in Theorem 1.3, where
[I] is the ideal class of I in Cl(OF).

The first property of [ is that it should be an n-th root of Normy ,r(v)Or
when v € K is as in Theorem 1.3. The fact that I exists is shown by (6.4) of
Lemma 6.2, which showed ord, (Normg,p (7)) is divisible by n for all finite
places v of F. Let j, be the component of j at v. The congruence in (6.4)
also shows that ord,(j,) is congruent to ord, (/) modulo the order n, of the
decomposition group of a place w over v in K. Since K/F' is an unramified
extension, this is enough to show the equality (7.3), which completes the
proof.

8. Proof of Theorem 1.8 and of Corollaries 1.9 and 1.10

Parts (i) and (ii) of Theorem 1.8 follow from the arguments used in Lem-
mas 6.1 and 6.2 together with Theorem 1.3.

To show part (iii) of Theorem 1.8, it will suffice to show the following
for each place v of F. Let j, be the v component of an idele j of F' with
the properties in Lemma 6.2. Let n, be the local degree of v in K/F, i.e.
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the order of the decomposition group in G = Gal(K/F) of a place over v in
K. In view of the equality (7.3), Theorem 1.3 and the congruence (6.4), it
will suffice to show n, divides ord,(j,) if L/K is unramified over v or if v
splits in K. Here L = K(y*/™) for some v as in Lemma 6.2. If L/K is not
ramified over the place w of K over v, then ord,(y) must be divisible by n.
But ord,(jy) = ordy(y) mod n,Z by (6.4), and n,|n, so we get n,|ord, (jv)
in this case. If v splits in K, then n, = 1 so n@’ordv(jv) is trivial. This
finishes the proof of Theorem 1.8.

Corollary 1.9 follows directly from Theorem 1.8, since we can take I’ to
be O in this case.

Suppose now that the hypotheses of Corollary 1.10 hold. Let v be the
place of F' determined by the prime P in the statement of Corollary 1.10.
Then there is a unique place w over v in K, w totally ramifies in L, and v
and w have residue characteristic prime to n. Thus L = K(y"/") implies
ord,, () is relatively prime to n, and n, = n since v is undecomposed in K.
Since

ordp(I) = ordy(j,) = ordy(y) mod n,Z

as above, we conclude ordp(I) is relatively prime to n, = n. By part (iii)
of Theorem 1.8, we can take I’ = P°97() gince v is the only place of F
over which L/K ramifies. Hence Art([I']) is a generator of Gal(K/F) since
Art([P]) is, so Corollary 1.10 follows from (7.3).

9. Proof of Theorem 1.2

By assumption, n > 1. It will suffice to construct infinitely many totally
complex fields F which have cyclic degree n? extensions L;/F and Ly/F
having the properties in Corollary 1.9 and 1.10, respectively. We use a base
change argument to do this.

The field Q((,2) is totally complex. We start with an initial choice of a
field Fy containing Q((,2) together with a cyclic degree n? extension Ny of
F1. Let 57 be the set of places of I} which ramify in V7. Let F' be a number
field containing F} which is linearly disjoint from Nj such that for each place
w of F over a place v in S7, the completion (F}),, contains the completions
of N7 at places over v. Then L; = F'N; will be a cyclic unramified degree n?
extension of F' as required in Corollary 1.9. For simplicity we now replace
Fy by F to be able to assume that Ny/F} is a cyclic degree n? unramified
extension. Any base change of N;/F; by a field extension F of F} which is
disjoint from Nj will preserve this property.

We now focus on finding an extension F' of F; which is disjoint from Ny for
which we can construct an extension Ly/F with the properties in Corollary
1.10.

Let M be a sufficiently high power of the ideal nOp, in OF, such that if
o € Op and a = 1 mod M, then « is in ((F)%)™ for all places v of F}
dividing n. Choose a prime Q of Op, which splits in the ray class field over
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Fy of conductor M. Then by definition of the ray class group of F; mod
M, there is a generator « for Q such that &« = 1 mod M. Since Fj contains
a root of unity of order n?, the extension No = Fj(a'/"") is an abelian
Kummer extension of Fy. It is cyclic of degree n? and totally ramified over
Q since « has valuation 1 at Q. Now Ny /F} splits over all places of F} which
divide n, since by construction « is an n? power at these places. Finally,
at each place v of F; which does not divide n and which is not the place
vg assocated to Q, a has valuation 0 at v, so v is unramified in Na. Thus
Ny/F; is a cyclic degree n? extension unramified outside of vg and totally
ramified over vg.

Let wg be the unique place over vg in N». For simplicity, we define E
to be the completion of F} at vg, and we let Y be the completion of N
at wg. Now Y/E is a cyclic degree n? totally ramified extension of local
fields. There is a unique cyclic unramified extension E’ of E of degree n.
Consider the compositum E'Y. We have Gal(E'Y/E) = Gal(E'Y/E') x
Gal(E'Y)Y) = J; x Jo where J; = Gal(E'Y/E') = Z/n? is the inertia
subgroup of Gal(E'Y/FE) and Jo = Gal(F'Y/Y) = Gal(E'/E) = Z/n is
cyclic of order n. Let j; be a generator of J; and let js be a generator
of Jo. The element (ji,72) € J1 X Jo then generates a cyclic subgroup T’
of order n? in J; x Jp, and T'N (J; x {0}) = I' N Gal(E'Y/E’) has order
n. Thus the subfield E” = (E'Y)! of E'Y has the property that E'Y/E"
is cyclic of order n?, Gal(E'Y/E") = T has inertia group I' N (J; x {0})
of order n, and E”/E is cyclic and totally ramified of degree n. Thus E”
can be obtained from F by adjoining the root of an Eisenstein polynomial
of degree n in Og[z]. Note that E'Y = E"Y since I' = Gal(E'Y/E") and
Jo = Gal(E'Y/Y) intersect only in the identity element.

We now choose F' to be any degree n extension of F} which is totally
ramified over vg such that the completion F, of F' at the unique place w
over vg is isomorphic to E” as an extension of £ = (F}),,. Such an F can
be constructed by finding a monic polynomial of degree n in Op, [x] which is
Eisenstein at vg and which locally at vg has a root in E”. Because F/F; is
totally ramified over vg, it is disjoint from the cyclic unramified degree n?
extension Nj/F; we constructed at the beginning of the proof. Hence FN;
is a cyclic degree n? unramified extension L; of F of the kind required in
Corollary 1.9.

Consider now the compositum Ly = NoF over F;. We know there are
unique places w and wg over vg in F' and Na, respectively, and F,, = E”
while (N2)wo, = Y. Since E"Y = E'Y has degree n3 over F, = E, and
[Lo : ] = [Ly : F]-[F : F1] <n?-n, we see [Ly : F] = n? and there is
a unique place @ over vg in Ly = NoF. Thus Lo/F is a cyclic degree n?
extension since it is the base change by Fy C F of Ny/Fj. The only place
of F which can ramify in Lo is the unique place w over vg, since Ny/F} is
unramified outside of vg. Further, @ is the unique place of Lo over w, and
(L2)w/Fy is the extension E”Y/E"”. We showed that this local extension is
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cyclic of order n? with inertia group of order n. Thus if we let P be the prime
of F' determined by w, the extension Lo /F will now have all of the properties
required in Corollary 1.10. Theorem 1.2 now follows from Corollaries 1.9
and 1.10. Note that we can vary the above construction in many ways, e.g.
by choosing different primes Q, so we can construct infinitely many F with
the properties in Theorem 1.2.

10. Proof of Theorems 1.5 and 1.15

We will use the notations of Theorems 1.5 and 1.3. Since o(y)/y = 2™ €
(K*)™, the coset y(K*)™ lies in (K*/(K*)")%. Recall that we have exact
sequences

1= gy, —>K —- (K" =1 and 1— (K" > K"— K*/(K*)" — 1.
By the construction of the boundary map
do : fIO(G, K*/(K*)") — HYG, (K*)")

the class dp(y(K*)") is represented by the one cocycle which sends o? to
ol(y)/y = (z™)o(x™) - o'~ (z™) for i > 0. Thus §o(y(K*)™) is the cup prod-
uct [z"] Ut, where [z"] is the class in H™!(G, (K*)") represented by the ele-
ment 2" € K* of norm 1 to F, and t is an appropriate generator of H2(G, Z).
The image of ["] under the boundary map H=(G, (K*)") — H(G, jin) =
fin is the class represented by ¢, = Normpg/p(7). Since boundary maps
respect cup products with ¢, we find that do(y(K™)) maps to an element of
order n under the boundary map H*(G, (K*)") — H%(G, fi,). This proves
that y(K*)™ has image of order n under the map (K*/(K*)™")¢ — H%(G, fin)
which was used in (1.13) just prior to Theorem 1.3. Hence (1.13) shows that
if we take v = y in Theorem 1.3, Theorem 1.5 now follows from Theorem
1.3. Theorem 1.15 is proved similarly.

11. Proof of Theorem 1.12

The hypotheses of Theorem 1.12 are that n is a properly irregular prime,
so that n divides #C1(Z[(,]) but not #CI(Z[¢, + ¢;']), and K is a cyclic
unramified extension of F' = Q((,) of degree n. We are to show that
S(f,c) =0 for all surjections f : m(X,n) = Gal(K/F) =G = Z/n and all
c e H3(G, fin).

Lemma 11.1. There is a Z,, extension of F' which contains K and which
is unramified outside n.

Before proving this lemma, we note how it implies Theorem 1.12. The
lemma shows that there is a cyclic degree n? extension L of F which is
unramified outside of n and contains K. The unique prime P over n in F
is principal, so it splits in K. Hence Corollary 1.9 shows the conclusion of
Theorem 1.12.



540 BLEHER, CHINBURG, GREENBERG, KAKDE, PAPPAS AND TAYLOR

Proof of Lemma 11.1. Let £ = Q({, + ¢;;!) be the real subfield of F.
Write I' = Gal(F/E) = {e,o}. Then o acts by inversion on the Sylow
n-subgroup of Cl(Op) since n does not divide #Cl(Og). Therefore K is
contained in the maximal n-elementary extension N of F' which is unramified
outside of p, Galois over E and for which o acts by inversion on Gal(NN/F).

The Kummer pairing gives a I'-equivariant isomorphism Gal(N/F) =
Hom(T/(F*)™, i) when T = {¢ € F* : £//* € N}. Since o acts by in-
version on both Gal(N/F) and fi,, we conclude that it acts trivially on
T/(F*)™. Because n is odd, this implies that the inclusion E* — F™* induces
a surjection s : 7" — T/(F*)" when we let 7" = (E*)" - Normp/g(T).

Since E has class number prime to n, and N/F' is unramified outside of
n, we now see that s(T") = T/(F*)™ when T" is the subgroup of n-units in
T’. The subgroup of n-units in FE has no n-torsion and rank d = (n — 1)/2.
We conclude that Gal(N/F) is an elementary abelian n-group of dimension
at most d over Z/n.

By class field theory there is a Zz extension F of F which is unramified
outside of n such that o € I' acts by inversion on Gal(F/F). The maximal
n-elementary subextension N’ of F in F then has Gal(N/F) = (Z/n)%, so
in fact N’ = N. This implies Lemma 11.1 since K ¢ N = N'. O

12. Proof of Theorem 1.13

The hypotheses of Theorem 1.13 are that n > 2 is prime and K/F is a
cyclic unramified Kummer extension of degree n such that both K and F
are Galois over Q. The action of A = Gal(F/Q) on G = Gal(K/F) is then
via a character x : A — Aut(G). If we fix an isomorphism ¢ : G — Z/n we
get an isomorphism between Aut(G) and (Z/n)* that is independent of the
choice of ¢. In this way we can identify x with a character x : A — (Z/n)*.

Theorem 1.3 gives a A-equivariant homomorphism

(12.1) H2(G, fin) = (K*/(K*)")C /Image(F*) — G = Gal(K/F)

sending the class of v(K™)" to Art([/]) in the notation of Theorem 1.3. The
action of A on G = Gal(K/F) is given by the character x. To determine
the action of A on H?(G, fi,), we use the exact sequence

0—>%Z/Z—>Q/Z$Q/Z—>o

of modules with trivial G-action produced by multiplication by n on Q/Z.
The boundary map in the long exact cohomology sequence of this sequence
produces A-equivariant isomorphisms

(12.2) H(G, fin) = H*(G,Z/n) @ jin = H(G,Q/Z) @ fin.

Since HY(G,Q/Z) is Hom(G,Q/Z), we see from (12.2) that the action of
A on H%(G, fi,) is via the character ! - w where w : A — (Z/n)* is the
Teichmiiller character giving the action of A on fi,,. If (12.1) is not the trivial
homomorphism, it must be an isomorphism between cyclic groups of order n,
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L.w = x. This would

force w = x?2, which is impossible since w has even order n — 1 = #(Z/n)*.
Thus (12.1) must be trivial under the hypotheses of Theorem 1.13, which
completes the proof.
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