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A B S T R A C T   

The application of machine learning models and algorithms towards describing atomic interactions has been a 
major area of interest in materials simulations in recent years, as machine learning interatomic potentials 
(MLIPs) are seen as being more flexible and accurate than their classical potential counterparts. This increase in 
accuracy of MLIPs over classical potentials has come at the cost of significantly increased complexity, leading to 
higher computational costs and lower physical interpretability and spurring research into improving the speeds 
and interpretability of MLIPs. As an alternative, in this work we leverage “machine learning” fitting databases 
and advanced optimization algorithms to fit a class of spline-based classical potentials, showing that they can be 
systematically improved in order to achieve accuracies comparable to those of low-complexity MLIPs. These 
results demonstrate that high model complexities may not be strictly necessary in order to achieve near-DFT 
accuracy in interatomic potentials and suggest an alternative route towards sampling the high accuracy, low 
complexity region of model space by starting with forms that promote simpler and more interpretable inter-
atomic potentials.   

1. Introduction 

For nearly a century of designing interatomic potentials for use in 
materials simulations, a strong emphasis was placed on constructing 
classical potentials with physically-motivated forms derived from 
quantum mechanical theories [1–9]. More recently, with the enormous 
success of machine learning in various fields, machine learning inter-
atomic potentials (MLIPs) have come to dominate the attention of the 
computational materials science community (an incomplete list: 
[10–20]). MLIPs have been shown to be able to predict energies and 
forces on diverse ranges of atomic configurations with unprecedented 
accuracy, which in combination with active research into improving 
their speed and interpretability [21–23] makes them good candidates 
for being fast and accurate general-purpose models of atomic 
interactions. 

Much of the increased performance of MLIPs over classical potentials 
comes from the flexibility in their functional forms that allows them to 
be systematically extended in order to be able to model increasingly 
diverse sets of atomic environments. However, pushing MLIPs to this 
limit of high accuracy and generalizability often results in highly com-
plex models that are computationally expensive to use and conceptually 
difficult to interpret. Classical potentials, on the other hand, are by 
construction much simpler to interpret due to their basis in known 

physics and usually have much lower computational costs than even the 
simplest MLIPs. These two forms thus are generally used in opposing 
regions of “model space”: classical potentials in the low complexity, low 
accuracy region; MLIPs in the high complexity, high accuracy region. 

Sampling the space between these two regions (low complexity, high 
accuracy) is a fundamental goal of computational materials science, and 
in recent years has most often been approached by attempting to 
decrease the complexity of MLIPs. In this work we show that a family of 
spline-based classical potentials, when leveraging traditional “machine 
learning” databases and fitting algorithms, can be systematically 
improved in order to achieve accuracies on existing benchmark data-
bases that push them into the low complexity, high accuracy region of 
model space alongside low-complexity MLIPs. Despite the lower inter-
pretability of spline-based potentials relative to classical potentials with 
explicit analytical definitions, our results show that spline-based clas-
sical potentials offer a good balance between speed, interpretability, and 
accuracy. These results suggest that spline-based classical potentials 
may be good options alongside low-complexity MLIPs for designing 
practical and computationally tractable general-purpose potentials. 
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2. Background 

2.1. Machine learning interatomic potentials 

For this work, the most important distinctions between MLIPs and 
classical potentials are in their functional forms and in how they 
describe local atomic environments. The main advantage of MLIPs is 
that their functional forms are more easily extended to account for 
different environments by increasing their degrees of freedom, and that 
they are able to leverage more advanced descriptors of local atomic 
environments. The commonly-assumed implications of these differences 
are that (1) their extensible functional forms let MLIPs be more flexible 
and general than classical potentials, and (2) their use of better local 
descriptors allow MLIPs to predict atomic energies and forces more 
accurately. 

While new MLIPs are constantly being developed, we use the results 
from [24], which focused on five of the more popular forms: Gaussian 
Approximation Potentials (GAP) [11], Moment Tensor Potentials (MTP) 
[16], Neural Network Potentials (NNP) [10], Spectral Neighbor Analysis 
Potentials (SNAP) [13], and a variant on SNAP that uses quadratic 
components (denoted qSNAP) [19]. Conceptually, each of these MLIPs 
operate by first encoding the local atomic environments of a structure 
into atomic “fingerprints” (descriptors), then passing those fingerprints 
through an embedding function. Each of the MLIPs differ in the types of 
fingerprints that they use—atom-centered symmetry functions [25] for 
NNP, “smooth overlap of atomic positions” kernels [26] and related 
descriptors for GAP and SNAP/qSNAP, and rotationally covariant ten-
sors [16] for MTP—and in their embedding functions— neural networks 
for NNP, Gaussian process models for GAP, linear/quadratic models for 
SNAP/qSNAP, and summations of tensor contractions for MTP. The 
performances of the MLIPs can then be tuned by adjusting the number of 
fingerprints used or increasing the complexity of their embedding 
functions. In the interest of keeping this paper concise, a proper expla-
nation of the details of the MLIPs [11,10,13,16,19] and their descriptors 
[25,26] is reserved for existing work in the literature. 

2.2. s-MEAM 

We compare the MLIP results from [24] with results obtained by 
fitting new spline-based modified embedded-atom method (s-MEAM) 
potentials, a variant of the analytical MEAM [4] that introduces some 
additional flexibility. The analytical MEAM is a popular potential form 
that has been widely applied to various metals and alloys, and to some 
covalently-bonded materials [4,27,28]. In the s-MEAM formalism, the 
energy of a system is written as: 

E =
∑

i<j
ϕij(rij)+

∑

i
Ui(ni) (1)  

ni =
∑

j∕=i
ρj(rij)+

∑

j<k,
j,k∕=i

fj(rij)fk(rik)gjk
(
cos(θjik)

)
(2)  

In Eq. (1) the total energy E is composed of a pair term (ϕ) and an 
embedding energy contribution (U) due to the electron density (ni) 
around an atom. The electron density is further decomposed into 2-body 
(ρ) and 3-body (products of f and g) contributions. The total energy is 
computed by summing over the pair distances rij between each atom i 
and its neighbors j and the angles θjik and pair distances rij and rik defined 
by a triplet of atoms i, j, and k with i at the center. The subscripts on the 
functions indicate that different functions are used for evaluation 
depending on the bond types between atoms i, j, and k. 

The s-MEAM formalism is very similar to the analytical MEAM, but 
differs in that s-MEAM removes the explicit analytical forms of the 
functions in a MEAM potential and replaces them with cubic splines (ϕ 
and U in Eq. (1); ρ, f , and g in Eq. (2)). s-MEAM was originally developed 
for elemental Si [29], but has since been applied to Nb, Mo, Ti, and Ti-O 

[30–34]. The use of splines theoretically gives s-MEAM better flexibility 
in reproducing interactions for complex atomic environments as well as 
better generalizability, but much like with MLIPs these added benefits 
come at the cost of decreased interpretability of s-MEAM relative to 
classical MEAM or other classical potentials. In particular, non- 
linearities in the spline shapes of the density terms (ρ, f , and g) and 
the embedding function (U) can theoretically lead to complex and un-
interpretable behaviors. Additionally, the density values ni lack any 
physically meaningful units and are perfectly capable (likely even) of 
sampling negative values. 

In addition to the increased flexibility of s-MEAM (and despite its 
reduced interpretability) relative to analytical MEAM, s-MEAM has a 
couple of advantages that make it a particularly useful form to study in 
practice. First, s-MEAM encompasses an entire family of commonly-used 
classical potentials including the Lennard-Jones [1] (LJ), embedded- 
atom method [3] (EAM), modified embedded-atom method [4] 
(MEAM), Stillinger–Weber [6] (SW), and Tersoff [5] potentials, meaning 
it can be used to systematically study the impact of including/removing 
various terms in the functional form. And second, fitting software for 
spline-based potentials can take advantage of specialized data structures 
that make it extremely efficient to calculate energies and forces for large 
collections of different parameter sets simultaneously during fitting (for 
more details see Section 3.4). 

An s-MEAM potential can be easily extended to multi-component 
systems by adding additional splines for each new element and the 
cross-terms between pairs of elements. For example, in a binary system 
with A and B elements there would be a total of twelve splines: ϕAA, ϕAB, 
ϕBB, ρA, ρB, UA, UB, fA, fB, gAA, gAB, and gBB. Though single- and multi- 
component s-MEAM potentials have the same physical assumptions as 
each other, it is likely that multi-component systems will contain more 
complex local atomic environments which may not be able to be as 
accurately described using spline representations. Because of this, multi- 
component s-MEAM potentials may be more difficult to fit and may not 
be able to achieve as high accuracies as compared to their single- 
component counterparts. 

2.3. s-MEAM and low-complexity MLIPs 

The nesting of potentially highly non-linear functions in the 
embedding term of s-MEAM has the result of making the s-MEAM 
functional form very similar in theory to some low-complexity MLIPs. In 
particular, s-MEAM is comparable in its formalism to a single-layer NNP 
or a low-order MTP since each of these forms involve only limited 
numbers of radial and angular terms as their “fingerprints” and rela-
tively simple embedding functions. However, it is important to note that 
the s-MEAM splines in practice often optimize to relatively interpretable 
forms (e.g. LJ-like shapes for ϕ, ρ, and f , and nearly linear embedding 
functions U) as shown in Fig. 8, making it easier to attempt to under-
stand how/why fitted s-MEAM potentials behave the ways that they do 
in practice. Furthermore, model developers can easily enforce different 
conditions to encourage interpretability, for example by manually 
setting boundary conditions or knot values to require repulsive forces for 
short bond lengths. 

3. Methods 

3.1. Fitting databases 

In order to ensure a fair comparison, we train all models on the da-
tabases produced in [24], which were specifically designed to encom-
pass a large variety of atomic environments. In total, we explored six 
different elements (three crystal systems): Ni and Cu (FCC), Li and Mo 
(BCC), and Si and Ge (diamond). Each database contains the ground 
state structure for the given element, strained supercells, slab structures, 
ab initio molecular dynamics (AIMD) sampling of supercells at different 
temperatures (300 K and 0.5× , 0.9× , 1.5× , and 2.0× the melting 
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point), and AIMD sampling of supercells with single vacancies at 300 K 
and 2.0× the melting point. We construct training/testing sets using a 
90:10 split, sampled from each sub-group of the databases (strained, 
slab, MD, and vacancy configurations). On average, each training 
database includes approximately 250 structures. A detailed summary of 
the contents of the databases can be found in [24]. The training and 
testing databases were made publicly-available on Github [35] by the 
authors of [24]. 

3.2. Model hyper-parameters 

When fitting s-MEAM potentials, there are two hyper-parameters 
that are typically considered: the number of spline knots in each 
spline, and the x-positions of each of those knots. However, since s- 
MEAM has a strictly defined functional form, these hyper-parameters 
cannot be continuously adjusted to further increase the accuracy of 
the potential, and they do not significantly impact the computational 
cost of the potential. In [24] an extensive study of the hyper-parameters 
of the MLIPs was performed because increasing the degrees of freedom 
in the MLIPs can theoretically continuously increase their fitting capa-
bilities (at higher computational costs). In order to provide a more 
appropriate comparison between the s-MEAM family of potentials and 
the MLIPs discussed in [24], instead of showing the results of changing 
the number of knots per spline we choose to demonstrate the impact of 
including only subsets of the terms in s-MEAM (e.g. potentials that only 
have a ϕ term, or don’t include the 3-body embedding terms f and g). 
This shows the effects of systematically increasing the flexibility of the s- 
MEAM family of potentials, similar to how increasing the number of free 
parameters in an MLIP extends its functional form. The optimal s-MEAM 
potentials (starred points in Fig. 7) were further optimized by con-
structing potentials with 5, 7, 11, and 15 knots per spline and choosing 
the one that performed the best on the given tests of material property 
predictions. The U splines were often restricted to having only three 
knots since they are significantly easier to optimize and experiments 
with higher numbers of knots typically optimized to nearly linear 
functions anyways. 

We choose the domains of the radial functions based on the mini-
mum pair distance sampled in each database and the cutoff distances 
used by the MLIPs. The cutoff distances of the s-MEAM potentials for 
each element are taken to be 3.9 Å (Ni), 4.0 Å (Cu), 5.1 Å (Li), 5.2 Å 
(Mo), 5.0 Å (Si), and 5.3 Å (Ge), which are chosen to be similar to the 
cutoffs used for the MLIPs in [24]. As discussed in [24], these cutoff 
distances are consistent with previous studies using classical potentials 
and MLIPs which find second nearest neighbor interactions to be suffi-
cient for FCC elements, while third nearest neighbor interactions are 
necessary for BCC and diamond systems. The domains of the U and g 
splines are [ −1, 1] (with the exception of the Ge s-MEAM potential, 
which uses [ −0.5, 0.5] for the U domain because it happened to result in 
a better potential during optimization) since the ni values can be arbi-
trarily scaled during fitting to fall into the desired range [36] and g’s 
inputs are cos(θ) values. 

3.3. Optimization algorithm: CMA-ES 

We optimize the y-positions of the knots in the splines of the s-MEAM 
potentials using the Covariance Matrix Adaptation Evolutionary Strat-
egy (CMA-ES) [37,38]. CMA-ES is a derivative-free, population-based 
global optimization algorithm that is designed to work with continuous- 
domain, non-convex, non-linear functions, and is highly scalable and 
parallelizable. This algorithm has been shown previously to work well 
for optimization problems with dimensionalities similar to ours [39] (in 
our case, 45 fitting parameters: five splines, each with seven knots and 
two boundary conditions), has been successfully applied to fitting s- 
MEAM potentials in the past [34], and is readily available in an existing 
Python package [40]. 

We attempt to find a balance between exploration (exploring 

parameter space) and exploitation (moving toward good solutions) by 
tuning various hyper-parameters of the CMA-ES. The CMA-ES works by 
iteratively updating the mean and covariance matrix of a multi-variate 
normal distribution; at each CMA-ES step we sampled 100–2000 
parameter sets and used the best 50% for the update (influencing the 
algorithm’s exploitation). We adjust the “width” of the distribution, 
which influences the algorithm’s exploratory capabilities, using a 
scaling parameter for the covariance matrix, with typical values in the 
range of 1–10. 

3.4. Software implementation details 

As mentioned in Section 2.2, a major benefit of using spline-based 
potentials when fitting a model is that the fitting software can take 
advantage of special data structures, which we call “structure vectors” 
here, in order to be able to compute energies and forces of atomic 
configurations for large batches of parameter sets simultaneously and 
efficiently. Unlike molecular dynamics, where a large number of atomic 
configurations need to be considered in serial, optimization considers a 
fixed set of atomic configurations. The processing of neighbor lists for 
each structure can be done once, and then used to construct an efficient 
algorithm for the evaluation of a large number of parameters. The use of 
cubic splines, which are linear functions of the knot values, permits sums 
over interatomic distances to be efficiently precalculated into “structure 
vectors.” 

The evaluation of a Hermitian cubic spline f(x) with n knots, which is 
normally written as a piece-wise function with each piece being a linear 
combination of four basis functions, can instead be re-written as f(x) =
s→(x)⋅ θ→. Here, the evaluation of f(x) is the dot product between two 

length-(n + 2) vectors: a vector of coefficients, s→(x), that depends only 
on the input value x, and a vector of fitting parameters θ→ composed of 
the two spline boundary conditions and the y-positions of the n knots in 
the spline. This form is particularly useful since it is linear in θ→, which 
means that summations over multiple x can be efficiently computed as 
f(x1) + f(x2) = [ s→(x1) + s→(x2)]⋅ θ→. Thus, arbitrarily many spline 
evaluations can be performed with a single length-(n + 2) vector-vector 
dot product by defining S→=

∑
i s→(xi) (which is what we call a structure 

vector) to be the summation over the vectors of spline coefficients cor-
responding to all of the xi values, then writing the summation as 

∑
if(xi)

= S→⋅ θ→. A full derivation of the structure vector is found in Section SI in 
the Supplementary Material. 

For potential fitting, this means that the collection of S→ vectors for 
each spline involving atomic positions—ϕ, ρ, f , and g in s-MEAM—can 
be computed for each structure in the fitting database, saved, and re- 
used at each optimization step rather than having to loop over full 
neighbor lists every single time. Due to the form of s-MEAM, the 
embedding energy U(ni) for each atom is evaluated using the standard 
algorithm for cubic splines. We find that the most time-consuming 
evaluation is the three-body product from f and g splines. Equally as 
important is the fact that S→ can be used to evaluate multiple parameter 
sets at the same time by converting θ→ to instead be a matrix of 
parameter sets, with each column corresponding to a different param-
eterization of a potential; this use case is extremely common among 
global optimization algorithms, where objective function values need to 
be computed for batches of parameterizations at every step. For refer-
ence, on a single XE compute node of the Blue Waters supercomputer 
(two 8-core 2.3 GHz AMD 6276 Interlagos processors and 64 GB of 
memory), we are able to evaluate the energies and forces of a 108-atom 
cell for ten thousand different model parameterizations in approxi-
mately 3.4 seconds. In addition, the use of matrix–matrix products al-
lows for efficient use of GPU acceleration, providing for additional 
hardware speedup. Readers interested in implementing structure vec-
tors for different potential forms should see Section SI in the 
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Supplementary Material for further details, or refer to the Github re-
pository associated with this paper [41]. 

4. Results and discussion 

4.1. Fitting procedure 

The following results were obtained by fitting s-MEAM potentials to 
a set of six benchmark databases published by [24] for Ni, Cu, Li, Mo, Si, 
and Ge. The databases were designed to cover a broad collection of 
atomic environments for each element, including ground state struc-
tures, strained configurations, surfaces, liquids, vacancies, and molec-
ular dynamics snapshots. The potentials were fitted with software 
developed by the authors of this paper using the Covariance Matrix 
Adaptation Evolutionary Strategy [37,38], where the objective function 
was the mean absolute error computed by comparing the energies and 
forces predicted by the s-MEAM potentials to the values predicted by 
density functional theory (DFT). Optimal potentials were selected based 
on their ability to correctly reproduce the various material properties 
discussed in this section. Further details regarding the fitting databases 
and optimization procedures can be found in Section 3. 

4.2. Training/testing errors 

As shown in Fig. 1, for all elements the fitted s-MEAM potentials 
achieve train/test root-mean-square errors (RMSE) for both energies and 
forces that are similar in magnitude to the MLIPs despite the relatively 
large diversity of the training and testing sets. In most cases the s-MEAM 
potentials produce errors that are most similar to those of NNP and 
SNAP, typically making them only 2–3× the magnitudes of the errors for 
GAP and MTP. In the case of Ge, which has abnormally high energy 
errors relative to the GAP and MTP—but similar to other 
MLIPs—approximately 40% of the training and testing error comes from 
surface structures, indicating that s-MEAM is performing well for the 
majority of the Ge database, but failing at reproducing surface energies 
as accurately as other structures. This behavior is reflected in Fig. 2, 
which shows that the Ge s-MEAM potential has the highest surface en-
ergy errors of all the models. 

Not only are the s-MEAM errors computed in this work comparable 
to the accuracies of the MLIPs, but they are also drastically lower than 
what is usually thought of as the errors for classical potentials. Zuo et al. 
[24] also reported the energy/force errors on these databases for other 
classical potentials available in literature [29,31,42–46], which were 
typically 10 to 100 times larger than the errors for the s-MEAM poten-
tials and MLIPs shown here. However, in our work it is clear that the 
differences in errors between classical potentials and MLIPs trained on 
the same data can be as low as just a few meV⋅atom−1, which is already 
nearing the accuracy of DFT [47]. The most likely reason that many of 
the potentials from the literature had such high energy/force errors on 
the databases from [24] was not because their functional forms are 
inherently less accurate than the MLIPs, but rather simply because the 
models weren’t trained on databases that had as many different types of 
structures (in particular, liquids and surfaces may not have been 
included). Furthermore, a contributing factor to the perceived low ac-
curacy of classical potentials is that many of the older literature po-
tentials (LJ, EAM, and analytical MEAM in particular) are often 
constructed by fitting directly to material properties, rather than by 
using the “force-matching” method of Ercolessi-Adams [48] which is 
typically used for fitting MLIPs and the s-MEAM potentials in the 
literature. 

4.3. Material properties 

In Fig. 3 it is shown that in addition to having good energy/force 
errors, the s-MEAM potentials also perform comparably to the MLIPs in 
predicting material properties. For Ni, Cu, and Mo in particular the s- 

MEAM potentials show excellent agreement with the DFT-predicted 
values. Note that the vacancy migration energy Em has the largest 
variation between models of any of the properties, and is the only 
property that was not explicitly included in the fitting databases. The 
large variation in the Li property predictions are partially due to the 
relatively small magnitudes of its cubic elastic constants, bulk modulus, 
and vacancy migration energy. Existing s-MEAM potentials from the 
literature for Si [29] and Mo [31] have been included for reference and 
show similar performance. 

In Fig. 4 we show the stacking fault energy (SFE) curves for four of 
the elements (Mo, Si, Ni, and Cu) that have been explored previously in 
the literature. MLIP curves were taken from [24], DFT curves were taken 
directly from the literature [31,49,50], and s-MEAM curves were 
computed in this work. Errors in unstable stacking fault energy pre-
dictions (peak heights) for the s-MEAM potentials are similar in 
magnitude to the MLIPs, but the s-MEAM potentials commonly have a 

Fig. 1. Root-mean-square errors in predicted energies and forces for the s- 
MEAM potentials developed in this work and the MLIPs (GAP, MTP, NNP, 
SNAP, qSNAP) developed in [24]. Colors were scaled with respect to the 
maximum value in each column so that model performances can be more easily 
compared relative to each other for each element. Training/testing errors are 
shown in the upper/lower triangles respectively, where the testing databases 
represent a 10% split of the total data sampled from each group in the databases 
(MD samples of bulk solids and liquids, strained structures, vacancies, and 
surfaces). For all elements the s-MEAM potentials are able to reproduce the 
energies and forces in the databases with accuracies comparable to the 
optimal MLIPs. 
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problem where the ground state structure is actually higher energy than 
the faulted configuration. In the case of elements with FCC ground state 
structures, the faulted configuration has a local structure that is similar 
to HCP, so inclusion of the HCP structure into the training database 
(which the databases in this work don’t have) can help to address this 
issue. 

Comparison of the minima-aligned energy versus volume equation of 
state curves shows that the s-MEAM potentials agree with DFT at non- 
equilibrium volumes to within the threshold that is used for 
comparing equivalent DFT codes. As mentioned in Fig. 5, the ΔEOS gauge 
is the RMSE of the difference between two EOS curves within a range of 
±6% of V0,DFT, where values below 2 meV⋅atom−1 are considered to 
define “indistinguishable EOS curves” [51]. In all cases, the s-MEAM 
models agree with DFT to within the desired threshold. These results 
aren’t surprising, since the ΔEOS gauge depends largely on a model’s 
ability to reproduce the bulk elastic modulus of the given systems, which 
most models do to within about 5% error relative to the DFT-predicted 
bulk moduli. 

Energy differences between the ground state structure and the DFT- 
predicted low-energy polymorph structures are used as a test of the 
ability of the models to extrapolate to data that they weren’t explicitly 
trained on (since only ground state crystals were included in the training 
databases). As seen in Fig. 6, for Ni, Li, and Ge the s-MEAM potentials 
agree with the DFT predictions to within ≈ 20 meV⋅atom−1. The Cu s- 
MEAM errors are about 10 meV⋅atom−1 larger than the errors of the 
worst MLIP, but the Si s-MEAM severely under-predicts the polymorph 
energy. All of the Mo potentials have larger absolute errors due to the 
larger magnitude of the DFT energy differences, but the error of the s- 
MEAM potential is still within the error range of the MLIPs. 

While classical potentials have already been shown to be able to 
predict properties of these material systems with good accuracy 
[29,31,42–46], the results here emphasize the fact that they can perform 
well even when trained on the larger and more diverse databases that 

are usually reserved for MLIPs. However, one issue that became 
apparent when constructing the optimal potentials was that lower total 
RMSE values did not necessarily correspond to better property pre-
dictions. Potentials with training errors that were even just 
1–2 meV⋅atom−1 lower than the optimal potentials shown here often 
began to see a trade-off where the percent errors in their property pre-
dictions began to be as large as 30%–40% for all properties except the 
lattice constant. A possible cause of this behavior could be that some of 
the databases contain certain types of structures with a frequency that is 
disproportionate to the relative importance of their related material 
properties. As an example, in this work all of the predictions were of bulk 
or defected solid properties, but the training databases also included 
large amounts of liquid and slab (surface) structures. When errors for 
each structure are equally weighted, an “imbalanced” database such as 
this could cause an insufficiently generalizable model to be fitted to 
structures that don’t significantly contribute to the properties of interest. 

Fig. 2. Root-mean-square errors in predicted surface energies in the training 
set. For most elements the s-MEAM potentials maintain errors that are similar in 
magnitude to the errors of the MLIPs, but in the case of Ge the s-MEAM po-
tential has particularly high errors that may indicate a lack of generalizability of 
the s-MEAM form. In general, the MTP and GAP have the lowest surface energy 
errors while s-MEAM and NNP have the highest. SNAP and qSNAP show the 
largest variation across different elements. 

Fig. 3. Predictions of the lattice constant (a), cubic elastic constants (C11,C12,

C44), bulk modulus (B), and vacancy formation and migration energies (Evf and 
Em) for each model for each element. All properties have been normalized with 
respect to the DFT values, so an ideal potential would produce a regular hep-
tagon whose vertices fall on the unit circle. The dashed black lines correspond 
to the predictions for previously-published s-MEAM potentials for Si [29] and 
Mo [31]. 

J.A. Vita and D.R. Trinkle                                                                                                                                                                                                                    



&RPSXWDWLRQDO 0DWHULDOV 6FLHQFH ��� ������ ������

�

There were many cases, especially when fitting the Li potentials, where 
the property predictions could be improved by allowing larger errors in 
reproducing the energies of the surface structures. This issue begins to 
highlight a limitation of the s-MEAM form, where although the average 
errors are nearing MLIP accuracy, it is still seeing a trade-off in errors 
that implies that it is not yet as generalizable as the MLIPs. 

4.4. Accuracy/cost trade-off 

Fig. 7 shows that for all elements, the optimal s-MEAM potentials 
consistently fall on or near the empirical accuracy/cost Pareto front. The 
optimal s-MEAM potentials are usually 1–2 orders of magnitude faster 
than the respective MLIPs while still having comparable testing errors. 
We plot testing set error in Fig. 7 since it is commonly used for evalu-
ating “general-purpose” potentials (potentials that are designed for 
general use with a given chemical system, rather than for a single 
application of that system), and because it can detect possible overfitting 
of a model. Although we use cost per molecular dynamics step for this 
comparison, it is important to note that many other factors must be 
taken into consideration such as the software implementation of the 
model, the hardware on which it is being run, and the memory re-
quirements of the model. 

For the MLIPs, the authors of [24] modified the model costs and 
accuracy by increasing the degrees of freedom in each type of model. In 
the case of s-MEAM, we choose to explore the extensibility of the po-
tential form by altering which of the terms (ϕ, ρ, U, f , and g) in Eqs. (1) 
and (2) to include in the potential. Note that although s-MEAM does 
have other hyper-parameters that can be adjusted (number of knots per 
spline, and x-positions of knots), they don’t significantly impact the 
computational cost of the potential, therefore adding/removing terms 
from the s-MEAM form is the most appropriate method for analyzing the 
accuracy/complexity trade-off. 

The consistent presence of the s-MEAM potentials and their variants 
on or near the Pareto front alongside the low-complexity MLIPs suggests 
that the s-MEAM family is an ideal candidate for beginning to sample the 
low complexity, high accuracy region of model space. However, the fact 
that the s-MEAM potentials occasionally appear to be out-performed by 
some of it’s simpler variants (e.g. the Cu s-MEAM variant that doesn’t 

include the 3-body f and g term) also helps to demonstrate a weakness of 
s-MEAM. In all cases where the s-MEAM potential doesn’t fall on the 
Pareto front (Ni, Cu, and Ge), it had higher testing set errors than one of 
its variants, but was still chosen as the “optimal” potential because it had 
better overall material property predictions on the tests shown in Sec-
tion 4.3. The ability of s-MEAM potentials and it’s variants to lower their 
errors further than what is shown in Fig. 1 and Fig. 7 in exchange for 
worse property predictions was experienced ubiquitously throughout 
this work. The most likely explanation for this behavior is that achieving 
lower average errors on the database is forcing s-MEAM to allow larger 
errors on some of the structures that influence the material property 
predictions more heavily. This explanation suggests that the s-MEAM 
form is not yet as generalizable as some of the MLIPs (MTP and GAP in 
particular), and would most likely require the introduction of additional 

Fig. 4. Cross-sections of the relaxed γ surfaces for each model for a selection of 
elements that have been explored previously in literature. DFT curves were 
taken from previous works [31,49,50], while MLIP curves were provided by the 
authors of [24]. Displacements are in the (011) plane in the [111] direction for 
Mo, and in the (111) plane along the [112] direction for Si, Ni, and Cu. 

Fig. 5. Computed EOS curves (top) and ΔEOS gauge values (bottom) calculated 
using 3rd-order Birch-Murnaghan fits. The ΔEOS gauge is computed by inte-
grating the root-mean-square difference between a model’s EOS curve and the 
EOS curve predicted by DFT within a range of ±6% of V0,DFT (dashed red) after 
aligning the two curves with respect to their minima. ΔEOS⩽2 meV⋅atom−1 has 
been used in the past as a threshold to define “indistinguishable EOS curves” 
when comparing DFT codes [51]. 
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terms in order to no longer see this trade-off. In many of the plots in 
Fig. 7 the empirical estimation of the Pareto front (dashed lines) be-
comes concave at the intersection of the s-MEAM and the MTP curves 
(see for example the Ge plot in Fig. 7), suggesting the possibility of a 
theoretical potential form that would have accuracies similar to some of 
the s-MEAM variants, but with lower complexity. A hypothetical po-
tential form that could fill in these “holes” in the estimated Pareto front 
could be constructed by varying the number of 2- (ϕ, ρ) and 3-body (f 
and g) terms and the embedding number of embedding terms (U) beyond 
what is done in this work. 

4.5. Fitted models 

As can be seen in Fig. 8, the fitted splines for each element often 
optimize to recognizable and simple forms (e.g. LJ-like radial functions 
ϕ, ρ, and f , and nearly linear embedding functions U) that lend them-
selves to much easier interpretation than most MLIPs in practice. While 
these splines are more difficult to interpret than most analytical MEAM 
potentials (e.g. due to the roughness of some of the splines, or unex-
pected trends in some of the radial functions), they provide model de-
velopers with a way of identifying key trends in model behavior that 
would be difficult to recognize in an MLIP. In particular, because of the 
nearly linear shape typical of the U splines, it is possible to identify how 
different features in the splines will raise/lower the predicted energy at 
different distances or angles. Additionally, the fact that the U splines 
consistently optimized to nearly linear functions for all elements 
regardless of the number of knot points shows that high accuracies can 
be achieved while still maintaining simple forms for the embedding 
functions (which is not usually the case with MLIPs). 

5. Conclusion 

We demonstrate that a family of spline-based classical potentials 
offer a viable route towards sampling the low complexity, high accuracy 
region of model space while promoting physical interpretability, making 

them good candidates to be general-purpose potentials alongside exist-
ing low complexity MLIPs. In related recent work [52], an example of an 
MLIP modeled after the embedded-atom method also achieved high 
accuracy on the databases used in this paper, highlighting some of the 
efforts of approaching the problem by increasing MLIP interpretability. 
Given the already small error magnitudes for the s-MEAM potentials 
developed here and the MLIPs developed in [24], additional research 
that more exhaustively tests the generalizability of each of the model 
forms by constructing databases for more chemical systems and appli-
cations would be extremely useful. However, given that s-MEAM shows 

Fig. 6. Structural energy comparisons between the ground state structures and 
the DFT-predicted low-energy polymorph structures. Polymorph structures are 
labelled for each element. Although MLIPs are often considered to be less 
transferable (i.e. more prone to over-fitting) than classical potentials, they 
perform slightly better for low energy structure predictions than s-MEAM for 
most of the elements that were explored in this work. 

Fig. 7. Accuracy/cost trade-off for all elements and models. Stars are “optimal” 
potentials for each model that were used to compute all errors and material 
properties, while circles are different hyper-parameter choices of the MLIPs (e. 
g., the number of nodes in a NNP or the number of kernels in a GAP). For s- 
MEAM the stars are s-MEAM potentials (with all 5 terms included), but the 
circles moving from left to right are variants of s-MEAM that have (1) only the ϕ 
term, (2) only ϕ, U, and ρ, and (3) only ϕ, U, f , and g. In the case of Cu, the third 
variant which doesn’t include ρ is obscured by the starred point. For all ele-
ments, the optimal s-MEAM potential falls on or near the empirical estimation 
of the Pareto front (dashed lines) while maintaining errors comparable to the 
MLIPs, indicating that it has an optimal balance between speed and accuracy. 

J.A. Vita and D.R. Trinkle                                                                                                                                                                                                                    



&RPSXWDWLRQDO 0DWHULDOV 6FLHQFH ��� ������ ������

�

signs of trade-offs in accuracies for the systems studied in this work, it’s 
clear that further research is necessary to explore how its functional 
form might be modified or extended in order to make it more general-
izable. While for some cases this might be possible by simply adding 
additional 2- or 3-body terms (or higher order, similar to what is done in 
[53,56]) or different embedding functions, there are other situations—i. 
e., organic systems, 2D materials, chemical reactions—where it would 
be helpful to design entirely new spline functions (similar to the COMB 
[9] approach of adding more terms). In those situations, other classical 
potentials already exist which would provide useful guidelines for how 
to introduce new terms into a fully general spline-based potential. 
Ideally, a more exhaustive study that covers a variety of classical and 
machine learning potentials on even more data sets than the six shown 
here would be performed to perform a more complete comparison of any 
inherent limitations between different potential forms. 

During this process, it will be important for researchers to consider 
what level of model and descriptor complexity is tolerable for increasing 
the accuracies of interatomic potentials, especially if the differences 
between models are only on the order of a few meV⋅atom−1 as seen here. 
Related work exploring the necessary complexity of atomic descriptors 
[54,55] will be useful as researchers continue to evaluate model 
complexity. Finally, with the already excellent performances of both 
classical potentials and MLIPs, this suggests expanding efforts towards 
building, documenting, and curating suitable fitting databases, which 
would enable exhaustive model performance comparisons and signifi-
cantly lower the barrier for developing interatomic potentials for new 
computational studies. 

Data and Code Availability 

The databases of atomic configurations were made available on 

Github [35] by the authors of [24], who originally created them. Fitted 
s-MEAM models from our work, and software used for fitting the s- 
MEAM potentials, are available on Github [41]. 

CRediT authorship contribution statement 

Joshua A. Vita: Conceptualization, Data curation, Formal analysis, 
Investigation, Methodology, Software, Validation, Visualization, 
Writing - original draft, Writing - review & editing. Dallas R. Trinkle: 
Conceptualization, Funding acquisition, Project administration, Re-
sources, Supervision, Writing - review & editing. 

Declaration of competing interest 

The authors declare no competing financial or non-financial 
interests. 

Acknowledgements 

The authors thank Michael R. Fellinger for useful comments and 
discussions, and Yunxing Zuo for providing the data from [24] and 
helping to verify their results. This research was supported by the Na-
tional Science Foundation through awards NSF/BD-SPOKE-1636929, 
NSF/NRT-1922758, and NSF/HDR-1940303. This research is part of 
the Blue Waters sustained-petascale computing project, which is sup-
ported by the National Science Foundation (awards OCI-0725070 and 
ACI-1238993) and the state of Illinois. Blue Waters is a joint effort of the 
University of Illinois at Urbana-Champaign and its National Center for 
Supercomputing Applications. 

Fig. 8. Plots of fitted splines for each term in the s-MEAM equation for each element. In order to facilitate interpretation of the functions, some of the density terms 
have been scaled by −1 (by scaling U, ρ, and g by −1) so that all of the U splines have similar slopes, and some of the f splines have also been multiplied by −1. These 
changes are purely aesthetic, and don’t impact the performance of the potentials, as discussed in [36]. The g splines for Cu, Mo, and Ni have been plotted with broken 
y axes to account for the large magnitudes of some of the knots at the ends of the splines, which is caused by poor sampling of cosθ = 1 in the databases leading to 
poorly-constrained knot values. The U domain for the Ge potential was chosen to be [ −0.5,0.5] since it yielded a better potential duri.ng optimization. 
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Appendix A. Supplementary data 

Supplementary data associated with this article can be found, in the 
online version, athttps://doi.org/10.1016/j.commatsci.2021.110752. 
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