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Progressive Slice Recovery with Guaranteed Slice
Connectivity after Massive Failures

Qiaolun Zhang, Omran Ayoub, Jun Wu, Francesco Musumeci, Gaolei Li and Massimo Tornatore

Abstract—In presence of multiple failures affecting their net-
work infrastructure, operators are faced with the Progressive
Network Recovery (PNR) problem, i.e., deciding the best se-
quence of repairs during recovery. With incoming 5G deploy-
ments, PNR must evolve to incorporate new recovery opportu-
nities offered by network slicing. In this study, we introduce
the new problem of Progressive Slice Recovery (PSR), which
is addressed with eight different strategies, i.e., allowing or
not to change slice embedding during the recovery, and/or by
enforcing different versions of slice connectivity (i.e., network vs.
content connectivity). We propose a comprehensive PSR scheme,
which can be applied to all recovery strategies and achieves fast
recovery of slices. We first prove the PSR’s NP-hardness and
design an integer linear programming (ILP) model, which can
obtain the best recovery sequence and is extensible for all the
recovery strategies. Then, to address scalability issues of the ILP
model, we devise an efficient two-phases progressive slice recovery
(2-phase PSR) meta-heuristic algorithm, small optimality gap,
consisting of two main steps: i) determination of recovery
sequence, achieved through a linear-programming relaxation that
works in polynomial time; and ii) slice-embedding recovery, for
which we design an auxiliary-graph-based column generation to
re-embed failed slice nodes/links to working substrate elements
within a given number of actions. Numerical results compare the
different strategies and validate that amount of recovered slices
can be improved up to 50% if operators decide to reconfigure
only few slice nodes and guarantee content connectivity.

Index Terms—SG networks, virtual network embedding, pro-
gressive network recovery, content connectivity, network connec-
tivity.

I. INTRODUCTION

In case of major network disruptions (caused, e.g., by
large-scale disasters such as earthquakes, floods, and targeted
attacks), operators must recover their network infrastructure
through a sequence of reparation steps. The problem of
optimizing this sequence to maximize the amount of services
provided during the recovery is commonly referred to as
Progressive Network Recovery (PNR). PNR involves multiple
stages, where a stage is an amount of time in which the net-
work operator decides where to allocate reparation resources
(e.g., field engineers and network equipment) to repair network
component (typically a link, or a node) such that the network
is recovered as early as possible.

As forthcoming 5G networks will support novel forms of
network slicing [1], the PNR problem must be evolved to
take advantage of new recovery opportunities that network
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slicing enables. Hence, in this study, we present and investigate
the new problem of Progressive Slice Recovery (PSR). With
slicing, operators can offer to their customers “slices” of
their physical (or “substrate’”’) network resources, typically in
the form of Virtual Networks (VNs), that are appropriately
embedded (see [2]-[5] for more details on VN embedding)
on a subset of the substrate resources to accommodate the
requirements of very diverse services (e.g., new services
for online gaming or remote manufacturing control). During
the recovery, a damaged slice can be more or less rapidly
recovered depending on the constraints that the slice has to
obey during the recovery procedure, e.g., depending on the fact
that a slice has to maintain a fixed embedding of its substrate
nodes and links, or that a slice can dynamically change its
embedding [6], [7].

Hence, the operator can decide to perform slice recovery by
adopting several strategies, which result in different versions
of the PSR problem. In this study, we consider that a slice
can be re-embedded under very distinct assumptions. In fact,
an operator can decide to maintain the same embedding used
before the failure (e.g., due to security or isolation reasons), or
it might be allowed to reconfigure only the link embedding,
or only node embedding, or both. Note that the amount of
reconfiguration of embedding is usually limited, as operators
prefer to avoid the disruption time introduced by reconfigu-
ration. Moreover, with several 5G services shifting towards
a more content-centric communication paradigm, slices can
be embedded and recovered with the goal of ensuring only
Content Connectivity (CC) within the slice itself, or targeting
the more traditional, yet more constraining, Network Connec-
tivity (NC) [8], [9]. NC is a traditional network-survivability
metric, which is guaranteed by ensuring reachability among all
network nodes, while CC is a more recent concept, and it is
defined as the reachability from all network nodes to at least
one (among multiple) content replica [9]. On the one hand,
as CC does not constrain all nodes to be connected among
them, it requires fewer resources than NC. On the other hand,
by only ensuring CC, some services might incur degradation.
Yet, CC proved to be of great help to provide relief, especially
in case of multiple failures [10].

Examples of PSR with NC and CC: Let us consider the
example in Fig. 1, which illustrates, using a recovery sequence,
how ensuring NC vs. CC of slices affects the progressive
recovery of slices differently. In our example, the substrate
network is a 7-node network with 11 edges and 2 data centers
(DCs). Three network slices, each consisting of 4 edges and
4 nodes (in which 2 are DC nodes, i.e., nodes that connect to
a DC) are initially embedded as marked with different colors
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in the substrate network. For instance, virtual link (b1, cl)
in slice 1 is embedded onto links (G, F) and (F, E) in the
substrate physical network. A disaster zone (highlighted by an
oval shape) causes substrate links (B, C), (C, D), (D, E), and
(E, F) and substrate nodes D and F to fail, hence disrupting
the three slices. We consider 5 stages for the recovery process,
at each of the stages from 1 to 4 we assume the network
operator can repair one substrate node and one substrate link
while maintaining the initial embedding of each of the slices.
Stage O does not have any resources, but the operator may
decide to do re-embedding. For slice 1, we need to recover one
virtual node and one virtual link (e.g., link (c1,d1) and node
dl) to ensure CC. However, we need to recover one virtual
node and two virtual links (e.g., link (cl,dl), (b1,cl), and
node d1) to ensure NC. Note that different recovery sequences
can lead to different outcomes in terms of recovered slices.
As an example, we consider two different recovery sequences
(shown in the figure) and, at the bottom of the figure, we
plot the number of recovered slices, with guaranteed NC and
CC, respectively. For both recovery sequences, slices with CC
are recovered in fewer stages than slices with NC. The plot
also shows that sequence 1 can recover all slices quicker than
sequence 2 for CC. Note that, if changing the initial embedding
is allowed, the network operator would be able to recover all
three slices earlier (in stage 1) by recovering the physical node
F' and re-embedding the virtual nodes of the slices onto nodes
A, B, F, and G.

In this study, we develop an extensible slice recovery
scheme applicable to all the different PSR problem versions.
After proving that all the problem versions are NP-hard, we
introduce an integer linear programming (ILP) formulation,
which can be used, with slight modifications, to formally
represent all the PSR problems. The formulation aims to
maximize the accumulated number of recovered slices while
enforcing the connectivity of slices and bounding the number
of re-embedding actions. Since the problem is computationally
intractable, we also devise a solving approach in two phases,
namely, the recovery-sequence-determination phase and failed-
node/link-re-embedding phase. The first phase obtains the
recovery sequence in the substrate network in polynomial
time using a linear relaxation of the ILP. The second phase
determines efficient reconfiguration action using an auxiliary-
graph-based column generation.

The main novel technical contributions of this study can be
summarized as follows.

« We identify eight alternative strategies for the PSR prob-
lem and formalize the problem by providing an ILP
formulation for all the different strategies.

o« We propose a two-phase approach for the PSR that
obtains the recovery sequence of the substrate network
in polynomial time and determines efficient reconfigura-
tion through an auxiliary-graph-based column generation
algorithm.

o We provide illustrative numerical evaluations to compare
the recovery performance of the all the identified strate-
gies.

The rest of the paper is organized as follows. In Section II,
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Fig. 1: An example of progressive slice recovery with guaranteed NC
and CC.

we recap existing studies on PNR. Section III models the
PSR problem under reconfiguration limitations. Section IV
introduces the generic ILP model applicable to all the problem
versions. In Section V, we propose our two-phases scalable
solution for the PSR problem. Section VI provides illustrative
numerical results. Section VII concludes the paper.

II. RELATED WORK

Most studies on network resiliency and survivability focus
on preparing the networks before disaster occurrence, using
proactive protection strategies [11], [12]. Some studies, as
Ref. [13]-[15], focus on over-provisioning resources to protect
VNs from failure in the substrate network. Ref. [16] proposed
dynamic re-embedding of both virtual nodes and virtual links
to re-balance the load on the substrate network in an online set-
ting where new VN requests may arrive or depart. Moreover,
various connectivity-guaranteed virtual network embedding
(VNE) schemes [8], [9], [17] are proposed, which can be
applied before disaster occurrence and are survivable under
multiple failures. However, proactive measures cannot guar-
antee network survivability after massive failures, and hence,
reactive post-failure procedures must be set in place. Among
them, the PNR problem allows to optimally select the sequence
of recovery actions during the recovery process [18]-[20].
Even though the PNR has been analyzed in the context of
traffic recovery, to the best of our knowledge, no existing
research has systematically addressed the PNR problem in the
context of slicing/VN recovery with guaranteed connectivity.
As an example, Ref. [21] modeled the PNR problem for
VNs considering traveling time, but it only covers failure
of links and the mapping of nodes is predefined and fixed.
Ref. [22] emphasized the importance of the reconfiguration
of the VNE in VN recovery, but it did not cover how to
sequentially recover the failed substrate elements. Moreover,
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Ref. [23] considered the role of portable network elements
and recovery trucks during slice recovery but it did not
address VNE reconfiguration. Similarly, Ref. [24] proposed
several heuristics to optimally distribute repair resources, but
reconfiguration of the whole VN is allowed at each stage,
which is not practical [25].

Different from previous works, we systematically define and
classify several strategies for progressive slice recovery. Based
on this classification, we designed novel algorithms for all
cases and compared, for the first time, the impact of content
connectivity with network connectivity during recovery. An-
other strength of our proposed strategies is that, differently
than in previous works, we consider re-embedding and all
types of failures, including link, node, and DC failures.

III. PROGRESSIVE SLICE RECOVERY PROBLEM UNDER
RECONFIGURATION LIMITATIONS

A. System Model and Problem Statement

We model the substrate network as a weighted undirected
graph G, = (N,, E,, D,), where N, is the set of substrate
nodes, F, is the set of substrate links, and D, is the set of
DCs. Every node i is equipped with CPU capacity W, and
every link (4,7) has capacity C(; ;). Every DC is connected
to a substrate node, as shown in Fig. 1. We assume that all
the DCs contain all the content required by network slices.
To access content from a DC, both the DC and the connected
node must be working (not failed). After a large scale failure,
we denote the set of failed substrate nodes, links, and DCs as
Ny, Ey, and Dy, respectively.

Similarly, we model the network slice as an undirected
graph G} = (N, E}, D}), where N, E, and D} represent
the set of virtual nodes, virtual links, and DCs in slice v,
respectively. Meanwhile, N;, E;, D; denote the set of virtual
nodes, virtual links, and DCs of all slices, respectively. V'
denotes the set of all slices. Every virtual node s can be
embedded to one node belonging to the set of candidate
substrate nodes G/[s], which are geographically close to each
other. The capacity requirements of virtual node s and link
(s,t) are denoted as w, and c(, 4, respectively.

Without loss of generality, we can divide the recovery
process into K stages. At each stage, a given amount of
reparation resources is available. We denote by Hy, Ry, and
G, the amount of resources for substrate nodes, links, and
DCs, respectively, at stage &k € K. Substrate node ¢ € N,
link (i,7) € E,, and DC d € D, require h;, 7(; j), and gq
amount of reparation resources to be repaired. We assume
that a substrate component cannot be partially repaired and, if
resources are not utilized in a stage, they can be used during
following stages. After recovering substrate elements, (re)-
embedding may be performed to embed the failing slices to
working substrate components. Note that, while the ultimate
goal is to recover all the slices, we particularly focus on how
the nodes, links, and connectivity of these slices are gradually
recovered during the K recovering stages.

B. Classification of Proposed Recovery Strategies

Recovery strategies differ based on the (re)-embedding con-
straints and therefore on the allowed reconfiguration actions

Tab. I: Proposed Recovery Strategies

‘ (Re)-embedding Allowed
Strategies o reconfiguration
constraints :
actions
. . Maintain both initial
Embodting (Hia-em) node and link Not Allowed
& embedding
Link Re-embedding Maintain only initial .
(Link-rem) node embedding Only links
Any Re-embedding Allow link and node Any link and
(Any-rem) re-embedding node
Any Re-embedding(~y1 , v2) Allow link and node Any ,lmk; .
(Any-rem(~y1, y2)) re-embedding 71 normal nodes;
’ ~2 DC nodes

(see Table I). The (re)-embedding constraint refers to whether
the operator wants to maintain the initial embedding of slice
nodes and/or links at each stage. The allowed reconfiguration
actions define the type (node or link) and amount of reconfig-
uration actions that can be performed at each stage compared
with the previous stage. During the recovery process, the
embedding of slice nodes and links can or cannot be changed
depending on the strategy adopted by the operators.

The recovery strategies are summarized in Table I:

e Fixed Initial Embedding strategy forces to maintain the
initial node and link embedding and so it does not allow
any reconfiguration.

o Link Re-embedding strategy maintains the initial node
embedding but allows virtual link reconfiguration (we
assume node reconfiguration is more expensive than link
reconfiguration [25] due to service disruption cost, hence
we allow complete link reconfiguration, as in [16]).

o Any Re-embedding strategy allows unlimited re-
embedding and reconfiguration of nodes and links at any
stage.

e Any Re-embedding(v,y2) strategy allows unlimited re-
embedding and reconfiguration of links and unlimited
re-embedding of nodes but limits the node and DC
reconfiguration actions at each stage.

More precisely, regarding Any Re-embedding(vi,72), at
each stage, at most 3 normal nodes (i.e., nodes that do not
connect to a DC) can be reconfigured, and at most v, DC
nodes (i.e., nodes that connect to a DC) can be reconfigured.
This additional constraint comes from the observation that a
DC node, when being reconfigured, has higher disruption time
than a “normal” node, since the routing of all connections to
that DC must be reconfigured. Hence, we enforced a different
maximum number of reconfigurations for normal nodes (1)
and for DC nodes (v2) at each stage. We consider also safe
to assume that: (i) no re-embedding is less expensive (in
terms of both recovery cost) than re-embedding, (ii) link re-
embedding is less expensive than node re-embedding, and (iii)
normal node re-embedding is less expensive than DC node
re-embedding. In conclusion, the four proposed re-embedding
strategies will offer different options to the trade-off between
recovery cost and recovery time. Note also that the 4 proposed
strategies can either enforce NC or CC, so the total number
of strategies is 8.
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C. NP-hard of Progressive Slice Recovery

Traditional PNR problem to recover the maximum flow
in the substrate network was proven as NP-hard in [18] by
reducing it to the Set Covering Problem. The PSR problem
is different, as it focuses on maximizing recovered slices and
involves, in some variants, virtual network re-embedding. We
prove in the following that PSR is also NP-hard, even if we
fix the link and node embedding by reducing the Weighted
Set Covering (WSC) Problem to it. Moreover, if we allow
re-embedding, the PSR problem contains the computationally
intractable VNE problem. We now show all slice recovery
strategies proposed in Table I are NP-hard.

Theorem 1: The PSR problem of maximizing total progres-
sively recovered slices is NP-hard, even for the case of one
stage and only link failures.

Proof: Since there is only one stage, the problem is reduced
to the VNE problem, which is NP-hard even with a fixed
node embedding when the flow is unsplittable [26]. Conse-
quently, Link Re-embedding, Any Re-embedding, and Any Re-
embedding(v1,y2) are NP-hard. Then, we can prove that also
Fixed Initial Embedding is NP-hard by showing that WSC, a
known NP-Complete problem can be reduced to the decision
version of the PNR problem with slicing for Fixed Initial
Embedding with one stage.

The WSC problem is described as follows: Given a set
S = {s1,...,8p}, a set of subsets of Si,...,S,, C S with
weights w1, ..., w,,, and an integer W, does there exist a set
I € {S1,...,Sm} such that all the elements in .S are covered
by I and Zsielwi <W.

Given an instance of WSC, we can construct an instance
of the decision version of the PSR problem with only one
stage and only link failures as follows. We use R to denote
the available resource for links. Each subset of the failed links
E; corresponds to a set .S;, whose weight w; refers to the
sum of the resources needed for all the links in the set to be
repaired. The element s; corresponds to a recovered slice. We
denote a set S; covers an element s; if recovering the links
in the set can recover the slice. The corresponding question
becomes whether there exists a recovery solution such that the
number of recovered slices is greater or equal to p.

Suppose that the WSC problem has a feasible solution,
which includes subsets Sy, ..., S;,/. In the corresponding PSR
problem, this feasible solution implies that there is a solution
by repairing all links in the set {(4, j)|(¢,7) € S1U...U S}
Such a recovery solution will lead to p recovered slices. On
the other hand, suppose that the PSR problem has a recovery
solution with recovered slices larger or equal than p by using
no more than R resources. In the corresponding WSC problem,
this implies that there exists a set I € {51, ..., S,/ } satisfies
that all the elements in S are covered by I and > g ; w; <
W. In conclusion, the PSR problem of maximizing total
progressively recovered slices is NP-hard, which is applicable
to both NC and CC.

IV. ILP FORMULATIONS FOR PROGRESSIVE SLICE
RECOVERY

In this section, we first introduce the variables and con-
straints of the ILP formulation, and then we describe the addi-

tional constraints required by each specific scheme separately.

A. Decision Variables and Recovery Objectives

Decision variables are listed in Table II. If the slice v
satisfies the NC or CC required by the operator at stage k, S¥
equals to 1. Objective function is to maximize accumulated
weighted number of recovered slices. Considering that differ-
ent slices may have different importance/weight (e.g., a slice
for entertainment is less important than a slice for emergency
communication), we denote the weight for slice v at stage k
as ozlfﬂ,. Besides, to break ties of different embedding with
the same number of working slices, the number of working
virtual links are also included in the objective function, giving
priority to solutions where a larger number of virtual links are
recovered (even if a slice is not completely recovered). The
set of unidirectional links in all slices is denoted as E; and
the weight of virtual link (s,t) € E; is denoted as a’;_’(&t).
Parameters are listed in Table III.

Tab. II: Variables Description for the ILP Model

Variable  Description
fs Binary, equals to 1 if virtual node s € Ny is
embedded to physical node i € Ny, at stage k € K
((f;))k Binary, equals to 1 if virtual link (s,¢) € Ej is
embedded to physical link (¢, 5) € E, at stage k € K
Sk Binary, equals to 1 if slice v € V
satisfies slice connectivity at stage k € K
,BZ.J.) Binary, equals to 1 if physical link (2, j) € E)
is working at stage k € K
B?S’t) Binary, equals to 1 if virtual link (s,t) € E;

is working at stage k € K
Qk Binary, equals to 1 if DC d € D; is connected

d,n

to virtual node n € N; at stage k € K

@I:L Binary, equals to 1 if the virtual node n can
reach at least one DC at stage k € K

pﬁ. M Binary, equals to 1 if physical link (¢,5) € Ep
is repaired at stage k € K

zf Binary, equals 1 if physical node i € N, is
repaired at stage k € K

bk Binary, equals to 1 if physical DC d € D,
is repaired at stage k € K
Tab. III: Parameters Description for the ILP Model

Variable  Description

Wi CPU capacity of physical node i € N,

Ca.j Routing capacity of physical link (i,7) € Ejp

W CPU capacity requirement of virtual node s € N;

C(s,t) Routing link capacity of virtual link (s,t) € E;

Hy, Amount of reparation resources available for substrate
nodes at stage k € K

h; Amount of reparation resources required for physical
node ¢ € N, to be repaired

Ry, Amount of reparation resources available for substrate
links at stage k € K

T(i,J ) Amount of reparation resources required for physical
link (2, 7) € E) to be repaired

gd Amount of reparation resources required for DC d € D,
to be repaired

Gy, Amount of reparation resources available for DCs
at stage k € K

ak Weight for slice v at stage k € K

A (58) Weight of virtual link (s,t) € E; at stage k € K
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Objective: Maximizing the accumulative weighted number of
recovered slices and virtual links (AWRSL).

K K
Z Z alfv”S{f + Z Z ag,(s,t)g(s,t) (1

k=0veV k=0 (s,t)€E;

B. Constraints

We first describe the constraints for the Any Re-embedding
strategy, being it the most generic case where all reconfigura-
tion actions are allowed.

1) Node embedding constraints: Eqn. (2) ensures that no
more than one virtual node of slice v is embedded to the
same physical node ¢ at stage k. Eqns (3) and (4) ensure that
a virtual node s is embedded to exactly one physical node
while satisfying the location requirement (i.e., to a physical
node among the set G5). Eqn. (5) ensures that the computing
capacity of the physical nodes is not exceeded.

> o omi <1 YweVieN, 2)
SEN}
Y o omf =1 VseN, (3)
1€G ’
Z' mi =0 VYseN “)
i€(Np—Gs) ?
k< w, ;
Dy wexmb S W, Vie N, )

2) Link embedding with flow constraints: Eqn. (6) is the
flow conservation constraint. Eqns. (7) and (8) ensure loops
are avoided while embedding a virtual link (s,t). Eqn. (9)
ensures that the virtual link (s,t) and (¢, s) are embedded to
same physical links (in opposite directions). Eqn. (10) ensures
that a virtual link (s, ¢) cannot be embedded to both directions
of a physical link and Eqn. (11) is the link capacity constraint.

(s t).k (s t),k ko ok
Z(LJ’)GE (3.9) Z(j,i)eE Ga) = Mhis = Mg ©)
Vi e Ny, (s,t) € By

(5 t),k .

Z(z‘,j)eE (g S Vie Ny, (s, t) € E @)
( t),k
Z(i,j)eE‘ (z,j) <1 Vj €N, (S>t) e E (8)
qéf;)) * qg f)) K0 V(i,j) € Ep(s,t) € B (9)
g+t <1 Vi) € By (s,t) € B, (10)
(s,t),k L.

Z(S,t)EEl C(Svt) * q(l] < C Z ]) v(27]) S Ep (11)

3) Network state constraints: Eqn. (12) ensures that the
physical link (4, j) is working (not failing) only when node 4,
node j, and the link (,7) are working. Eqn. (13) ensures a
virtual link (s,¢) is recovered only when all the physical links
it is embedded on are working. Eqn. (14) and (15) ensure that
a DC provides content to slices only if the DC is working.

Eqn. (12) contains “AND” operation, which can be lin-
earized as in [20].

k

k _ . k .
Blgy =Dy Pl Zl JEN Zl 4 ) € Ep
(12)
Blonxa* < B, Ws.t) € B (ij) € E, (13)
k

koo k !
A<y, (mbax Y0 W) vde Dy (4
QL. <Al YweVneN! deDy (15)

4) Connectivity constraints under substrate failures: The
constraints for NC are Eqns (16), (17), (18), and (21). The
constraints for CC are Eqns (16), (17), (19), (20), and (22).
Eqgn. (16) is the flow constraint to check whether a DC can
reach other virtual nodes. Eqn. (17) ensures that a DC can
not provide content to virtual node n through a failed virtual
link. Eqns (19) and (20) check whether a virtual node n can
reach at least one DC. Eqns (18) and (21) ensure that a slice
guarantees NC only if the slice is connected and at least one
DC d can provide content to all nodes. Eqn. (22) ensures a
slice guarantees CC only if all its nodes can reach content
from at least one DC.

Q](gd,n) S = d
(d )k (d,n)k _
DI Do fu =00l s=n
(s,t)EBY (t,s)€EY 0 otherwise
Vne N/, de D},se N’ :d#mn
(16)
f((adtT)l SBI(Z,IE) VHENlU,dED;),(s,t)EE;]:d#n
(17)
Qh<Qh, YweVineNy,deDy (18)
Q. >Qk, YweVineN,deDy (19)
—k k v
Q, < ZdeD? Qi, YweVneNl, (20)
k < =k v
Sk < ZdeD;J Q, YveV,de D; (21)
SE<QL VoeVine Ny (22)



IEEE TRANSACTION ON NETWORKING, VOL. X, NO. Y, APRIL 1, 2021

5) Recovery and resource constraint: Eqns (23)—(25) en-
sure that at each stage k, the resources used to recover
links, nodes, and DCs cannot exceed the corresponding total
resources up to that stage The variables related to links, nodes,
and DCs by fixing p( i) l, and bO are initialized to O.
Eqns (26)—(28) ensures that the physwal links, nodes, and DCs
are only repaired once.

k k
Lo
Zz:o Z(z‘,j)eEf Pij)Td) S Zl:l R (23)
) Leh < S H 24
leo ZieNf Zi M > 2121 ! 24)
g brga <SG 25
Zgzo ZdeDf d*9d = Zg:l ! (25)
k .o
Zker@,j) <1 Y(i,j) € E, (26)
k .
ZkEK F <1 Vie N (27)
k
ZkeK bi<1 Vvde D, (28)

C. Extension of ILP Model to Different Recovery Strategies

We now extend the ILP formulation of the Any Re-
embedding strategy of Sec. IV-B to the other three recovery
strategies (Fixed Initial Embedding, Link Re-embedding and
Node Re-embedding) by enforcing node and/or link embed-
ding constraints for all stages k € K.

1) Fixed Initial Embeddm% Strategy: We denote the initial
embedding as m; s and q, To keep initial node and link
embedding, Eqns (29) and (30) are added, which ensure that
the embedding is fixed at all stages.

k — -
- ]

Vi N, s €N (29)

(S t),k
i)

,(s t)

TP V(i,7) € Ep, (s,t) € E)

(30)

2) Link Re-embedding Strategy: This strategy allows link
re-embedding but constrains the initial node embedding, which
is obtained by Eqn. (29), but not Eqn. (30).

3) Any Re-embedding(-y1,v2) Strategy: This strategy al-
lows node and link re-embedding and link reconfiguration
actions but limits node and DC reconfiguration to v, and 72),
respectively. So, we impose Eqns 31 and 32 as follows:

E ) E (mfs_mfa*mfgl
1€(Np—Ng) sEN; > ) )

)<m  GD

(32)

E E : fé - mk mk
i€Ng seNl ’

k k

where m; ; — mj  * m ! equals 1 if the embedding of

node s in stage k is dlfferent from the stage k£ — 1.

<
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Fig. 2: Sequence diagram of the two-phases progressive slice recovery
algorithm.

V. TWO-PHASES PROGRESSIVE SLICE RECOVERY
ALGORITHM

Given the computational limitation of the previous formu-
lation, in this section, we introduce a two-phases progressive
slice recovery (2-phase PSR) algorithm to solve the PSR
problem. First, we overview the overall proposed 2-phase PSR
algorithm. Then, we propose a deterministic rounding proce-
dure for the first phase, i.e., the recovery-sequence phase, and
we discuss how to use the column generation algorithm (CG)
to speed up the second phase, i.e., the slice embedding phase.
Finally, we summarize the resulting 2-phase PSR algorithm
using a detailed pseudocode.

A. Generalized Procedure for Recovery

Given the hardness of the PSR problem (see Section III-C),
we divide the problem into two parts, 1) recovery sequence
and 2) slice embedding. Fig. 2 shows the sequence diagram
of the two-phases progressive slice recovery algorithm.

Recovery sequence. First, we solve the LP relaxation of
the ILP model in Section IV separately for each stage and
obtain the fractional solution of the relaxed LP model in
polynomial time. Second, we propose a deterministic rounding
based procedure to approximate the recovery sequence from
the solution of the LP relaxation. We solve the LP relaxation,
not in a single round, but stage by stage, because a gradual
stage by stage approach provides a more close approximation
of the recovery sequence at initial stages. More specifically,
note that, if we perform LP relaxation, the obtained solution
will return, during initial few stages, that all virtual links
are repaired, even though not all the physical elements over
which these virtual links are mapped are repaired; hence, in
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Begin of failure Recovery End of recovery
Stages
Stage 1 Stage u
—
Unsolved stage Solved stage

Fig. 3: An example of selecting stage to solve.

the following stages, since LP relaxation wrongly considers
virtual links are already repaired, the model will not repair
other physical components. Consequently, a single-round LP
relaxation does not provide useful information for recovery
sequence at following stages.

Slice embedding. We use CG' to solve the slice embedding
in the damaged physical network. The order for solving
different stages is important since it restricts the recovery
and embedding process of other stages. Each slice may have
different weights in different stages, and the weight measures
the importance of the slice at that stage. We start solving
stages with greater weights, which configures priority to more
important slices. When solving the embedding in a specific
stage, the node embedding needs to be consistent with the
(re)-embedding constraints across each stage. For Fixed Initial
Embedding, we add Eqns (29) and (30) from Section IV-C.
For Link Re-embedding, we add Eqn. (29). No additional
constraints are needed for Any Re-embedding. For Any Re-
embedding(vy1,7y2), if we have already solved the embedding
in stage k; and we want to solve the stage ko > ki, the node
embedding must satisfy the Eqns (33) and (34). Set M,’jl and
M 5lcontain embedding of normal nodes and nodes with DC
at stage k1. > 5)e Mkl (1— m 2) is the number of embedding
of normal noées that are d1srupted due to reconfiguration.
Z(l S)th(l - mﬁs) is the number of embedding of DC
nodes that are disrupted due to reconfiguration.

Z(i S)EIV[kl (1 - mf,i) < (kQ - kl) * Y1
(1—mf2) < (ko — k1) %7

(33)

4
(i,s)eMF? (34)

B. Deterministic Rounding based Recovery Sequence Deter-
mination

The deterministic rounding-based procedure consists of two
steps. First, based on chosen version of ILP (i.e., based on
the chosen recovery strategy), we solve the corresponding LP
relaxation. Second, we propose Algorithm 1, a deterministic
rounding based procedure, to obtain the recovery sequence for
substrate nodes, links, and DCs. The variable p(z ) % ,bd can
be seen as the likelihood to repair the corresponding links,
nodes, and DCs at stage k. At each stage k*, the substrate
components that are allowed to be repaired are the ones that

'CG is a widely used methodology to solve large scale ILP problems. It
has been shown to be scalable for large topologies on the VNE problem [27].

are recovered between k; and k,, (line 1, 7, 13), which are the
nearest solved stage before and after stage k*, respectively.

As shown in Fig. 3, we select stage k to solve, for which the
failed links are denoted as E'y. Since we already solved stage
u since it is more important, the recovered links between stage
k and stage u can not be the failed links at stage u since it is
not used until stage u. We denote the failed links, nodes, DCs
at stage [ as ¢, Ny, and Dy, which is the failed components
in the current phase. Besides, the failed links, nodes, DCs at
stage u are denoted as E,, N,, and D,. Since the links are
not recovered until stage u, the links that are allowed to be
repaired at current phase are Ey — E,, (line 7). The algorithm
recovers the links according to their values of p p(l j until the
remained resource cannot recover any links (line 3, 4, 5). The
nodes and DCs are recovered using similar approach as for
links (line 7-18).

Algorithm 1 Deterministic rounding procedure for recovery
sequence

Input: Ef,Nf,Df,EmNu,Dle,Hl,Gh Z])’Zl’bl
Output: Ey¢, Ny, Dy, p”,zl ,bf

L By < {(i,5)|ru ) < R, (4,j) € Ef — Eyu}

2: while E, # 0 do

3. Let (i%,5%) « CL?“gmax(i,j)GEr{p%i,j)|T(i,j) < El}

4 Pl gey & LR Bu—r(e o), By = By —{(i*, )}

5 E,. {(i,j)|7"(i7j) < Ry, (i,j) € Ey — E,}
6: end while

7. Ny < {ilh; < Hy,i € Ny — N, }

8: while N, # () do

9 Let i* « argmazien, {ZtHh < Hi}

hjx ,Nf <—Nf —{Z*}
— N}

10:  zh < 1,Hy + Hy —
11: N <—{z|h < Hi,i€ Ny
12: end while

13: D, %{d|gd<é1,dEDf*Du}

14: while D, # 0 do

15:  Let d* < argmazqep, {bd|gd < G1}
16: bl oy ¢ 1,G1 ¢ G1 — g4+, Dy = Dy — {d*}
17: D, (—{d‘gdSGl,dGDf—Du}

18: end while

C. CG based Slice Embedding in Damaged Network

After having determined which failed substrate components
have been recovered at the end of each stage in the previous
phase, CG performs slice embedding using an auxiliary graph
in [28]. An example of the auxiliary graph is reported in
Fig. 4, where every virtual node s is connected to the substrate
nodes in G[s] with dotted lines. The set of auxiliary links is
denoted as A.. Finding an embedding for virtual link (A, B) is
equivalent to finding a path from A to B in the auxiliary graph.
CG requires to identify a reduced master problem (RMP) and a
pricing problem, which are solved iteratively. We keep solving
the LP relaxation of RMP and search for a path related to an
improving non-basic variable for RMP, then add the variable
to RMP until no path can improve the objective value of the



IEEE TRANSACTION ON NETWORKING, VOL. X, NO. Y, APRIL 1, 2021

(a) Initial path for virtual links

(b) Reconfigured path for virtual links

Network  Selected node Node embedding
flow embedding candidate

] [ J
Virtual  Physical Disaster

Failure
node node area

Fig. 4: Auxiliary graph in CG

RMP. At last, we solve the RMP with integer constraints to
get the embedding of slices.

1) Process for slice embedding decision: The RMP gen-
erates embedding for only one stage. We denote the set of
paths for virtual link (s,t) as P, ). Variable 61(’;{1) equals to
1 if the virtual link (s,t) uses the path p at stage k. The
parameter 5?;5;5J ) equals to 1 if the path p for the virtual link
(s,t) contains link (i, j) € E,UA,, denoted as E,,. The RMP
problem aims to maximize the weighted working slices and
virtual links, according to the following objective function:

k k k =Pk
max Z ay, xSy, + Z Z Qg (s,1) * q](gs,t) (35
veV (s,t)EE; PEP(s 1)

Moreover, the RMP contains some constraints from Sec. IV,
namely Node embedding constraints, Network state con-
straints and Connectivity constraints under substrate failures
except Eqn. (13). The following constraints are then added:

A= e

p,(4,5) , =p,k k
Dty Dpery St ¥ e *Tany S Cla * Bliy)

(mf = bf) Vvde D, (36)

(i, j) € E,
37
_p,k —
Zpep(svt) @t <1 Wst) e B (38)
p,(i,s1)  —_p.k k .

D er,, Sy <mba Vs e (9
> F > By V(s,t) € B (40)

PEP(5 1) (s,t) = F(s:t)

Eqn. (36) ensures that a DC is available only if the physical
node that it is embedded to is working. Eqn. (37) ensures that if
the physical link (i, j) is working, the capacity of the logical
links embedded over it should not exceed its capacity. P,
is the set of possible paths for the embedding of virtual link
(s,t). Eqn. (38) ensures there is one path selected for a virtual
link. Eqn. (39) ensures that virtual link (s, ¢) is not embedded
to the path that contains node embedding (¢, s1) if virtual node
s1 is not embedded to physical node ¢. Variable b’; is fixed
to 0 if a DC d fails. Eqn. (40) ensures that a virtual link (s,7)
works only when one working path is selected for it.

2) Embedding path selection: The pricing problem aims
to find paths that improve the objective value of the master
problem and adds the corresponding path to the set P ;. The
variable 1. j, $2.s.t, $5 . Pa,5,¢ are the dual variables of the
Eqns (37), (38), (39), and (40). The variable U, ;) equals to
1 if the pricing problem generates a path for virtual link (s, t)
while the fgf;; equals to 1 if the generated path for virtual
link (s, ) includes the physical link (i, 7). Set E, denotes the
unidirectional link in slice v. A path can improve the objective
value if the reduced cost (RC) of the corresponding variable

q?;kt) is negative. The objective function of the pricing problem

is to minimize the RC of qf;kt), which is listed as follows:

. —(s,t)
min = Y brig* i * i)
(1,7)EEp (s,t)EE,
*(S)t)

sl,i
= D baxUan— DL D dile *Tu)
(s,t)EE, (s,t)€E; (sL,i)€A,
- Z Gas,0 % Ugs ) + Z a’;,(s,t)*U(s,t)
(s,t)EE, (s,t)EE
41

The constraints of the pricing problem ensure that the path
found for virtual link (s,t) € E; is feasible and does not go
through failed substrate components. Eqn. (42) ensures that
the pricing problem only generates a path for one virtual link.
Eqn. (43) ensures that the generated path does not contain
failed nodes or links. Eqn. (44) is the flow conservation
constraint for each virtual link. Eqn. (45) ensures that at most
one path is selected for each virtual link. Eqn. (46) ensures
that a path does not contain both directions of a physical link.
Eqn. (47) ensures that for each virtual link (s,t) € E, the
two virtual node s and ¢ are embedded to different physical

nodes.
Z:<s tYEE, Usty =1 V(s,t) € B

—(s,t) - .. . .
fuy) =0 V(st) € Ei,V(i,j) € Ey ||i € Nyl j€ Ny

(42)

43)
—(s,t) —(s,8) U(s,t) 1=3S8
Z(i,j)efp Fig) — Z(j’i)efp JTa) =19 Usp 1=t
0 otherwise
V(S, t) S El
(44)
7(5125)
Z(m)ea Z(s,ime fley =1 (45)
—(s,t) —(s,t) . o
f(z,;) + f(JrL) <1 V(S,t) € FEy, (273) c Ep (46)
—(s,t) o
Z(ij)EE‘p fap =1 Vist) ek (47)

D. Scalable Two-phases Progressive Slice Recovery Algorithm

We now illustrate the details of the proposed scalable
progressive slice recovery algorithm through Algorithm 2,
which integrates the two phases, namely recovery sequence
(line 5-13) and slice embedding (line 14-16), and solves all
stages iteratively.
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All the strategies for PSR problem take same inputs except
that Any Re-embedding(vy1,72) takes two more inputs v; and
72 to define the reconfiguration action. The variable p; equals
to 0 if the recovery sequence and slice embedding are not
determined at stage k. Stage O is the stage that no resources
are used and stage k. is the last stage for recovery. The
failed links, nodes, and DCs at stage k are represented as
Ny x, Efk, and Dy ., respectively.

Algorithm 2 Two-phases progressive slice recovery algorithm

IHPUt: Nfa Dfa Efv O/f,va alg’(s,t)(v 1, 72)

Qutput: pf)j, 2F bk, mﬁs, qg;;))k
Initialisation : p, = 0,iter =1
Lopy =1, nt1 = 1,? 0,1
2: Eﬁ_l — Ef,Nf)_l — Nf,Dﬁ_l — Df
3 Ef koot < O Nk 1 4 0, Dpkyos1 < 0
4: while iter < k. + 1 do
5

Find k* such that " of* = maz{ Y ok|0 < k <

veV veV

kmaxa’yk 7é 1}

6: g+ < 1 dter < iter + 1

7:  Find k; such that k; < k*, pg, =1 and pg, = 0,Vk; <
k < k*

8:  Find k,, such that k,, > k*, ug, =1 and pp, = 0,Vk* <
k< kmaw

9: Ef(—Eﬁkl,Nf(—Nf’k”Df(—Dﬁh

10: E, + Eﬁk N, Nf,kua D, + Df,ku

u )

_ k* _ k* _ k*
11: H, + Z Hk,R1<— Z Rk,G1<— Z Gk
k=k, k=k; k=k;

12:  Solve the relaxed LP model with constraints (1)-(28)
and constraints in Section V-A, get pi—“’ s zZE b

13:  Call Algorithm 1 to get recovery sequence

14: Ry~ %Ek*,Hk* <—F;€*,Gk* <_§k*

15: Ef,k* (—Ef,Nﬁk* (—Nf,Dﬁk* (—Df

16:  Solve slice embedding at stage k£* using CG in Sec-
tion V-C.

17: end while

%

The Algorithm 2 initializes the failed component at stage —1
and k.41, Which serves as the bound for failed components
(line 1-3). In each iteration, after determining the unsolved
stage k* with the biggest weight (line 5), the algorithm finds
the stages k; and k, to serve as the bounds (line 7, 8).
Then, the failed components at stage k; are used as the failed
component at stage k*, which is represented as E¢, Ny, and
Dy as the one in the ILP model (line 9). The failed components
at stage k, must be a subset of the failed component at stage
k*, which are E,, N,, and D, (line 10). The stages for the
relaxed LP contains two stages (stage 0 and 1), which is
denoted as K. Fl,ﬁl, and G, are the resources for nodes,
links, and DCs at stage k*, which is used in the relaxed LP
as the resources in stage 1 (line 11, 12). After calling the
deterministic rounding procedure in Algorithm 1 to get the
recovery sequence (line 13), we save the remained resources
and the failed component at stage £* (line 14, 15) and solve
the slice embedding at stage k* (line 16).

VI. NUMERICAL RESULTS

In this section, we first validate the performance of the
proposed 2-phase PSR algorithm, comparing its performance
to that of ILP in terms of optimality gap and execution
time. Then, we compare different recovery strategies in large
network scenarios.

A. Simulation Setup

We implemented the ILP formulations using AMPL (A
Mathematical Programming Language) and CPLEX MIP
solver. The simulations are performed on a workstation with
Intel(R) Core(TM) i5-8400 CPU (6 cores @ 2.80GHz) pro-
cessor and 32768 MB of memory. In our evaluations, we
consider two substrate network topologies, a small network
topology (small) (7 nodes and 11 bidirectional links) and a
large network topology (large) (the USnet topology in [20],
24 nodes and 43 bidirectional links). Similar to [16], capacities
of substrate links and nodes for the small and large network
topologies are set to generic values following a uniform dis-
tribution in [20, 80] and [80, 100], respectively, and capacity
requirements of virtual nodes and links are also uniformly
distributed in [1, 5]. To compare ILP and the proposed 2-
phase PSR algorithm, we consider the small substrate network
topology (shown in Fig. 1) with 10 slices embedded to it,
each consisting of 3 virtual nodes in which two are DCs (DC
nodes), and 3 virtual links. We consider that every link, node,
and DC in the 7-node substrate network fail with a probability
of 30%. To extend our evaluation, we compare the different
recovery strategies considering the 2-phase PSR algorithm in
the large substrate topology with 20 embedded slices. The
number of virtual nodes in each slice is an integer value
uniformly distributed in [5, 10] in which two are DCs (DC
nodes). We consider three different cases of failure rate where
every link, node, and DC fail with a probability of 30%, 40%,
and 50%, respectively.

B. Comparison of ILP and the 2-phase PSR Algorithm

Now we compare the performance of ILP and 2-phase PSR
algorithm. Specifically, we compare four different scenarios,
namely, ILP with guaranteed NC (NC-ILP), 2-phase PSR
algorithm with guaranteed NC (NC-P), ILP with guaranteed
CC (CC-ILP), and 2-phase PSR algorithm with guaranteed CC
(CC-P) for all the four recovery strategies reported in Table 1.
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Fig. 5: Comparison of ILP and the proposed 2-phase PSR algorithm.

Fig. 5(a) shows the objective function, i.e., the accumu-
lative weighted number of recovered slices and virtual links
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(AWRSL of the four scenarios for the four recovery strategies).
Recapping, in terms of AWRSL, Fixed Initial Embedding
reaches the lowest value while Any Re-embedding has the
highest value. Any Re-embedding(yi,72) can significantly
increase AWRSL compared with Link Re-embedding by just
reconfiguring few nodes. For example, AWRSL of Link Re-
embedding in NC-ILP is 465, which can be increased to 502
by allowing reconfiguration action of 2 normal nodes and 1 DC
node in Any Re-embedding(v.,y2). The objective of Any Re-
embedding in NC-ILP is 530, which is 5.6% larger than Any
Re-embedding(v1,v2). Moreover, results show that CC has
around 10% higher objective value than NC in all strategies
for both the ILP and the 2-phase PSR algorithm. Regarding the
execution time (Fig. 5(b)), results show that the proposed 2-
phase PSR algorithm has a significantly lower execution time
than ILP, especially for Any Re-embedding(y1,v2) and Any
Re-embedding. For instance, CC-ILP takes 6798.10 seconds
to get the solution of Any Re-embedding(3,1) while CC-P
requires only 19.13 seconds. This savings in execution time
are achieved for very small optimality gaps between ILP
and the proposed 2-phase PSR algorithm. The 2-phase PSR
algorithm reaches optimum in all cases except that of Link
Re-embedding, which is around 5%. The optimality gap for
CC is less than 6% for both of Fixed Initial Embedding and
Link Re-embedding while for both of Any Re-embedding and
Any Re-embedding(~y1,2) the optimality gaps are lower than
2%.

In conclusion, the proposed 2-phase PSR algorithm outper-
forms ILP in terms of execution time, paying off only a small
optimality gap compared with ILP. Moreover, results show
how AWRSL can be significantly increased by reconfiguring
only few nodes or by guaranteeing CC in place of NC.

C. Evaluation on a Large Topology with Network Connectivity
(NC)

To extend our comparison of the different recovery strate-
gies, we contrast their AWRSL (obtained with our proposed 2-
phase PSR algorithm) on the large substrate network topology.
Fig. 6(a) and (b) plot the AWRSL and the number of recovered
slices at stage O (i.e., the “AWRSL at stage 0) with guaranteed
NC for the different recovery strategies with respect to dif-
ferent percentages of substrate failures ranging between 20%
and 40%, respectively. Results show that, in all cases, the re-
embedding constraints and the allowed reconfiguration actions
play a decisive role in the recovery. Specifically, the AWRSL
of Link Re-embedding makes up only 36.3%, 73.6%, and
89.1% of those of Any Re-embedding at substrate failure rates
of 20%, 30%, and 40%, respectively (note that, for a higher
number of failed network elements, the gain of embedding
reconfigurability decreases as the number of working substrate
elements that can be re-embedded over are smaller). Moreover,
results also show that as the percentage of substrate failure
becomes larger, Any Re-embedding(vy1,7v2) strategy becomes
increasingly competitive compared to Fixed Initial Embedding
and Link Re-embedding as, even with a small number of
reconfiguration action of normal nodes and DC nodes allowed,
the objective values of Any Re-embedding(5,2) strategy are
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Fig. 6: Recovery outcome at different substrate network failure rate
of the different recovery strategies with NC.
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Fig. 7: Number of reconfigurations vs. substrate network failure rate
for the different recovery strategies with NC.

19.5%, 42.7%, and 58.5% larger than Link Re-embedding.
Fig. 6(b) shows the objective value at stage 0, before any
substrate component is repaired®. Results show the advantage
Any remapping recovery strategy provides compared to dif-
ferent recovery strategies. This implies that disaster relief can
happen much faster right after the failure by allowing different
reconfiguration actions.

Fig. 7 shows the total number of reconfigurations for normal
nodes and DC nodes at all stages. Fixed Initial Embedding and
Link Re-embedding are not shown since they do not have any
reconfigurations of nodes. When the substrate failure rate is
20%, the number of reconfiguration actions of normal nodes
and DC nodes in Any Re-embedding is more than 10 times
and 4 times larger than Any Re-embedding(5,2), however,
the AWRSL of Any Re-embedding is only 1.14 times that
of Any Re-embedding(5,2), demonstrating the capability of
Any Re-embedding(~y1,7y2) to reach promising trade-off among
numbers of node re-embedding and recovery performance. In
conclusion, by selecting the number of allowed reconfigura-
tions of nodes at each stage carefully, the network operator
can achieve satisfying recovery performance with acceptable
number of reconfigurations.

Fig. 8 shows the recovered capacity of nodes and links in
all slices per stage under different substrate failure rate while
enforcing NC. Recovering the capacity as early as possible
means recovering the slices as early as possible. In all cases,
Any Re-embedding reaches the maximum capacity earliest
while Fixed Initial Embedding is the latest to recovering all
the capacities. This implies that the network operator can
recover the virtual node and link capacity earlier if the number
of allowed reconfiguration of nodes is larger. Besides, as

Note that different strategies shows different values of the objective since
they allow different reconfiguration actions
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NC.

the percentage of substrate failures increases, the number of
allowed reconfiguration also becomes increasingly important.

D. Evaluation on a Large Topology with Content Connectivity
(CC)

We now compare the performance of the different recovery
strategies considering CC. Fig. 9(a) and (b) plot the AWRSL
and the number of recovered slices at stage 0 (i.e., the
“AWRSL at stage 0”) with guaranteed CC for the different
recovery strategies with respect to different percentages of
substrate failures ranging between 20% and 40%, respectively.
Even with a small number of reconfiguration action of normal
nodes and DC nodes allowed, the objective values of Any
Re-embedding(5,2) strategy enforcing CC are 16.1%, 32.8%,
and 56.3% larger than Link Re-embedding.Moreover, Fig. 10
shows the recovered capacity of nodes and links in all slices
per stage under different substrate failure rate while enforcing
CC. Results show that the recovery outcome and the number of
reconfigurations when enforcing CC are consistent with those
when enforcing NC. Specifically, when enforcing CC, AWRSL
can be improved by a value ranging from 1% to 8% with
respect to NC.

VII. CONCLUSION

With the increased adoption of 5G services (slices) that
are characterized by high-reliability requirements (e.g., service
for remote diagnosis or smart factory), a fast slice recovery
is crucial in case of failures affecting the network infras-
tructure. In this paper, we proposed, for the first time to
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Fig. 9: Recovery outcome at different substrate network failure rate
of the different recovery strategies with CC.
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Fig. 10: Number of reconfigurations vs. substrate network failure rate
for the different recovery strategies with CC.

the best of our knowledge, the Progressive Slice Recovery
(PSR) problem. We systematically classified different recovery
strategies for rapid slice recovery when allowing re-embedding
and reconfiguration of slices and when not, while ensuring
Network Connectivity (NC) or Content Connectivity (CC), and
proved its NP-hardness. We first formulated the PSR problem
mathematically through an ILP model, which maximizes the
accumulative weighted number of recovered slices and virtual
links (AWRSL). Then, to obtain an approximation of the
best recovery sequence, we relaxed the integer constraints
and used the deterministic rounding technique to obtain the
recovery sequence of substrate components. After that, we
performed the embedding of network slice through Column
Generation (CG). After bench-marking the proposed CG-based
approach to the ILP, we performed exhaustive simulations
considering different failure rates of the substrate network. Our
illustrative numerical results show the relative performance
of eight different slice recovery strategies in terms of the
accumulative weighted number of recovered slices. Results
show that recovery strategies that allow any re-embedding
achieve an AWRSL 300% higher than recovery strategies
with limited or no reconfiguration. Nevertheless, our numerical
results show that even with a limited number of re-embeddings
allowed, the recovery outcome can be significantly improved.
Moreover, results show that by guaranteeing CC instead of
NC, recovery outcome can be improved by up to 56.3%.

REFERENCES

[1]1 S. Zhang, “An overview of network slicing for 5G,” IEEE Wireless
Communications, vol. 26, no. 3, pp. 111-117, Jun. 2019.

[2] P. Caballero, A. Banchs, G. d. Veciana, and X. Costa-Pérez, “Multi-
Tenant Radio Access Network Slicing: Statistical Multiplexing of Spatial
Loads,” IEEE/ACM Transactions on Networking, vol. 25, no. 5, pp.
3044-3058, Oct. 2017.



IEEE TRANSACTION ON NETWORKING, VOL. X, NO. Y, APRIL 1, 2021

[3]

[4]

[5]

[6]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

(19]

[20]

[21]

[22]

[23]

N. M. M. K. Chowdhury, M. R. Rahman, and R. Boutaba, “Virtual
network embedding with coordinated node and link mapping,” in /JEEE
International Conference on Computer Communications (INFOCOM),
Apr. 2009, pp. 783-791.

N. Shahriar, S. Taeb, S. R. Chowdhury, M. Tornatore, R. Boutaba,
J. Mitra, and M. Hemmati, “Achieving a fully-flexible virtual network
embedding in elastic optical networks,” in IEEE International Confer-
ence on Computer Communications (INFOCOM), Apr. 2019, pp. 1756
1764.

Q.-T. Luu, S. Kerboeuf, A. Mouradian, and M. Kieffer, “A Coverage-
Aware Resource Provisioning Method for Network Slicing,” IEEE/ACM
Transactions on Networking, vol. 28, no. 6, pp. 2393-2406, Dec. 2020.
F. Fossati, S. Moretti, P. Perny, and S. Secci, “Multi-Resource Allocation
for Network Slicing,” IEEE/ACM Transactions on Networking, vol. 28,
no. 3, pp. 1311-1324, Jun. 2020.

C. Sexton, N. Marchetti, and L. A. DaSilva, “On Provisioning Slices and
Overbooking Resources in Service Tailored Networks of the Future,”
IEEE/ACM Transactions on Networking, vol. 28, no. 5, pp. 2106-2119,
Oct. 2020.

N. Shahriar, R. Ahmed, S. R. Chowdhury, M. M. A. Khan, R. Boutaba,
J. Mitra, and F. Zeng, “Virtual network embedding with guaranteed
connectivity under multiple substrate link failures,” IEEE Transactions
on Communications, vol. 68, no. 2, pp. 1025-1043, Feb. 2020.

G. Le, S. Ferdousi, A. Marotta, S. Xu, Y. Hirota, Y. Awaji, M. Tornatore,
and B. Mukherjee, “Survivable virtual network mapping with content
connectivity against multiple link failures in optical metro networks,”
Journal of Optical Communications and Networking, Jul. 2020.

X. Li, S. Huang, S. Yin, Y. Zhou, M. Zhang, Y. Zhao, J. Zhang, and
W. Gu, “Design of k-node (edge) content connected optical data center
networks,” IEEE Communications Letters, vol. 20, no. 3, pp. 466—469,
Mar. 2016.

J.-P. Vasseur, M. Pickavet, and P. Demeester, Network recovery: protec-
tion and restoration of optical, SONET-SDH, IP, and MPLS. Elsevier,
2004.

J. Rak and D. Hutchison, Guide to disaster-resilient communication
networks.  Springer, 2020.

M. M. A. Khan, N. Shahriar, R. Ahmed, and R. Boutaba, “Multi-path
link embedding for survivability in virtual networks,” IEEE transactions
on network and service management, vol. 13, no. 2, pp. 253-266, 2016.
B. Mukherjee, M. F. Habib, and F. Dikbiyik, “Network adaptability
from disaster disruptions and cascading failures,” IEEE Communications
Magazine, vol. 52, no. 5, pp. 230-238, May 2014.

S. R. Chowdhury, R. Ahmed, M. M. Alam Khan, N. Shahriar,
R. Boutaba, J. Mitra, and F. Zeng, “Dedicated protection for survivable
virtual network embedding,” IEEE Transactions on Network and Service
Management, vol. 13, no. 4, pp. 913-926, Dec. 2016.

L. Gao and G. N. Rouskas, “Virtual network reconfiguration with load
balancing and migration cost considerations,” in IEEE International
Conference on Computer Communications (INFOCOM), Apr. 2018.
Z.Zhou, T. Lin, and K. Thulasiraman, “Survivable cloud network design
against multiple failures through protecting spanning trees,” Journal of
Lightwave Technology, vol. 35, no. 2, pp. 288-298, 2017.

J. Wang, C. Qiao, and H. Yu, “On progressive network recovery after
a major disruption,” in IEEE International Conference on Computer
Communications (INFOCOM), Apr. 2011.

S. Ciavarella, N. Bartolini, H. Khamfroush, and T. La Porta, “Progressive
damage assessment and network recovery after massive failures,” in
IEEE International Conference on Computer Communications (INFO-
COM), May 2017.

S. Ferdousi, M. Tornatore, F. Dikbiyik, C. U. Martel, S. Xu, Y. Hirota,
Y. Awaji, and B. Mukherjee, “Joint progressive network and datacenter
recovery after large-scale disasters,” IEEE Transactions on Network and
Service Management, pp. 1-1, 2020.

C. Ma, J. Zhang, Y. Zhao, M. F. Habib, S. S. Savas, and B. Mukherjee,
“Traveling repairman problem for optical network recovery to restore
virtual networks after a disaster [invited],” IEEE/OSA Journal of Optical
Communications and Networking, vol. 7, no. 11, pp. B81-B92, Nov.
2015.

N. Shahriar, R. Ahmed, S. R. Chowdhury, A. Khan, R. Boutaba, and
J. Mitra, “Generalized recovery from node failure in virtual network
embedding,” IEEE Transactions on Network and Service Management,
vol. 14, no. 2, pp. 261-274, Jun. 2017.

S. Ferdousi, M. Tornatore, S. Xu, Y. Awaji, and B. Mukherjee, “Slice-
aware service restoration with recovery trucks for optical metro-access
networks,” in 2019 IEEE Global Communications Conference (GLOBE-
COM), Dec. 2019.

[24]

[25]

[26]

[27]

(28]

M. Pourvali, K. Liang, F. Gu, H. Bai, K. Shaban, S. Khan, and N. Ghani,
“Progressive recovery for network virtualization after large-scale disas-
ters,” in 2016 International Conference on Computing, Networking and
Communications (ICNC), Feb. 2016, pp. 1-5.

Y. Zhu and M. Ammar, “Algorithms for assigning substrate network
resources to virtual network components,” in IEEE International Con-
ference on Computer Communications (INFOCOM), Apr. 2006.

A. Fischer, J. F. Botero, M. T. Beck, H. de Meer, and X. Hesselbach,
“Virtual network embedding: a survey,” IEEE Communications Surveys
Tutorials, vol. 15, no. 4, pp. 1888-1906, 2013.

R. Mijumbi, J. Serrat, J.-L. Gorricho, and R. Boutaba, “A path generation
approach to embedding of virtual networks,” IEEE Transactions on
Network and Service Management, vol. 12, no. 3, pp. 334-348, Sep.
2015.

Q. Hu, Y. Wang, and X. Cao, “Resolve the virtual network embedding
problem: A column generation approach,” in IEEE International Con-
ference on Computer Communications (INFOCOM), Apr. 2013.

Qiaolun Zhang is pursuing the master’s degree in
School of Electronic Information and Electrical En-
gineering in Shanghai Jiao Tong University, Shang-
hai, China. He is selected to a double master degree
program between Shanghai Jiao Tong University
and Politecnico di Milano. He received his M.S.
degree in computer science and engineering from the
Politecnico di Milano in 2020. He has participated in
many projects in lab of next generation networking.
His research interests include Machine Learning,
Internet of things(IoT), Optimization, etc.

Omran Ayoub is a post-doctoral research fellow
at the Department of Electronics, Information and
Bioengineering (DEIB) at Politecnico di Milano,
Milan, Italy, where he obtained his M. Sc. degree

PLACE in 2015 and his Ph.D. degree in 2019. His research
P}];Ig}zo interests are in the field of optical networking, cloud

computing and optimization of communications net-
works. Dr. Ayoub is author of more than 30 papers
in the area of communication networks, published in
international journals and conference proceedings.




IEEE TRANSACTION ON NETWORKING, VOL. X, NO. Y, APRIL 1, 2021

Jun Wu (S’08-M’12) received the Ph.D. degree
in information and telecommunication studies from
Waseda University, Japan, in 2011. He was a Post-
Doctoral Researcher with the Research Institute for
Secure Systems, National Institute of Advanced
Industrial Science and Technology (AIST), Japan,
from 2011 to 2012. He was a Researcher with the
Global Information and Telecommunication Insti-
tute, Waseda University, Japan, from 2011 to 2013.
He is currently a professor of School of Electronic
Information and Electrical Engineering, Shanghai
Jiao Tong University, China. He is also the vice dean of Institute of Cyber
Science and Technology and vice director of National Engineering Laboratory
for Information Content Analysis Technology, Shanghai Jiao Tong University,
China. He is the chair of IEEE P21451-1-5 Standard Working Group. He
has hosted and participated in a lot of research projects including National
Natural Science Foundation of China (NFSC), National 863 Plan and 973
Plan of China, Japan Society of the Promotion of Science Projects (JSPS), etc.
His research interests include the advanced computing, communications and
security techniques of software-defined networks (SDN), information-centric
networks (ICN) smart grids, Internet of Things (IoT), 5G/6G, etc., where he
has published more than 140 refereed papers. He has been the Track Chair of
VTC 2019, VTC 2020 and the TPC Member of more than ten international
conferences including ICC, GLOBECOM, etc. He has been a Guest Editor of
the IEEE Sensors Journal, Sensors, ICT Express. He is an Associate Editor
of the IEEE Access, IEEE Networking Letters.

Francesco Musumeci Biography text here.

PLACE
PHOTO
HERE

Gaolei Li (5’16, M’21) received the B.S. degree
in electronic information engineering from Sichuan
University, Chengdu, China, and PhD degree in
Cyber Security from Shanghai Jiao Tong University,
Shanghai, China. From Oct. 2018 to Sep. 2019,
he visited the Muroran Institution of Technology,
Muroran, Japan, supported by the China Scholarship
Council Program. Now, he is an Assistant Professor
in School of Electronic Information and Electrical
Engineering, Shanghai Jiao Tong University, Shang-
hai, China. His research interests include 5G/6G
security, machine learning security and blockchain. He has received best paper
awards from the IEEE ComSoc CSIM Committee and Chinese Association for
Cryptologic Research, and a student travel grant award for IEEE Globecom.
He is the reviewer of IEEE TDSC, TII, ACM TOIT, and TPC member for
IEEE iThings 2016-2019, IEEE ICC 2018-2021, IEEE ISPA 2020, ScalCom
2020&2021.

Massimo Tornatore Biography text here.

PLACE
PHOTO
HERE




	Introduction
	Related Work
	Progressive Slice Recovery Problem under Reconfiguration Limitations
	System Model and Problem Statement
	Classification of Proposed Recovery Strategies
	NP-hard of Progressive Slice Recovery

	ILP Formulations for Progressive Slice Recovery
	Decision Variables and Recovery Objectives
	Constraints
	Node embedding constraints
	Link embedding with flow constraints
	Network state constraints
	Connectivity constraints under substrate failures
	Recovery and resource constraint

	Extension of ILP Model to Different Recovery Strategies
	Fixed Initial Embedding Strategy
	Link Re-embedding Strategy
	Any Re-embedding(1, 2) Strategy


	Two-phases Progressive Slice Recovery Algorithm
	Generalized Procedure for Recovery
	Deterministic Rounding based Recovery Sequence Determination
	CG based Slice Embedding in Damaged Network
	Process for slice embedding decision
	Embedding path selection

	Scalable Two-phases Progressive Slice Recovery Algorithm

	Numerical Results
	Simulation Setup
	Comparison of ILP and the 2-phase PSR Algorithm
	Evaluation on a Large Topology with Network Connectivity (NC)
	Evaluation on a Large Topology with Content Connectivity (CC)

	Conclusion
	References
	Biographies
	Qiaolun Zhang
	Omran Ayoub
	Jun Wu
	Francesco Musumeci
	Gaolei Li
	Massimo Tornatore


