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a b s t r a c t 

Predicting human immunodeficiency virus (HIV) epidemiology is vital for achieving public health mile- 

stones. Incorporating spatial dependence when data varies by region can often provide better prediction 

results, at the cost of computational efficiency. However, with the growing number of covariates available 

that capture the data variability, the benefit of a spatial model could be less crucial. We investigate this 

conjecture by considering both non-spatial and spatial models for county-level HIV prediction over the 

US. Due to many counties with zero HIV incidences, we utilize a two-part model, with one part esti- 

mating the probability of positive HIV rates and the other estimating HIV rates of counties not classified 

as zero. Based on our data, the compound of logistic regression and a generalized estimating equation 

outperforms the candidate models in making predictions. The results suggest that considering spatial 

correlation for our data is not necessarily advantageous when the purpose is making predictions. 

© 2021 Elsevier Ltd. All rights reserved. 
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. Introduction 

Prevalence and incidence of infection with the human immun- 

deficiency virus (HIV) continues to be a major health crisis in 

he United States, despite the availability of successful biomedi- 

al interventions. The Centers for Disease Control (CDC) estimated 

hat 1.2 million people are living with HIV in the US, including 

bout 1 in 7 who are unaware of being infected and need testing 

 CDC, 2020 ). Refining predictive modeling techniques of the HIV 

pidemic continues to be a priority for health care professionals, 

ublic health officials, epidemiologists, and statisticians. The abil- 

ty to predict future regional patterns of HIV epidemiology is key 

o allocating resources and implementing effective interventions, 

uch as HIV testing and PrEP (PreExposure Prophylaxis). HIV preva- 

ence varies spatially over different counties and demographic in- 

ormation provides key predictors of the county-level infection rate 

 Jones et al., 2018; Pellowski et al., 2013; Rosenberg et al., 2016; 

anchez et al., 2014 ). Other geospatial determinants related to HIV 

revalence are low income, poverty, and lack of health resources 

 Douthit et al., 2015; Goswami et al., 2016; Vaughan et al., 2014 ).

ublic health decisions must be made with awareness of expected 

atterns of epidemiology within each county. 

Predicting HIV epidemiology in the following year or time pe- 

iod usually relies on the HIV rates in the previous year or time 
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eriod and the current demographic, risk, or health service pre- 

ictors. Difficulties developing an appropriate and efficient predic- 

ion model at the county-level stems, in part, from data sparsity, 

ue to the large amount of zero values, as well as data suppres- 

ion for privacy. Despite past efforts to develop prediction models 

bout HIV, to the best of our knowledge, most prior models ig- 

ored counties with zero cases or suppressed rates. Both of these 

imitations are not negligible, because zero and suppressed rates 

re common. Over the years 2012–2018, 40% of US counties have 

ero rates and 37% of counties contain suppressed rates, due to the 

ounty having either very few new HIV cases per year (1, 2, 3, or 

) or a population smaller than 100. A county may have a zero 

alue or suppressed rate in the previous year, and a positive rate 

n the prediction year. Therefore, simply excluding counties with 

eros and suppressed data would prohibit predicting a diagnosis 

ate for those counties that could newly be at risk, resulting in a 

oss of information for public health officials. Moreover, ignoring 

eros and suppressed data may introduce bias to the statistical in- 

erences made based only on the observed data ( Little and Rubin, 

014; Rotnitzky and Wypij, 1994 ). 

Most prior studies of HIV epidemiology and social determinants 

f health have used aggregated data at the state or regional level 

 Aral et al., 2006; Hanna et al., 2012; Zeglin and Stein, 2015 ). Due

o increased accessibility to data at a finer scale, conducting HIV 

nalyses at the county or zip code level have become more com- 

on, offering more relevant information to local health care offi- 

ials ( Chan et al., 2018; Harrison et al., 2008; Trepka et al., 2013 ).

owever, in order to avoid considering zeros and suppressed rates, 

https://doi.org/10.1016/j.sste.2021.100436
http://www.ScienceDirect.com
http://www.elsevier.com/locate/sste
http://crossmark.crossref.org/dialog/?doi=10.1016/j.sste.2021.100436&domain=pdf
mailto:dsass2@illinois.edu
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Fig. 1. Counties with zero, positive, or suppressed HIV diagnosis rates in 2015. 
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revious predictive models often assess only a small number of 

S counties, leaving a large group of US counties untouched. For 

xample, Gray et al. (2016) conducted a county-level analysis of 

ersons living with HIV in the southern United States, and Gon- 

alves and Crawford (2018) studied the HIV outbreak and response 

n a single county: Scott County, Indiana. Shand et al. (2018) de- 

eloped a spatially varying auto-regressive model in a Bayesian 

ramework to predict new HIV diagnosis rates at the county-level. 

heir analyses took spatial correlation into account but focused 

nly on Florida, California, and the Northeast, where HIV cases 

re highly concentrated. Furthermore, their analyses only included 

ounties with new diagnosis rates greater than zero and not sup- 

ressed. 

The present research aims to identify a simple and efficient ap- 

roach for HIV prediction over all counties in the US. Due to the 

arge spatial domain, the method should also be computationally 

fficient for practical purposes. We find modern methods, such as 

hand et al. (2018) , may not be scalable to such a large dataset.

ecause of the large number of zeros in the data, we adopt a two- 

art framework for modeling HIV diagnosis. Two-part models have 

een widely employed to model short-duration rainfall, health care 

esources, and health care costs ( Belotti et al., 2015; Cole and Sher- 

iff, 1972; Li et al., 2008; Mihaylova et al., 2011 ), all of which con-

ain a large body of zeros. 

We consider both non-spatial models and cutting edge spatial 

odels in each step of the analysis to identify the most efficient 

nd accurate method. Following the two-part modeling framework, 

e first fit a binary model to estimate the probability of observ- 

ng a positive-versus-zero rate, where positive includes both ob- 

erved and suppressed data. This step used both logistic regres- 

ion and spatial autologistic regression, which additionally incor- 

orates the dependence of neighboring counties ( Hughes et al., 

011 ). Then, for counties with positive rates, we employ five differ- 

nt prediction models ranging from a non-spatial generalized esti- 

ating equation, quantile regression, and dynamic Bayesian net- 

ork, to two spatial models, including the spatial autoregressive 

ag model ( Bivand et al., 2008; Srinivasan, 2015 ) and Bayesian spa- 

ially varying auto-regressive model ( Shand et al., 2018 ). To eval- 
2 
ate the predictions for suppressed data, we calculate the em- 

irical identification rate of how many predictions correctly fall 

nto that category. As for predictions about the observed diagno- 

is rates, we compute the mean squared prediction errors. We also 

onsider computation time when comparing the performance of 

ll five models. Usually, complex models, such as spatial models, 

emand much higher computational power than the non-spatial 

ethods, but this disadvantage can be acceptable if the model pro- 

ides significantly more precise results. However, with more and 

ore covariates to describe the spatial variability of HIV diagnosis 

ates, we speculate whether a spatial model is still advantageous 

or making predictions over the entire US. 

This paper is organized as follows: Section 2 describes the data, 

ection 3 introduces the two-part modeling framework and de- 

cribes the competing models considered, Section 4 provides the 

odel evaluations, prediction results, sensitivity analysis, as well 

s an investigation of prediction with insufficient covariates. Fi- 

ally, Section 5 concludes with a brief discussion. 

The data that supports the findings of this study are avail- 

ble at https://www.cdc.gov/nchhstp/atlas/ and https://data.hrsa. 

ov/topics/health-workforce/ahrf . 

. Data 

Annual new HIV diagnosis data from 2009 to 2018 at the 

ounty-level across the US are available from the CDC NCHHSTP 

tlas ( https://www.cdc.gov/nchhstp/atlas ). We collect data from all 

,142 counties and county-equivalents in the US. County equiva- 

ents refer to places comparable to counties but called by different 

ames, such as the Alaska census areas, Louisiana parishes, inde- 

endent cities, and the District of Columbia. HIV rates are reported 

s the number of cases per 10 0,0 0 0 people. Approximately 40% of 

ounties have zero HIV diagnoses reported, and only 23% have a 

on-suppressed positive number of HIV diagnoses. The remaining 

7% of counties have suppressed HIV diagnosis rates because the 

ounty has very few cases (1, 2, 3, or 4) or a small population size

less than 100). Fig. 1 shows the distribution of the three groups 

https://www.cdc.gov/nchhstp/atlas/
https://data.hrsa.gov/topics/health-workforce/ahrf
https://www.cdc.gov/nchhstp/atlas
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Fig. 2. Histogram of the diagnosis rates used in the training dataset years 2012–

2014 including counties with suppressed data with diagnosis count predicted to be 

1, 2, 3, or 4 using the interval-censored model. 
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f HIV diagnosis rates for 2015, including zero, positive, and sup- 

ressed HIV diagnosis rates. 

We make a simple imputation for counties with suppressed 

ata before our analysis using the imputeLCMD package in R mod- 

fied to use the Poisson distribution for count data. If those coun- 

ies have a population greater than 100, the number of HIV cases 

an take on a value of 1, 2, 3, or 4. This method performs the im-

utation of interval-censored missing data for data missing not at 

andom by using random draws from a truncated Poisson distribu- 

ion with parameters estimated using quantile regression. We re- 

trict the truncated Poisson distribution such that the resulting val- 

es are counts between 1 and 4. Quantile imputation is a flexible 

ethod that can be applied to impute dependent, bounded, cen- 

ored, and count data and does not require the specification of a 

ikelihood ( Bottai and Zhen, 2013; Chen, 2014; Geraci and McLain, 

018 ). We sample from the distribution 100 times and for simplic- 

ty choose the mean of each county to be the imputed value of 

hat county, rounded to the nearest whole number. We later per- 

orm a sensitivity analysis to evaluate the prediction results of the 

00 imputations, the details of which are in Section 4.3 . In our 

ata set, only two counties have suppressed rates due to a popu- 

ation of less than 100. There is, in principle, no information about 

he number of cases in these counties, as the suppression is due 

o the population size. However, small population size corresponds 

o a large variability in possible HIV rates (rate = 10 0,0 0 0 · cases
 population). To minimize the random noise that these counties 

dd to the model, we assume the HIV rate in these two counties is 

ero. Given their neighboring counties have either zero cases or a 

ery low number of cases, this assumption is reasonable and will 

ave a minimal effect on our analysis. 

To model new HIV diagnosis rates, we consider a variety of 

xplanatory variables in the Area Health Resource Files, including 

ata on population characteristics, economic, and environment at 

he county-level from over 50 data sources ( AHRF, 2019 ). In par- 

icular, we include county demographics such as population, age, 

ender, race, unemployment rate, poverty rate, median income, 

ducation attainment, household occupancy information, primary 

ode of transportation, commute time, and occupation industry. 

eographic related variables such as region and urbanization are 

lso considered. We further collect prevalence rates of other sex- 

ally transmitted infections from the CDC NCHHSTP Atlas website, 

ncluding chlamydia, gonorrhea, and syphilis, as well as HIV diag- 

osis rates from the prior years. In total, our analysis considers 96 

ariables. 

We next compute the missing values of all explanatory vari- 

bles, if any. Approximately 0.36% of the explanatory data are miss- 

ng and imputed. Among the most popular methods for imputa- 

ion is the k -Nearest Neighbour (KNN) algorithm ( Andridge and 

ittle, 2010 ). The nearest neighbor imputation identifies the k - 

ounties that are most similar to the county with missing data 

ith respect to observed characteristics. The missing value is then 

stimated using the average of the k -counties. Troyanskaya et al. 

2001) showed that KNN is relatively insensitive to the exact value 

f k within the range of 10–20 neighbors. While Beretta and San- 

aniello (2015) did not provide an optimal number of neighbors, 

hey advised to limit the number of k neighbors, because of the 

isk to severely impair the original variability of the data. There- 

ore, we choose to use the 10 nearest neighbors to impute any 

issing values, using the bnstruct R package ( Franzin et al., 2017 ). 

. Prediction models 

Our goal is to predict county-level new HIV diagnosis rates 

cross the US. A major challenge that comes with the prediction 

ies in the rarity of the disease, leading to no incidents in many 

egions. Fig. 2 is a density plot of the logarithmic diagnosis rates 
3 
n 2012–2014, which also includes counties with suppressed data 

ith HIV cases predicted to be 1, 2, 3, or 4 using the interval- 

ensored model described in Section 2 . This figure shows a mass 

oint at zero, which has been generally ignored in the literature. 

o account for the mass of zeros, we propose to construct a two- 

art model that permits the zeros and non-zeros to be generated 

y different densities. Let Y i,t be the new diagnosis rate in county 

 = 1 , . . . , n and year t = 1 , . . . , T , and let X i,t−1 denote the vector

f covariates for modeling Y i,t . Further, let Z i,t denote the binary 

ndicator of whether Y i,t is zero (0) or non-zero (1). If a county is 

uppressed, Z i,t = 1 since we know at least one HIV diagnosis oc- 

urred. Our two-part model is 

 i,t = { E (Y i,t | Y i,t > 0 , X i,t−1 ) + εi,t } Z i,t , (1)

here εi,t is an i.i.d. error term with E (εi,t | Y i,t > 0 , X i,t−1 ) = 0 . The

istribution of εi,t depends on the distribution of Y i,t | Y i,t > 0 . For

xample, if Y i,t | Y i,t > 0 follows a Poisson distribution, the errors 

ollow a distribution behaving as a centered Poisson. Under this 

odel, 

 (Y i,t ) = E (Y i,t | Y i,t > 0 , X i,t−1 ) P (Y i,t > 0 | X i,t−1 ) . 

e predict new HIV diagnosis rates at t + 1 as 

ˆ 
 i,t+1 = ˆ E (Y i,t+1 | Y i,t+1 > 0 , X i,t ) ̂  P (Y i,t+1 > 0 | X i,t ) . (2)

pecifically, we first estimate the probability of a county observing 

 non-zero HIV diagnosis rate and classify each county into one of 

he two categories - zero or positive rates, then we estimate the 

ew HIV diagnosis rate of the counties given they have positive 

ates. The binary classification results and the estimates of positive 

IV diagnosis rates are then combined using Equation (2) . 

We use the previous year’s explanatory variables as well as the 

revious three year’s HIV diagnosis rates as covariates to make one 

ear ahead predictions. When choosing an optimal number of vari- 

bles, it is important to avoid both over-fitting, i.e., low predictive 

ower due to the inclusion of too many variables without statisti- 

al justification at the model identification stage, and under-fitting, 

.e., poor performance in modeling both the training and test data 

ue to the inclusion of too few variables ( Dietterich, 1995 ). We 

t the two model parts separately. Both model parts use stepwise 

egression, selecting from the 96 explanatory variables described 

n Section 2 . The binary part of Equation (1) , classifying positive- 

ersus-zero outcomes, selects 40 significant variables and the posi- 

ive part of the model, predicting diagnosis rates for counties clas- 

ified as positive, selects 37 significant variables. While the two 

odel parts are allowed to select different variables, a few of the 

ariables are found significant for both model parts. For example, 
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E (Y ·,t | Y ·,t > 0 , X ·,t−1 ) = (I − ρW ) + exp(X β) × 10 0 , 0 0 0 /η·,t−1 . 
opulation, other STI prevalence, race, age, high school education 

ate, and prior year HIV diagnosis rate, which are known to be re- 

ated to the epidemic nature of the HIV disease, are significant in 

lassifying both positive-versus-zero outcomes and predicting the 

ositive diagnosis rates. 

In reality, the current year’s covariates and HIV data may not 

e available in time to make prediction of next year, so we also 

emonstrate model performance using two year ahead predictions 

n the Appendix. When using data collected over time it is often 

mportant to consider a time trend. We incorporate a yearly time 

ariable and evaluate model performance in the Appendix as well. 

.1. Probability for positive HIV diagnosis rates 

To estimate the probability of a positive new diagnosis rate for 

 given county, P (Y i,t > 0) which is equivalent to P (Z i,t = 1) , we

onsider both non-spatial logistic regression and centered spatial 

utologistic regression. The spatial autologistic model ( Besag, 1972 ) 

an be advantageous over a non-spatial logistic regression model 

or spatial data because it accounts for effects of covariates as well 

s spatial dependence among the data simultaneously. We consider 

 centered spatial autologistic model because it weights the ef- 

ects of both zero and non-zero neighboring observations, whereas 

 non-centered model could bias the estimated probability of a 

on-zero rate toward one ( Caragea and Kaiser, 2009; Hughes et al., 

011; Wang, 2012 ). Two counties are considered neighbors if they 

ave at least one shared boundary point. 

The non-spatial logistic regression model is given by: 

P (Z i,t = 1 | X i,t−1 ) 

1 − P (Z i,t = 1 | X i,t−1 ) 
= exp (X 

T 
i,t−1 θ) , (3) 

here X 
T 
i,t 

θ denotes the linear effects of the chosen covariates. The 

entered spatial autologistic regression is modeled as: 

P (Z i,t = 1 | Z j,t : j � = i, X i,t−1 ) 

1 − P (Z i,t = 1 | Z j,t : j � = i, X i,t−1 ) 
= exp (X 

T 
i,t−1 θ + λ

∑ 

j∈ N i,t 
Z ∗j,t ) , (4) 

here λ represents the spatial autoregressive coefficient, N i,t is the 

et of neighbors of county i in year t , and Z ∗
j,t 

= Z j,t − p j,t repre-

ents the centered response, where p j,t = P (Z j,t = 1) under non- 

patial logistic regression. Inference for the centered spatial autol- 

gistic model is performed using maximum pseudolikelihood esti- 

ation. 

.2. Estimation for positive HIV diagnosis rates 

In this section, we consider five different models for estimating 

 (Y i,t | Y i,t > 0 , X i,t−1 ) for the HIV diagnosis rates. These five mod-

ls represent both the fundamental statistical models and the cut- 

ing edge spatial models. For the spatial models, two counties are 

onsidered neighbors if they have at least one shared boundary 

oint. The estimation for positive HIV diagnosis rates focuses on 

he counties identified as non-zero using the classifiers described 

n Section 3.1 . It is not of interest to predict a positive diagnosis

ate for all counties, because the mass point at zero indicates many 

ounties will have a zero HIV diagnosis. 

.2.1. Generalized estimating equation with log-link (GEE) 

The generalized estimating equation (GEE) is an extension of 

he generalized linear model, which is perhaps the most popular 

tatistical technique for modeling non-Gaussian data. When count 

ata follows a Poisson distribution, the generalized linear model 

ith a log-link is the typical choice. However, after converting 

ount data into rates, the Poisson assumption that the mean and 

ariance are equal becomes violated. To overcome this potential 

itfall, we use the Poisson generalized estimating equation with 
4 
 log-link using the R package geepack , which is a semiparamet- 

ic method using the Huber-White sandwich estimator for robust 

ariance estimation ( Huber, 1967 ). The GEE provides consistent es- 

imates, even if the correlation structure is misspecified in model- 

ng the population average effects: 

og (E (Y i,t | Y i,t > 0 , X i,t−1 )) = X 
T 
i,t−1 β + log (10 0 , 0 0 0 /ηi,t−1 ) , 

here X 
T 
i,t−1 

β denotes the linear effects of the chosen covariates, 

og (10 0 , 0 0 0 /ηi,t−1 ) is the offset from converting count data into

ates, and ηi,t−1 is the population of county i in year t − 1 . Then

e have 

 (Y i,t | Y i,t > 0 , X i,t−1 ) = e X 
T 
i,t−1 

β × 10 0 , 0 0 0 /ηi,t−1 . 

.2.2. Quantile regression (QUANT) 

An alternative to modeling the conditional mean is to model 

he conditional τ th quantile using quantile regression, given a set 
f explanatory variables. Quantile regression makes no assumption 

bout the data distribution, but to regularize the variance we take 

 log transformation of the new HIV diagnosis rate to make its dis- 

ribution approximately Gaussian ( Shand et al., 2018 ). Quantile re- 

ression takes the form: 

 τ ( log (Y i,t ) | Y i,t > 0 , X i,t−1 ) = X 
T 
i,t−1 β(τ ) , 

here Q τ (Y ) is the τ th quantile of Y , and X 
T 
i,t−1 

β(τ ) denotes the

inear effects of the chosen covariates dependent on the value of 

. The function β(τ ) is optimized by solving 

rgmin 
β(τ ) 

∑ 

ρτ ( log (Y i,t ) − X 
T 
i,t−1 β(τ )) , 

here ρτ = τ − 1 { log (Y i,t ) < X 
T 
i,t−1 

β(τ ) } is the tilted absolute 

alue function. The model was fit using the R package quantreg . 

nlike least squares regression, quantile regression is invariant to 

onotone transformations and avoids assumptions about the para- 

etric distribution of the error process. Quantile regression can be 

dvantageous when the data contains outliers because quantile re- 

ression is more robust to outliers than least squares regression, 

nd outliers may be present in our data due to HIV outbreaks. 

.2.3. Spatial simultaneous autoregressive lag model (SSAL) 

When data comes from a spatial process, nearby observations 

ften tend to be similar. Therefore, a model that can incorporate 

patial dependence is often more efficient. To determine the ap- 

ropriate spatial regression model we use the Lagrange Multipliers 

iagnosis test for error and lag dependence of the GEE model. The 

esulting test statistic and p-value for error dependence are ap- 

roximately 0 and 1, respectively, indicating there is no spatial de- 

endence in the error term. The resulting test statistic and p-value 

or lag dependence are 5.8 and 0.02, respectively, indicating there 

s dependence among diagnosis rates in nearby counties. Therefore, 

e consider a spatial simultaneous autoregressive lag model (SSAL) 

o incorporate spatial dependence when making predictions. 

The SSAL model is an extension of our generalized estimat- 

ng equation, that uses the spatial variation in nearby observa- 

ions to predict Y i,t . The model was fit by extending the R pack- 

ge spatialreg to use the generalized estimating equation. Similar 

o Section 3.2.1 , we use a Poisson distribution with a log-link and 

odel new HIV diagnosis rates as 

og (E (Y ·,t − ρW Y ·,t | Y ·,t > 0 , X ·,t−1 )) = X T ·,t−1 β + log (10 0 , 0 0 0 /η·,t−1 ) , 

here Y ·,t is the vector of new HIV diagnosis rates at time 

, X 
T 
·,t−1 β denotes the linear effects of the chosen covariates, 

og (10 0 , 0 0 0 /η·,t−1 ) is the offset, ρ is the autoregressive parameter, 

nd W denotes a row-standardized neighborhood matrix where 

he i th diagonal element is 1 and the (i, j) th off-diagonal element 

s −1 / total number of neighbours for county i if counties i and j

hare a border and 0 otherwise. Then we have 
−1 T 
·,t−1 
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Fig. 3. A subset of the dynamic Bayesian network structure. The subset shows the 11 variables that are the direct parents, as indicated by the red arrows, of the new 

HIV diagnosis rate out of the 37 total variables chosen. All variables are taken from the prior year, t − 1 , unless otherwise specified. HIV diagnosis rate ( Y t ) is the response 

variable. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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.2.4. Dynamic bayesian network (DBN) 

Dynamic Bayesian networks (DBN) are popular for the con- 

truction of disease models in the biomedical and health-care field 

 Weins and Wallace, 2016 ). A DBN is a directed acyclic graph in

hich nodes represent the variables and arrows represent the tem- 

oral dependencies that are quantified by probability distributions 

 Margaritas, 2003 ). A DBN consists of two parts: (a) the construc- 

ion of the directed network structure and (b) the inference of local 

robability distributions for each variable conditional on the par- 

nt nodes. Many methods exist for learning the network structure, 

mong the most popular methods is the Hill-climbing score-based 

pproach, which searches for the structure that maximizes the net- 

orks Bayesian information criterion ( Margaritas, 2003 ). We adapt 

he Hill climbing approach to build our network structure, shown 

n Fig. 3 . From the network, we observe that the prior year diag-

osis rates, population, and other STI rate remain significant to the 

rediction of new HIV diagnosis rates. 

While many methods exist for constructing the network struc- 

ure, inference for parameter nodes using R packages is restric- 

ive. Different packages in R are available for making inferences 

or DBN. The package bnstruct ( Franzin et al., 2017 ) only allows 

or inference with discrete variables and continuous variables are 

uantized, which could result in loss of information. The pack- 

ge bnlearn ( Scutari, 2010 ) allows for continuous variables, though 

arameter node inference for continuous variables is restricted to 

aximum likelihood estimation using only the parent nodes which 

ould result in suboptimal inferences. 

We choose to use the bnlearn package in R for constructing our 

etwork structure and parameter inference. In general, the nodes 

f continuous variables are assumed to follow a Gaussian distribu- 

ion and discrete variables follow a multinomial distribution. We 

se a Gaussian distribution with variance inversely proportional to 

i,t Y i,t , where ηi,t is the population of county i in year t ( Shand

t al., 2018 ). The parameters for each node of the network struc- 

ure are optimized by maximum likelihood estimation. Specifically, 

e use the generalized linear model with a log link function based 

n the value of parent nodes: 

og (E (Y i,t | Y i,t > 0 , πi,t−1 )) = πT 
i,t−1 β, 

here πi,t−1 are the observed parent nodes of county i in year t

nd β are the corresponding coefficients. Then the expected value 

f our new diagnosis rate is 

 (Y i,t | Y i,t > 0 , πi,t−1 )) = e π
T 
i,t−1 

β. 

.2.5. Bayesian spatially varying auto-regressive model (SVAR) 

Recently, Shand et al. (2018) proposed a spatially varying auto- 

egressive model (SVAR) to predict HIV rates in Florida, California 
5 
nd parts of the Northeastern US. The model assumes an autore- 

ressive model with order 1 (AR(1)) for each county and further 

ssumes that the autoregressive coefficients over all counties fol- 

ow a spatially correlated process. Their model allows for spatial 

nd temporal correlation as well as space-time interactions. Let U i,t 

e a centered process of log (Y i,t ) , where Y i,t are the rates predicted

o be greater than zero. The model is designed in a Bayesian hier- 

rchical context: 

Level 1: U i,t = X T 
i,t−1 

β + ψ i,t ρi (U i,t−1 − X T 
i,t−2 

β) + εi,t 
Level 2: ρi = �(V i ) where V ∼ MV N(0 , τ 2 

ρ [(1 − λρ ) I + λρW ] −1 ) , 

Hyperpriors: τ 2 
ρ ∼ IG (a 1 , b 1 ) , λρ ∼ Uni form [0 , 1] , σ 2 ∼ IG (a 2 , b 2 ) 

here X 
T 
i,t−1 

β denotes linear effects of the previous year’s covari- 

tes, ρi are spatially varying AR(1) coefficient, ψ i,t ensures cor- 

elation is measured, εi,t 
iid ∼ N(0 , σ 2 q i,t ) for q i,t = 10 0 , 0 0 0 / (ηi,t Y i,t )

here ηi,t is the population of county i in year t , � represents the 

aussian cumulative distribution function, MV N represents a mul- 

ivariate normal distribution for the vector V = (V 1 , . . . , V n ) 
′ , and IG

epresents a semiconjugate inverse gamma hyperprior. Lastly, W 

enotes a neighbourhood matrix with the i th diagonal element as 

he total number of neighbours for county i whereas the (i, j) th 

ff-diagonal element is −1 if counties i and j share a border and 0 

therwise. Basically, ρi is modeled as a probit transformation of a 

orrelated Gaussian process. The estimation is performed through 

arkov chain Monte Carlo by alternating Gibbs and Metropolis- 

astings sampling. Predictions are obtained by taking the posterior 

edian of the Z ∗
i,t+1 

sampling chain. Further details can be found 

n Shand et al. (2018) . 

We adapt the SVAR model in Shand et al. (2018) to our data. 

owever, all counties in the US cannot be modeled at once due to 

he computation bottleneck in their method. Computational bur- 

en is a typical issue for spatial models that involve a spatial co- 

ariance matrix. To implement their methods, we group the coun- 

ies into nine divisions (New England, Mid-Atlantic, East North 

entral, West North Central, South Atlantic, East South Central, 

est South Central, Mountain, and Pacific) as specified by the US 

ensus bureau. 

.3. Model assessment measures 

To evaluate the performance of predictions, we calculate the 

ean squared prediction error (MSPE) for counties with observed 

ew diagnosis rates and the empirical identification rate (EIR) for 

ounties with suppressed data. Let Y k,t be the observed HIV diag- 

osis rate for k = 1 , . . . , (n − n s ) , where n = 3 , 142 is the total num-

er of counties and n s is the total number of counties with sup- 
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Fig. 4. ROC curve of the training dataset. The ROC curve is color coded based on 

the cutoff value with the cutoff scale shown on the right vertical axis. 
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ressed data. Then we have 

SP E = 

1 

n − n s 

n −n s ∑ 

k =1 

( ̂  Y k,t − Y k,t ) 
2 . 

o evaluate the prediction of counties with suppressed data, we 

xamine the empirical identification rate (EIR) of the predictions 

alling into 1, 2, 3, 4 cases. Define 

 k = 1 (0 < 
ˆ Y k,t ηk,t / 10 0 , 0 0 0 < 5) 

or k = 1 , . . . , n s , where ηk,t follows the earlier notation in

ection 3.2.5 representing the population of county k in year t . The 

ndicator function equals one if the prediction falls in the range of 

eing suppressed. We have 

IR = 

1 

n s 

n s ∑ 

k =1 

S k . 

. Evaluation of models 

We use data from the years 2012–2014 as training data and 

valuate the prediction skills of different models using data from 

he years 2015–2018. The reason we employ the same trained 

odel for predictions of different years is because we find no ad- 

antage of iteratively training the model, perhaps due to the sta- 

ionarity of the data in time. The prediction results with itera- 

ively trained models are reported in the Appendix, for example, 

he 2016 year prediction is obtained based on the models trained 

sing data from years 2013–2015. The reason that we choose only 

hree years of training data is because three years of data is the 

ost data that the spatial autologistic regression model and SSAL 

odel could handle due to the size of the neighborhood matrix. 

Below we will first compare the classification performance be- 

ween the logistic regression model in (3) and the spatial autol- 

gistic regression model in (4) , then based on the preferred clas- 

ification model we compare the five prediction models described 

n Section 3.2 by predicting new HIV diagnosis rates for the years 

015 to 2018. Finally, we assess the sensitivity of the suppressed 

IV data imputation to the prediction skills using the best per- 

orming models. We close this section by investigating the effect 

f considering spatial correlation when covariates are insufficient. 

.1. Classification assessment 

The classification models predict the probability that at least 

ne new HIV diagnosis occurs in a county. Since it is unlikely 

 (Z i,t = 1) will be exactly zero, we select a cutoff to classify which

ounties are likely to be zero, allowing us to distinguish the mass 

oint at zero in our data. This will also allow us to compare the 

ccuracy of the non-spatial logistic regression and centered spa- 

ial autologistic regression models. We choose a classification cut- 

ff of 0.3, i.e., if the probability of observing a positive new diag- 

osis rate is less than 0.3, then Z i,t = 0 , otherwise Z i,t = 1 . When

hoosing the cutoff for our binary prediction, weighing the impact 

hat false negatives (sensitivity) and false positives (1-specificity) 

ave on the results is critical. A lower cutoff decreases the number 
Table 1 

Comparing the non-spatial logistic regression mode

Te st statistics and p-values for Moran’s I on testing

accuracy and sensitivity of the testing dataset. Com

Moran’s I

Statistic p-

Non-spatial logistic regression 1.7723 0.

Centered spatial autologistic 0.7008 0.

6 
f false negatives while increasing the number of false positives 

nd a higher cutoff does the opposite. When considering different 

utoffs, we want a low enough cutoff that maintains a high true 

ositive rate. This way we are only classifying counties as zero if 

hey are highly likely to be zero. We resort to the receiver operat- 

ng characteristic (ROC) to help us choose the cutoff value. Fig. 4 

hows the ROC curve of the training dataset. We set the false neg- 

tives to be at least twice as impactful as false positives resulting 

n a cutoff of 0.3. 

To determine if the centered autologistic regression model is 

ore appropriate than the non-spatial logistic regression, we eval- 

ate the amount of spatial autocorrelation in the residuals of logis- 

ic regression using the Moran’s I test ( Moran, 1950 ). Table 1 shows 

he resulting test statistic and p-values for both the non-spatial 

ogistic regression and the centered autologistic regression model 

ased on the testing data. The p-value of the non-spatial logis- 

ic regression model is slightly smaller than the 0.05 significance 

evel, indicating the model inadequacy of capturing the spatial cor- 

elation in the data. However, the two models produce very similar 

lassification results, which is most important for the purpose of 

rediction. Given these considerations, we choose the non-spatial 

ogistic regression for its parsimony to estimate the probability of 

hether a county will have a zero or positive HIV diagnosis rate, 

ven though the computation time advantage is not much com- 

ared to the autologistic model. 

.2. Prediction assessment 

Having chosen the non-spatial logistic regression as the pre- 

erred method for estimating P (Y i,t > 0 | X i,t−1 ) , the HIV rates for

ounties classified as non-zero are then estimated using the five 

odels described in Section 3.2 . The results from the two model 
l to the centered spatial autologistic model. 

 spatial correlation among residuals. Model 

putation time in seconds. 

Model Performance 

value Accuracy Sensitivity Time 

0382 80.23% 92.64% 1,397 

2417 80.28% 92.54% 1,504 
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Table 2 

One year ahead prediction results of new HIV diagnosis rates. Coefficient estimates are assumed sta- 

tionary in time and trained using prediction years 2012–2014. Computation time in seconds. 

2015 2016 2017 2018 

Model MSPE EIR MSPE EIR MSPE EIR MSPE EIR Time 

GEE 326.94 80.1% 46.37 80.5% 40.26 79.6% 35.81 84.4% 173.7 

QUANT 328.61 69.2% 43.06 71.0% 39.94 69.2% 34.25 73.8% 156.3 

SSAL 325.26 77.9% 46.60 77.8% 42.97 76.1% 35.49 81.8% 749.8 

DBN 328.38 78.4% 42.61 78.7% 30.52 77.9% 35.24 83.0% 200.8 

SVAR 342.01 83.3% 68.26 82.4% 34.69 81.5% 38.46 85.7% 162,916 

Fig. 5. Boxplot of the prediction error for our 5 models. (a) All counties. (b) All counties except the extreme outlier in 2015. (c) Only counties with a true HIV diagnosis 

greater than 0. (d) Only counties with a true HIV diagnosis equal to 0. 
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arts then jointly predict new HIV diagnosis rates, ˆ Y i,t , for all coun- 

ies using Eq. 2 , i.e., ˆ Y i,t will be 0 if the logistic regression classifies

he county as having a rate of zero and otherwise estimated using 

he five models. We will refer to the joint predictions simply by 

he model names in Section 3.2 since all models use the same non- 

patial logistic regression to classify positive rates. Table 2 summa- 

izes the prediction results of the two-part model for the testing 

ata in terms of MSPE and EIR. The MSPE is to evaluate the predic-

ion for the observed HIV diagnosis rates and the EIR is to evalu- 

te whether the prediction can correctly identify the counties with 

uppressed data. A larger EIR indicates a more accurate identifica- 

ion for the suppressed data. 

The GEE and SSAL model have very similar results, and we also 

nd that the optimized λ in the SSAL model is nearly 0.01. When 

= 0 , the SSAL model simplifies to the GEE model. So a very small

indicates little spatial influence, resulting in similar parameter 

stimates and thus, similar predictions of the two models. Between 

he GEE and SSAL model, the GEE model is preferred for its parsi- 

ony and slightly better results. 

The DBN model also has similar results as the GEE model. Recall 

hat the DBN maximum likelihood estimation is only making use 
7 
f the parent nodes, indicating that only a subset of the relevant 

ariables may be necessary for prediction. The DBN model uses the 

aussian distribution and requires a variance specification, which 

he GEE model avoids. While the DBN can improve the prediction 

n this instance, it is more volatile to initial covariates considered 

nd suppressed value chosen. The DBN can be most helpful with 

isualizing dependencies among variables. The QUANT model per- 

orms comparable in terms of MSPE, however performs the worst 

n terms of EIR. That is not very surprising because as a robust re- 

ression method, QUANT weakens the influence of the data points 

hat are far from their center and thus the fitted model may not 

o well on the lower end of the data. 

The SVAR model uses 50,0 0 0 iterations with a 10,0 0 0 burn-in, 

nd surprisingly is not the most competitive model in terms of 

SPE for our data given its complexity. The SVAR was developed 

or regional data and performed well at capturing the correlation 

etween observed positive HIV diagnosis rates at the smaller scale 

n Shand et al. 2018. However, its advantage does not seem to carry 

ver to a large scale data with more abundant covariates and sup- 

ressed data. The short training time series considered could also 

e a contributing factor. Moreover, the computation time for the 
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Fig. 6. Predicted HIV diagnosis rates for 2018 across the United States and the corresponding errors (top). 95% confidence interval for the predicted HIV diagnosis rates 

(bottom). 
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VAR model is overwhelming compared to other models, due to its 

andling of a large covariance matrix and the Bayesian sampling. 

Fig. 5 shows a boxplot of the prediction error for each model. 

lot (a) of the boxplot makes it clear that the large MSPE in 2015

s due to a single extreme outlier, the HIV outbreak from Scott 

ounty, IN, as represented by the small dots at the bottom of year 

015. None of the models are able to capture this because they are 

ll formulated around the mean or median prediction and more 

mportantly the predictor variables are unable to reflect the out- 

reak. Plot (b) in Fig. 5 , excludes the outlier in 2015 to provide a

loser visualization of the main results. Plot (c) and Plot (d) further 

reakdown the error results into two categories: counties with a 

rue HIV diagnosis greater than 0 and those with a true HIV di- 

gnosis of 0, to demonstrate where the largest errors are originat- 

ng from. The bottom and top of each “box” represents the first 

nd third quartile, respectively. The QUANT model has the small- 

st interquartile range (third quartile minus first quartile), indicat- 

ng that it has the most number of counties with very small error. 

EE, SSAL, and DBN have very similar errors, as is also seen by the 

SPE in Table 2 . The SVAR model performs similar as well, except 

or a few more extreme outliers in 2015 and 2016, as shown by 

he dots in the top panel, explaining the slightly larger MSPE. 

Given the above assessment between the five models, the GEE 

ith log-link function appears to be the most parsimonious and 

ufficient model for making predictions based on our data set. 

ig. 6 shows the predicted HIV diagnosis rates for all counties us- 

ng the two-part GEE model for the year 2018 along with the cor- 

esponding 95% confidence interval. The confidence interval for the 

wo-part model is calculated using the delta method approxima- 

ion to ensure uncertainty in both parts are taken into account. The 

rediction error of a suppressed county is labeled as suppressed, 

ecause the true diagnosis rate is unknown. From this Figure, we 

t

8 
bserve that our model had a tendency to under-predict diagnosis 

ates in Florida and other parts of the south. The model was more 

ccurate in the Midwest and West, with no large prediction errors. 

.3. Sensitivity to suppressed data imputation 

The above analysis is based on assuming the suppressed obser- 

ation is imputed using the county average of 100 simulated sam- 

les from a truncated Poisson interval-censored model. In order to 

ssess the sensitivity of the analysis to different im puted values, 

e calculate predictions for each of the 100 simulated samples 

nd evaluate the performance using the assessment measures as 

escribed in Section 3.3 . For the classification step, non-spatial lo- 

istic regression is used. The SSAL and SVAR models are excluded 

rom this study, due to the large computation time. 

Fig. 7 shows the MSPE and EIR of 100 simulation for the years 

015–2018. The ’ ×’ in each boxplot represents the results, from 

able 2 . Based on the plots, the GEE, QUANT, and DBN models per- 

orm similar to the results in Table 2 with only a small variability 

n calculated MSPE for each year. While the GEE and QUANT model 

ave fairly consistent EIR performance, the DBN model shows a lot 

ore variability in its ability to predict suppressed counties. Over- 

ll, this implies that the model comparisons are insensitive to the 

uppressed value chosen. 

.4. Spatial correlation and modeling with insufficient covariates 

While HIV diagnosis rates are geographically indexed, we ex- 

ect spatial autocorrelation exists between neighbors. However, 

ased on our results from Table 2 , it appears the covariates em- 

loyed are sufficient at capturing the spatial variability, render- 

ng the more complex SVAR model obsolete. However, the impor- 

ance of accounting for spatial correlation has been realized in 
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Fig. 7. Boxplots of the MSPE (left) and EIR (right) of 100 simulation samples for the GEE, QUANT, and DBN model. The ’ ×’ represents the results, from Table 2 , under the 

assumption that the count of a suppressed county is the average of the 100 samples for that county. 

Table 3 

One year ahead prediction results of new HIV diagnosis rates with models trained and tested using 

only three covariates as explanatory variables. Coefficient estimates are assumed stationary in time 

and trained using prediction years 2012–2014. Computation time in seconds. 

2015 2016 2017 2018 

Model MSPE EIR MSPE EIR MSPE EIR MSPE EIR Time 

GEE 348.31 75.6% 74.24 74.7% 49.10 75.7% 56.03 76.9% 7.7 

QUANT 357.37 76.2% 88.25 75.0% 63.28 76.5% 72.07 77.7% 6.5 

SSAL 350.32 67.6% 81.82 66.9% 58.73 67.4% 64.93 69.7% 713.0 

DBN 351.53 65.4% 78.96 65.9% 58.06 65.8% 65.08 67.6% 0.2 

SVAR 344.28 80.3% 55.23 77.1% 45.80 75.0% 46.36 77.7% 170,136 
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any disciplines such as ecology and epidemiology ( Auchincloss 

t al., 2012; Bahn et al., 2006 ). There are numerous examples that 

emonstrate the advantages of accounting for spatial correlation 

n Bayesian hierarchical models for ecological problems ( Gelfand 

t al., 2006; Hoeting, 2009; Hooten and Wikle, 2008; Waller et al., 

007 ). There are also many known disadvantages of ignoring spa- 

ial correlation, such as, the analysis may lead to erroneous con- 

lusions ( Kühn, 2007; Shand et al., 2018 ), standard errors may be 

nderestimated ( Hoeting, 2009; Schabenberg and Gotway, 2005 ), 

nd relevant covariates may be excluded in regression model se- 

ection ( Hoeting et al., 2006 ). 

To demonstrate the advantage of spatial models when a lack of 

ovariates are available, we consider a case when only three ex- 

lanatory variables (population, race, and education) are used to 

redict one year ahead HIV diagnosis rates. We assume the data 

re stationary in time and the prediction model is trained using 

he years 2012–2014. 

Table 3 shows that when limited or insufficient covariates are 

mployed, the more complex SVAR model is indeed the better per- 

orming model. The SSAL model nevertheless still had no advan- 

age over the GEE model. This could be because the cutting edge 

VAR model captures the spatial dependency of the HIV data bet- 

er than the SSAL model. In any case, this example implies that if 

nsufficient covariates are selected in the modeling procedure, the 

dvantages of a spatial model could outweigh the computational 

urden and model complexity. However, based on our model re- 

ults in Table 1 and 2 , considering spatial correlation in our data 

et is not advantageous due to the covariates ability to capture the 

ata variability. 

. Discussion 

Predicting new HIV diagnosis rates at the county-level across 

he United States is important for the health department to ef- 

ectively allocate the intervention resources. Due to the rareness 

f HIV and the confidentiality concern of health data, the county- 

evel new HIV diagnosis rates contain a high percentage of zeros 

nd suppressed data. We proposed to treat the data with a two- 

art model, one part for classifying zeros and the other part for 
9 
aking predictions given the county has a positive HIV diagnosis 

ate. For each part of the model, we explored multiple methods, 

ome of them take into account the spatial correlation and some 

o not. We compared both the classification and prediction perfor- 

ance between different methods, and found that making predic- 

ions based on our data does not benefit from models that consider 

patial correlation. In particular, we found that the logistic regres- 

ion for estimating the probability of positive rates in conjunction 

ith a GEE with a log-link produced the best prediction results. 

oth logistic regression and the GEE model are easy to implement 

nd computationally inexpensive, which allows for making predic- 

ions across the entire US at once. 

Because counties are geographically indexed, we expect spatial 

utocorrelation exists between neighbors. However, spatial mod- 

ls did not show advantages, demonstrating that the covariates we 

mployed alone might be sufficient to capture the spatial variabil- 

ty. Nevertheless, it is never our intention to generalize this conclu- 

ion to a new data set. We simply provided a case study to show 

he possibility that with abundant and informative covariates, spa- 

ial models could be unnecessary. However, given a new data set, 

e recommend a careful analysis to be performed to identify the 

ost appropriate model. 

In our analysis, the suppressed data was imputed and the sen- 

itivity to the imputation was examined. We found our models to 

e insensitive to the suppressed value chosen, allowing for robust 

rediction estimates. While our model was effective at predicting 

IV diagnosis rates for a majority of the counties, it was limited 

n its ability to capture outbreaks. If the primary interest is in out- 

reaks, data might need to be collected more frequently than an- 

ually. Alternatively, other measures with finer temporal resolution 

e.g., Google’s search engine data) may be more appropriate to an- 

icipate sudden changes in HIV epidemiology. 

There are many challenges with HIV data modeling, Table 4 

ummarizes these challenges and our associated findings. We as- 

umed an AR structure for the HIV data and stationarity of the re- 

ression residuals against the covariates. It is challenging to verify 

his structure with our data due to its small sample size in time. 

owever, the validity of the assumption should be revisited when 

ore years of data are collected. 
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Table 4 

A summary of the different challenges encountered when modeling HIV data, how we approached the problem, and our findings. 

Challenge Approach Findings 

Excess zeroes Two-part model The non-spatial logistic regression model seems more efficient than its spatial counter model for the 

classification. We chose to use a cutoff of 0.3 to classify rates as 0. 

Suppressed data Simple quantile imputation This imputation could be improved with more sophisticated methods. However, simulation studies 

showed the prediction results are insensitive to the suppressed value chosen. 

Spatial modeling SSAL and SVAR model No advantage is shown for using a spatial model despite the spatial autocorrelation likely exists 

between neighboring counties. We found that the autoregressive HIV rates along with the other 

covariates considered are sufficient at capturing the spatial variability of the data. 

Temporal modeling AR covariates The prior year’s HIV rates are significant for making HIV rate predictions. The prior year HIV data can 

be used directly as a covariate or in an AR model. 

One year ahead prediction GEE We compared five different classical and modern spatial models for one year ahead prediction and 

found the non-spatial GEE model to be the best. 
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ppendix A 

wo year ahead predictions 

In reality, the current year’s covariates and HIV data may not 

e available in time to make prediction of next year, so we also 

emonstrate model performance using two year ahead predictions. 

e predict new HIV diagnosis rates at t + 2 as 

ˆ 
 i,t+2 = ˆ E (Y i,t+2 | Y i,t+2 > 0 , X i,t ) ̂  P (Y i,t+2 > 0 | X i,t ) . 

While before the covariates from year 2011 were used to pre- 

ict diagnosis rates in 2012, the covariates are now predicting di- 

gnosis rates in 2013. Therefore, our training data are now pre- 

iction years 2013–2015 and the testing data are years 2016–2018. 

ompared to the one year ahead predictions in Table 2 , the pre- 

iction skills of all methods in Table A1 deteriorates except for the 
Table A1 

Two year ahead prediction results of new HIV diagnosis rates. Coef- 

ficient estimates are assumed stationary in time and trained using 

prediction years 2013–2015. 

2016 2017 2018 

Model MSPE EIR MSPE EIR MSPE EIR 

GEE 54.40 80.6% 40.75 81.4% 44.01 83.0% 

QUANT 46.58 77.3% 35.68 78.8% 36.97 81.7% 

SSAL 49.81 77.2% 40.56 79.0% 49.94 79.9% 

DBN 47.48 79.6% 34.41 81.9% 36.55 83.2% 

SVAR 68.73 80.2% 49.36 80.0% 50.89 81.9% 
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Table A2 

One year ahead prediction results of new HIV di

estimates are assumed stationary in time and tr

2015 2016 

Model MSPE EIR MSPE EIR 

GEE 326.50 78.8% 45.83 77.3%

QUANT 328.37 69.1% 43.25 69.7%

SSAL 325.63 76.8% 44.53 76.1%

DBN 328.32 77.7% 42.30 76.9%

10 
UANT and SSAL model in year 2017. The EIR of the QUANT model 

lso increases significantly for the two year ahead predictions com- 

ared to the one year ahead predictions. This seems to indicate the 

UANT model is most robust when the covariates are less informa- 

ive. Overall, the best performing model of the two year ahead pre- 

ictions still appears to be a model that does not consider spatial 

orrelation. 

ime trend 

When using data collected over time it is often important 

o consider a time trend. We incorporate a yearly time variable 

nd evaluate model performance using the methods described in 

ection 3.3 . The SVAR model was excluded from this study due to 

omputation time, however we expect similar results. 

Based on Table A2 , in general the MSPE of the models had a 

light decrease, while the EIR also decreased compared to Table 2 . 

verall, the impact on the prediction results is minimal. Shand 

t al. (2018) also found that the temporal random effects have lit- 

le effect to improve the data modelling and thus prediction. This 

s most likely due to having such a short time series or the covari- 

tes already accounting for the time trend. 

on-stationary coefficients 

We assumed the coefficient estimates for the models in 

ection 4 were stationary in time using years 2012–2014 as train- 

ng data. To test this assumption we evaluate the model per- 

ormance assuming non-stationary coefficient estimates and re- 

raining the model each year. This means the models for predic- 

ion year 2016 were now trained using data from years 2013–2015, 

odels for prediction year 2017 were trained using years 2014–

016, and models for prediction year 2018 were trained using years 

015–2017. Table A3 shows the prediction results in terms of MSPE 

nd EIR. 

Compared to the one year ahead stationary prediction results 

n Table 2 , the predictive performance of the GEE model dete- 

iorated while the QUANT and DBN models improved. The SSAL 

esults are similar to the GEE model. Overall, the non-stationary 

UANT model is comparable to the stationary GEE model in terms 

f MSPE, however, the stationary GEE model has superior EIR. We 
agnosis rates with time trend. Coefficient 

ained using prediction years 2012–2014. 

2017 2018 

MSPE EIR MSPE EIR 

 41.00 75.6% 34.35 79.3% 

 37.18 67.4% 33.34 70.7% 

 41.01 73.8% 33.35 78.0% 

 30.01 75.2% 34.64 79.1% 
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Table A3 

One year ahead prediction results of new HIV diagnosis rates. Coefficient estimates are assumed 

non-stationary in time and re-trained each year using the prior 3 years of data as training data. 

Computation time is the average time for each year in seconds. 

2015 2016 2017 2018 

Model MSPE EIR MSPE EIR MSPE EIR MSPE EIR Time 

GEE 326.94 80.1% 46.84 81.6% 48.41 79.9% 43.63 86.1% 166.8 

QUANT 328.61 69.2% 41.34 72.6% 34.63 71.6% 33.90 81.0% 165.2 

SSAL 325.26 77.9% 46.63 78.7% 63.54 76.9% 39.56 83.4% 592.0 

DBN 328.38 78.4% 40.78 78.8% 31.31 77.4% 33.59 78.4% 194.1 

Table A4 

One year ahead prediction results of new HIV diagnosis rates using different autoregressive lags as 

covariates. Coefficient estimates are assumed stationary in time and trained using prediction years 

2012–2014. 

2015 2016 2017 2018 

Model AR MSPE EIR MSPE EIR MSPE EIR MSPE EIR 

GEE AR1 332.32 79.7% 55.18 75.5% 39.53 74.6% 42.41 76.2% 

QUANT AR1 336.07 62.2% 151.48 62.4% 38.61 59.6% 37.67 62.2% 

SSAL AR1 333.85 77.5% 57.27 73.5% 44.97 73.0% 44.61 74.1% 

DBN AR1 331.51 78.5% 62.86 74.8% 34.41 73.7% 37.59 75.4% 

GEE AR2 328.61 79.2% 46.43 77.5% 56.97 75.8% 33.90 77.2% 

QUANT AR2 329.49 64.7% 44.14 65.2% 44.55 63.3% 33.86 65.0% 

SSAL AR2 325.33 77.1% 43.74 76.4% 40.42 73.5% 33.11 76.6% 

DBN AR2 328.67 79.2% 42.55 77.3% 43.44 75.8% 34.18 77.5% 
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hoose our best performing model to be the stationary GEE due to 

he similar MSPE and better EIR. 

utoregressive HIV rate lag 

The prior year’s HIV rates are significant for making one year 

head HIV predictions. We consider different autoregressive lags as 

ovariates in the model to determine the most appropriate number 

f lags to include in the variable selection. It would be difficult 

o use a partial autocorrelation function to determine the num- 

er of lags due to the short time series and suppressed data in 

any counties. Table A4 shows that if AR(1) is used as the only 

utoregressive HIV rate covariate there will be too much depen- 

ency on the prior year’s rate. That means when there is an out- 

ier, such as in 2015, the prediction in 2016 assumes the rate will 

e similar, resulting in overestimation. In general, including AR(2) 

IV rate covariates is an improvement to AR(1) in all years except 

017. However, we found an AR(3) HIV rate covariate process to be 

est, allowing for smoothing and providing more robust estimates 

oward any potential outliers. The results of this chosen model are 

n Table 2 . The SVAR model was excluded from this study due to 

omputation time. 
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