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Abstract— This paper presents a distributed strategy for au-
tomatically synthesizing controls for robotic swarms such that
they achieve reactive, high-level formation tasks. In our frame-
work, a user specifies formation and location-based swarm
tasks, which may include reactions to environmental events,
using linear temporal logic. Then, we synthesize a centralized
finite automaton that represents the symbolic behavior of the
swarm. To execute the automaton, we develop an auction-based
decentralized algorithm that assigns robots to different locations
and formations using only information from neighboring robots.
To guarantee that the swarm can achieve the specified high-level
tasks, we use integer programming to obtain the maximum and
minimum number of robots that need to be sent to different
locations during each symbolic transition, and we incorporate
the constraints on sub-swarm sizes into the auction-based
assignment algorithm. We demonstrate our control framework
in simulation and with ten Anki-Vector robots in the lab.

I. INTRODUCTION

Research in swarm robotics studies the coordination and
interaction of large numbers of simple robots in terms of
robustness, flexibility, and scalability [1]. Robot swarms
have various potential applications such as surveillance [2],
warehouse logistics [3], and collective construction [4].
While one direction of research on robot swarms focuses
on creating simple single robot behaviors and analyzing the
emergent behavior of the swarm [5]-[7] , recently researchers
have been developing control schemes to achieve high-
level swarm tasks in a top-down manner [8]-[11]. These
approaches use formal languages to specify global high-
level tasks, and synthesize controls for individual robots such
that the resulting swarm behaviors satisfy the specifications.
However, these approaches either require centralized control
for the robots [8], [9], or they lack reactivity to possible
environment events [10], [11]. In this work, we propose a
distributed control scheme for swarms to achieve reactive
high-level tasks.

As a motivating example, consider the workspace parti-
tioned into 5 rooms r;, i € {0,...,4} shown in Fig. 1. There
are two static targets in room r3 and r4. We assume that there
is an environmental event “danger” that the swarm must react
to; when there is no danger, the robots should form triangles
in rg, r1, and r, at the same time but when danger is detected,
the robots should form a square and a hexagon around the
targets in r3 and r4.

Given such a reactive, globally-specified formation task,
our objective is to automatically synthesize controls for each
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Fig. 1: Part of a finite automaton representing a formation-
based reactive task where d is the environment event.

individual robot such that the swarm completes the task
correctly. Our previous work [12] proposed an abstraction
for formations and presented a centralized control synthesis
approach for accomplishing non-reactive high-level tasks
given as linear temporal logic (LTL) formulas over the
abstraction. However, in swarm applications, due to the scal-
ability and communication costs, one prefers decentralized
control, where robots only use their local information to
make decisions, to achieve the global specifications. In this
work, we present a novel control scheme, where we only
synthesize a centralized symbolic plan offline based on the
LTL specifications, but execute the symbolic plan in a de-
centralized manner by applying an auction-based algorithm
to task assignment during transitions in the symbolic plan.
Assumptions. In this work, our abstraction allows at most
one formation in a region at one time, as in [12]. Further-
more, we assume that the reactivity is non-instantaneous—
swarms only detect and react to an environmental event after
completing a transition in the symbolic plan. This means that
the swarm will not change its behavior in the middle of a
transition. We also assume that the map of the workspace is
known and all robots can detect the environment events.
Paper contributions. This paper presents (i) a distributed
control method for executing a reactive finite automaton for
swarm tasks, which satisfies robot number constraints. (ii) an
IP-based approach for calculating constraints on swarm size,
to ensure a priori feasibility of reactive high-level tasks. (iii)
demonstrations of simulated and physical swarms to illustrate
our approach.

II. RELATED WORK

Decentralized task assignment. There is a large body of
work on decentralized task assignment for teams of robots
(e.g. [13]-[16]). Some researchers focus on the communi-
cation mechanism that enables the robots to satisfy task



constraints: in [13], the authors propose an algorithm that
guarantees the satisfaction of hard constraints and incorpo-
rates soft constraints into task allocation. Our work similarly
uses auction-based methods, but we use our offline compu-
tation of sub-swarm size constraints to influence the online
decentralized assignment. Other work focuses on dynamic
assignment and planning during execution: [14] proposes a
decentralized framework for multi-robot task assignment to
satisfy LTL specifications under sensing uncertainties, and
[15] shows a method using redundant robots for efficient
task assignment with uncertain travel time. Unlike [14] that
focuses on task allocation during single transitions in the
policies, or [15] that requires redundant robots for a goal, our
work creates strict sub-swarm size constraints that take into
account the entire symbolic plan and applies them to online
task allocation. Our work has offline planning using linear
temporal logic synthesis, and uses online task assignment
that extends the auction-based algorithm in [16]. The main
difference of the assignment algorithm is that [16] requires
a fixed number of robots for each task while our algorithm
allows a flexible number for each task and also provides
guarantees of satisfying sub-swarm size constraints.
Reactive synthesis. Reactive synthesis [17] is the problem
of generating a strategy such that for every environment
behavior, the system has a behavior that will ensure a
specification is satisfied. We leverage the work in [18] which
presents reactive synthesis algorithms for a computationally
more efficient fragment of LTL (GR(1)). Reactive synthesis
has been applied to various robotics systems (e.g., humanoid
robots [19] and manipulators [20]). Recently, reactive syn-
thesis has been studied in the context of robotic swarms
[9] in a centralized manner. In this work we create a
decentralized execution of the symbolic plans generated by
reactive synthesis.

Top-down control synthesis for swarms. The authors in
[8] develop a hierarchical framework to create velocity com-
mands for robots in a swarm from high-level specifications.
Then, they construct the abstractions for individual robots
and propose an algorithm to reduce inter-robot commu-
nication from the global specifications in [21]. Recently,
[22], [23] presented a formal synthesis approach for creating
decentralized symbolic plans from global LTL specifications
for non-reactive swarm navigation problems, and we applied
the synthesized symbolic plans to physical robots and studied
the collision avoidance and deadlock mitigation during the
continuous execution [24]. Then, in [12], we propose an
abstraction and control synthesis framework that coordinates
swarms to achieve non-reactive formation-based tasks in a
centralized manner. Based on those synthesis approaches,
this work focuses on decentralized execution of a finite
automaton for reactive formation-based tasks. Our method
is different from [22], [23] in that we address reactive tasks.

ITII. PRELIMINARIES
A. Abstractions for formation-based swarm tasks

In our previous work [12], we proposed abstractions that
capture location and formation based swarm behaviors and

created LTL specifications for desired swarm tasks. Intu-
itively, locations indicate regions of interest in the workspace,
and formations are requirements on the relative distances
between the robots. In [12], swarm formations create polyg-
onal shapes where robots are distributed on the perimeters.
The abstractions we defined contain three sets of symbols:
location symbols R = {ry,...,r,,}, formation symbols F =
{F,...,F}, and a target symbol {G} which indicates whether
a point of interest exists in a region. We use these symbols
to create an atomic proposition set Prop = (FU{0}) x R x
{G,0}, with the following semantics:
o r; =true indicates that at least one robot is in region r;.
e F;_r;_G = true indicates that robots form the shape
F; around the target G in region r;, and Fj_r; = true
indicates that robots form the shape F; in region r;
irrespective of the location or existence of the target,

where F; is grounded to a 2D polygon (a list of vertices).
For example, for the task partially depicted in Fig. 1, R =
{rili€{0,...,4}} and F = {T,S,H} where T is a triangle,
S is a square, and H is a hexagon. The propositions, 7T _ry,
T_ry, and T_r, indicate robots forming triangles in ry, rq,
and r, and S_r3_G, H_r4_G indicate robots forming a square
and a hexagon around targets in r3 and r4 respectively.

B. LTL Synthesis and Finite Automata

Given the propositions in Sec. III-A, we specify a high-
level task as a linear temporal logic (LTL) formula ¢, and
use the algorithm in [18] to create a (not necessarily unique)
control automaton which, if executed, guarantees that the
robots will satisfy ¢. The generated automaton is a tuple
A=(0,00,X,Y,0,L), where Q is a finite set of states, Oy C
Q is the set of initial states, X is the set of environment
propositions, Y is the set of robot propositions, 6 C Q x Q is
a transition relation, and L : Q — 2X"Y is a labeling function
which maps a state to a set of propositions that are true in that
state. Revisiting the example in section I, we synthesize an
automaton A shown in Fig. 3a that satisfies the specification.

C. Market-based task assignment

Market-based approaches have been applied to decen-
tralized task assignment for multi-robot systems [25]. The
auction assigning method in this work is built on [16], where
given n robots and m tasks, the authors proposed a distributed
bidding framework to split the robots into groups of size
ng (k € {1,...,m}), where each task k requires exactly ny
robots, and n = Y' ; ng. In their framework, each robot i
(i € {1,...,n}) has a selection function f;(T) to select a
task k; and create a bid b; > 0. In addition, each robot i
has an estimation of the availability a,E’] (OC,EI] c{0,...,m})
of task k£ which represents the number of robots that can
still be assigned to task k. Robots communicate with their
neighbors, and the robot with the highest bid finalizes the
task selection, while other robots repeat the process until all
robots are assigned to tasks. The proposed auction method
guarantees that exactly n; robots are assigned to task k, and
the final assignment can be reached after exploring at most
n(n+1)/2 assignments.



IV. PROBLEM FORMULATION AND APPROACH
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Fig. 2: Flowchart of our control synthesis approach for high-
level reactive swarm tasks. The contributions of this paper
are in the boxes with the thick border.

This paper solves the following problem: Given n robots,
a finite automaton A = (Q,Qo,X,Y,0,L) synthesized from a
high-level reactive swarm task ¢, a 2D workspace consisting
of polygonal regions R and targets, a set of possible 2D
formations F, and minimum and maximum numbers of
robots needed for a formation F; or a region r;, we find,
in a distributed manner, controls for the individual robots
such that the swarm accomplishes the high-level task ¢.

Our approach to the control synthesis problem is shown
in Fig. 2. Before execution, users specify reactive, high-level
tasks, from which we synthesize a finite automaton A [18].
We calculate constraints on the sub-swarm size for each
transition in A, based on the physical size of the regions
and robots, and on the transitions in A; these constraints are
used during execution.

When executing the task, each robot has a copy of A,
and for every transition, it communicates with its neighbors
to determine an assignment in a decentralized way. The
assignment has two phases: assigning robots to sub-swarms,
i.e. deciding which region they should go to and in which
formation, and assigning them to goal points. Both phases
use the same auction process described in Algorithm 2. Once
every robot has a goal point, it synthesizes continuous control
to reach the goal while avoiding collisions, as in [24]. Once
all robots reach their goals, the process repeats; based on
the environment state (the value of the propositions in X),
the robots determine the required transition and proceed to
determining sub-swarms and goal assignments followed by
motion to the goal. We assume the swarm observes the envi-
ronment state only once a transition has been completed, and
the swarm contains enough robots to satisfy all constraints
on the sub-swarm sizes—the total number of robots needed
is known before execution after computing the constraints.

A. Computing sub-swarm size constraints

The LTL synthesis algorithm does not take into account
the actual sub-swarm size because the specifications only
capture the symbolic abstraction of the swarm motions. How-
ever, to physically execute the synthesized finite automaton,
when distributing the robots into sub-swarms, we must make

sure that sub-swarm size can satisfy the requirement of the
corresponding behaviors. For example, we should assign at
least 4 robots to form a square, or we cannot assign more
robots than can safely move in a region.

Our previous work [12] myopically considered such
constraints for the current transition; this might result in
assignment failures when sub-swarm sizes cannot satisfy
constraints on future transitions. For example, consider a
transition that requires the swarm to be divided into two
sub-swarms a and b. If the next transition requires sub-
swarm a to be divided into three sub-swarms, then in the
current swarm assignment, we must require that a contain at
least three robots. In [12] we had no such constraints. In this
work, to eliminate future failures due to sub-swarm size, we
calculate, before execution, constraints on sub-swarm size
for all the transitions using integer-programming (IP). The
proposed method builds on the quantitative analysis of swarm
size in [23] which computes the minimum number of robots
for non-reactive location-based tasks.

qo: d ATy
AT 1 AT,

qe: dAS T3 G
AH1r, G

(a) Automaton A that satisfies the specifications in section I.
Environment propositions are blue, robot propositions are black.

(b) A simplified automaton A’ obtained from A.

Fig. 3: (a) An automaton that implements the specifications
in Section 1. (b) the simplified automaton A’ used to calculate
the robot number constraints for the transitions in A.

Abstracting A. For reactive tasks, the synthesized automaton
A, which is deterministic, usually contains many states
and transitions, since for any environment behavior, there
needs to be an appropriate reaction (system action). This
may result in intractability of computing sub-swarm size
constraints for each transition. However, we observe that
only the robot propositions Y, i.e. the regions and formations,
and not the environmental events, influence the constraints
on sub-swarm size. Thus, to calculate the constraints on
the number of robots per transition, we first abstract A by
a nondeterministic automaton A’ = (Q',Y,6’,L) where Q'
is a set of states, Y is the same as in A, &' is the state
transition function and L' is the labeling function such that
L'(¢") CY is the set of robot propositions that are true in
state ¢’ € Q'. We create A’, which has fewer transitions than
A, by grouping states in A with the same robot propositions



Y and maintaining a mapping f between transitions in A" and
transitions in A. We then calculate bounds on the number of
robots for transitions in A’. When executing A, we use the
corresponding transitions in A’ to determine the constraints
on the robot sub-swarm size.

Algorithm 1 Abstracting A

Input: A := (Qu Q07X7Y757L)
Output: A" := (Q',Y,8',L), f

1: Q0 :=0,6:=0,f:=0,h:=0

2: for g€ Q do

32 y:=L(gnY

4 if I € O st. L'(u') =y then
5: q =u

6: else

7 q := createNewState(y)
8 =0 U{q'}

9 L'(q):=y

10:  end if

11: h:=hU{(q.q¢)}

12: end for

13: for (¢,p) € 6 do

4 f:=fU{((¢,p),(d.P))(q.4') € LA (p,P') € h}
15:  if (¢',p’) ¢ &' then

16: 6 :=d8'u{(d,p)}

17:  end if

18: end for

We present the procedure for obtaining A’ = (Q',Y,8',L’)
from A = (Q,00,X,Y,0,L) in Algorithm 1. We first group
states (Lines 2-12), and then map the transitions (Lines 13-
18). To group states, we create a state g’ for every unique
set of system propositions Y that appear in Q (Lines 4-
10). We create the mapping & to keep track of which state
in A’ corresponds to states in A’ (Line 11). To create f,
that maps transitions in A to transitions in A’, we find
the corresponding states ¢',p’ € Q' for each (g,p) in &
(Line 14). Finally, we create the transition set &’ (Lines 15-
17). Since (¢',p’) have the same robot propositions (sub-
swarm partition and formations) as (g, p), the calculation
of the bounds on the sub-swarm size is equivalent to the
direct computation on A. For example, the automaton A
synthesized from the specifications in section I, shown in
Fig. 3a, has eight states and 16 transitions. Using algorithm
1 to abstract A we get A’ which only has four states and
six transitions (Fig. 3b). Each transition in A’ is mapped
to some transition(s) in A, e.g., (¢(,¢)) in A’ is mapped
o (gq1,93). We calculate the bounds on sub-swarm size for
transitions in A’, and map them back to A during execution.
This reduces the number of variables and constraints in the
IP, which increases the scalability of our approach.

IP formulation. Given the simplified automaton A’ =
(Q,Y,8',L), for any state ¢’ € O/, we define the sets of
previous and post states of ¢’ as pre(q’) = {u' € Q'|(v/,q') €
0’} and post(q') = {V' € 0'|(¢/,V') € 8'}. For each transition
(¢',p') € 8', we define a set of non-negative integer variables

x;’q’prp, where r, and r,, represent the regions that are in

the labels of state ¢’ and p’ respectively, such that they are

adjacent in the workspace, i.e. robots can move from ry to

r,y. For example, in Fig. 3b, x,O‘ 333 represents the number of

robots that are sent from ry to r3 during the transition from
g} to ¢4. Then, we define two integers, Nq M and N, q max
to represent the minimum and maximum numbers of robots
that are allowed in region r; in state ¢’. For example, in Fig.

3b N:,],' Jmin
4 0

;o

region rp, and Nz)o’mm = 3 because there should be at least

three robots to make proposition 7 _ry become true in state

P

g, (form a triangle). In this paper we determine N ™" and

Nq/ ,max
i

=1 since rq is true if at least one robot is in

based on the procedure in [12].

We create three sets of linear constraints to ensure the
sub-swarm sizes satisfy all the transitions in A’. First, for
any transition (¢’,p’), the sum of Joutgoing robots from a
region r; must fall in the range [Nq i Nq ).

‘1"“"<Zx”,_ N, ()

where r,, is the set of neighboring regions of r; in state p'.

Second, for every transition (¢’,p’), the sum of incoming
/ . /

robots to a region r; must fall in the range [N5 ™" NE "]

/
Nf? ,min < lef{ /pr, < NP max, (2)

where r/, is the set of neighboring regions of 7; in state ¢'.

Finally, Vq' € O/, Vu' € pre(q’), and VV' € post(q'), the sum
of robots entering or staying in region r; during the transition
(u/,q'), is equal to the sum of robots leaving or staying in
region r; during (¢',v').

Zxr = Zxrl s 3)

where r,, and r,, are neighboring regions of r; in states u’
and V' respectively. In the end, we formulate two integer
programs:

min x;’;}fr,p, subject to Eq.(1),(2),and(3) (4)
(¢'.p")ed’

max xlq.q/ r, subject to Eq. (1),(2),and(3) (5
(q'.p')ed’

to obtain the upper and lower bounds of number of robots
for each pair of neighboring regions in each transition. We
use the resulting numbers in the decentralized assignment
(section IV-B) to make sure that the execution can satisfy
all the physical constraints. These constraints might not be
the most permissive if we were only considering single
transitions (See the example in Sec. V-B).

B. Auction-based decentralized assignment

Inspired by decentralized auction-based task assignment,
we present our swarm assignment algorithm that, based on
A and the robot number constraints (Sec. IV-A), assigns
robots to different sub-swarms and goals. We execute the



assignment algorithm twice for each transition in A, as shown
in Fig. 2; the first time robots choose their sub-swarm, i.e.
their region and formation, and the second time, given the
sub-swarm, robots choose goal points to travel to.

Algorithm 2, which builds on [16], describes the dis-

tributed assignment algorithm. We consider a set of tasks
T; these tasks are region and formation pairs for the first
assignment, and goal points to reach for the second. For
each task 7 € T we assign N/ and N/"*, the minimum and
maximum number of robots that can be assigned to task 7.
For the sub-swarm assignment, these numbers are given by
the IP discussed in Section IV-A; for the goal assignments,
NMin — Nmax — | since we are assigning each robot to exactly
one point in the workspace. We assume the communication
graph is connected (the same assumption as in [16]) to ensure
the convergence of the assignment algorithm.
Notation: We define T* C T as the set of tasks the robot can
be assigned to. This set is determined before the assignment
algorithm is performed, based on the current position of the
robot, the physical connectivity of regions, and the next state
in the automaton. For example, for the transition between ¢
and g3 in the automaton in Fig. 3a, if the robot was in region
ro in g1, T* = {ro,r1} due to the environment connectivity
(it cannot magically transport to ;).

During the assignment algorithm, for each r € T*, we
update each robot’s estimate of the minimum number of
robots still needed for the task, n{”i”, and the maximum
number of robots that can still be assigned to the task, n;**
(task availabilities). We denote the set of current minimum
and maximum numbers for the set of tasks as 7" and
n"% respectively. Furthermore, we define 77 and 74!
such that 7" = {t € T*|n™" > 0} is the set of tasks that
must have robots assigned, i.e. the task has not yet been
assigned its minimum number of robots, and Tavail — {t e
T*|n™™ > 0} is the set of tasks which may still be assigned to
robots, i.e. their maximum constraint has not been exceeded.
We denote the robot’s set of neighbors, the robots within
communication range, as 4.

Algorithm: At the beginning of each assignment, we initial-
ize n’ﬁi" and n77¢" as noted above. Following the initialization,
the assignment is done in bidding rounds (Lines 4-22) until
the robot finalizes its task. At each round, the robot first
updates the availability of the tasks based on the information
it receives from its neighbors .4~ (Lines 4-5). If it is the
first round of bidding or the task ¢ the robot has chosen in
a previous round is no longer available, the robot chooses
a new task ¢ and an associated bid b as described below
(Line 7). Then, the robot determines which of its neighbors
are competing for the same task and what their bids are. If
there are no neighbors or all their bids are lower, the robot
finalizes its task selection and updates the task availability
(Lines 14-15). If there is an identical bid, the robot increases
its bid (Line 18), and if the robot bid is lower than a
competing bid, the robot selects a task again. (Line 21).

Choosing ¢ and b: The function chooseTask (Line 7)
chooses a task # from 77¢¢¢ and T®“!. Specifically, in this
paper, we selects ¢ from 77¢°? if 7" £ ( and from T4

if 77¢¢d = () such that the traveling distance from robot i to
task ¢ is minimal. We choose the bid b as the reciprocal of
the distance to the formation center/goal point. We increase
bids by multiplying them by 2 in cases when they are the
same (Line 18), but due to our choice of bid, robots almost
never have identical bids since the distances are unlikely to
be exactly the same.

Algorithm 2 Distributed Auction for Task Assignment

Input: T*, N"", N" Vit € T*, N
Output: The robot assignment ¢

Lo pin = NP e Nmax jp e T

2: finalized := False

3: while !finalized do

4 (nimin pnex) .= updateAvailabilities(N)

5. (Treed 7vail) .= ypdateTaskSet (n", n'r@, T*)

6:  if first time bidding or ¢ ¢ T*! then

7: t := chooseTask(T"*? , T™%"), b := createBid(t)
8 continue

9:  end if

10:  (A,B) := findNeighborBids(t, ")

11:  if A =0 or (A #0 and b > max;c_4(b; € B)) then

12: //No other robots are bidding on ¢,

13: /lor b is the highest bid

14: finalized := True

15: pnin = pmin | pinax .= pmax _ |

16:  else if b; = max;c_4;(b; € B) then

17: /I Another robot has the same bid for task ¢
18: b := increaseBid (b)

19:  else

20: /I Another robot has a higher bid for task ¢
21: t := chooseTask(T™¢ , T*"), b := createBid(t)
22:  end if

23: end while

Correctness and Completeness: In each bidding round in
Algorithm 2, a robot selects a task from T7eed yntil all
tasks have reached N,’"’"‘, and it always selects a task from
T thus the auction is guaranteed to satisfy the sub-swarm
size constraints. In each auction round, except the first one,
at least one robot finalizes their selection and updates the
availability, which is then communicated to the other robots.
Therefore, such decentralized auction process ends within a
bounded time (n(n+ 1)/2 auctions as in [16]).

V. DEMONSTRATION AND EVALUATION
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Fig. 4: Workspace of examples in Sec V. From left to right:
small environment, complex task, physical demonstration.



A. Simulation - small environment

1) Task description: In the workspace shown in Fig. 4
(left), robots are initially located in the charging base ry.
There is an environment signal e such that robots should
repeatedly form a square in rs and a hexagon in rg when e
is true, and stay in ry when e is false. We enforce that there
should be no robots in ry when there are robots in r3, ry4, rs,
or rg, and vice versa.

2) High-level synthesis: We synthesize an automaton A,
using the approach in section III-B, which contains 15 states
and 30 transitions, and abstract it to A’ with 5 states and
12 transitions. The automaton A contains transitions where
the swarm is split into two sub-swarms, one going to r5 and
the other to rg when e is true. Using the approach in section
IV-A, we calculate the bounds on the number of robots for
these two sub-swarms as [4,36] and [6,36] respectively.

3) Evaluation: We evaluate our approach along two di-
mensions: the effect of choosing a decentralized approach on
the average distance traveled by the robots, and the effect of
the swarm size on the average number of bids per transition.
Fig. 5 summarizes the results.

The centralized approach is formulated as an IP that
centrally assigns robots to sub-swarms with the objective of
minimizing the sum of estimated travel distances towards the
target formations [12]. For the evaluation, we vary the swarm
size from 10 to 70 (based on the constraint calculation,
the swarm size should be between 10 and 72 inclusively),
and evaluate average distance traveled by the robots and
the number of bids per transition. For each swarm size, we
collect data for 20 runs; we randomly sample 20 sets of initial
poses, and we use the same initial poses for the centralized
and decentralized approaches.

The average travel distance is the accumulated distances
of all robots averaged by the number of robots. The number
of bids per transition is the accumulated number of auctions
from the last robot finalizing the task averaged by the number
of transitions for the entire execution of the automaton A. To
create the behaviors of the swarm, we set e to be true when
all robots are in ry, and false when robots finish forming a
square and a hexagon in r5 and rg. We stop the simulation
when all robots gather in ro again. We set the communication
range as 16.0 units in the simulation environment to make
sure that two sub-swarms always stay connected.

Travel distance: The red lines in Fig. 5 present the differ-
ences in the average travel distances between the centralized
and decentralized approaches. As expected, for all the swarm
sizes from 10 to 70, the decentralized approach results in
larger average travel distances than the centralized approach,
since the decentralized assignment has no guarantees on
optimality while the centralized method does. The two ap-
proaches have the largest difference in average travel distance
when the swarm size is 40. This is due to the asymmetry
in the environment; the distance from points in ry to r; is,
on average, smaller than the distance to r,. This asymmetry
causes the optimal (centralized) assignment to assign as
many robots as possible to the sub-swarm moving to rs ,
while satisfying N;';i” =6 and N;“* = 36. However, in the
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Fig. 5: Comparison between centralized and decentralized
assignment on travel distances (red) and average number of
bids needed for robots per transition for the decentralized
approach (blue) with respect to the swarm size.

decentralized approach, some robots are assigned to r, even
though they could have been assigned to r; with shorter
travel distances, because some robots closer to r; might first
regard ry as T"°“?, and after they are assigned to 7, there are
other robots closer to r, that choose r, from 794!, However,
for swarm sizes at the extremes (10 and 70), the difference
in travel distance is less noticeable because both approaches
will result in almost exactly the same sub-swarm assignment.
For a swarm of size 40, the difference is larger because a
greater portion of robots are assigned, by the decentralized
approach, to r;.

Average number of bids: The blue lines in Fig. 5 present
the number of bids needed for robots per transition; each
line represents one type of assignment—sub-swarm and goal
points. The number of bids grows almost linearly with
the number of robots, which shows the scalability of the
distributed approach. Therefore, even though the distributed
approach cannot guarantee optimality, it is more realistic for
applications of large swarms since the computation on each
robot scales linearly with the swarm size.

B. Simulation - complex task

1) Task description: In the workspace shown in Fig. 4
(middle), there are two environment events e; and e;. We
require a swarm of robots, initially located in rg, to form
squares in ry, 12, and r3 simultaneously when e is true, and
to form hexagons in rs and rg simultaneously when e; is
true. We assume that ¢; and e, can both be true at the same
time, and that once an environment event becomes true, it
stays true until the goal is achieved. (E.g., e; stays true until
the swarm completes forming squares in ry, 7, and r3.)

2) Synthesis and Demonstration: We synthesize the au-
tomaton A which has 48 states and 125 transitions and
abstract it to A’ which has 18 states and 52 transitions. We
compute the sub-swarm size during each transition based
on A’, which shows that when e; is true, the minimum
number of robots sent from ry to r3 is 10 (constrained by
the minimum number required to form a square in r3 and
a hexagon in rg), and the minimum number from rg to 7|
and rp are both seven (constrained by the minimum number
required to form squares in r; and r, and a hexagon in rs).
Similarly, the maximum sub-swarm size from rg to r3 is 36



Fig. 6: Different sizes of simulated swarms performing the same transition (both ¢; and e; are true) in A (Sec. V-B). Swarm
sizes are 24, 40, 56, and 72 from left to right. Robots are purple circles, intended formations are displayed in red.

(constrained by the square in r3), and the maximum sub-
swarm sizes from rg to r; and r, are both 18 (constrained
by the hexagon in rs). From these constraints we know that
the swarm should be composed of at least 24 robots and at
most 72. If we only allow e; or e, to be true at a time,
the minimum swarm size becomes 14; the maximum swarm
size remains 72 due to the maximum number allowed in
a square and a hexagon. Fig. 6 shows a snapshot of the
accompanying video where the swarm distributes into sub-
swarms for different swarm sizes (24, 40, 56, and 72) when
e; and e, are both true.

C. Physical demonstration

1) Task description: We demonstrate our approach using
10 Anki-Vector robots [26] and a motion capture system.
This demonstration simulates a scenario in which robots
monitor areas of interest when there is potential danger in
the environment. Specifically, robots are initially located in
three rooms, ry, r;, and rp shown in Fig. 4 (right). The
environment signal d represents danger. Robots are required
to go to open spaces r3 and r4, and form a square and a
hexagon respectively around the targets when d is true, and
repeatedly gather and form triangles in the three rooms when
d is false. Robots should not be in ry and r4 at the same time.

2) High-level Synthesis: The synthesized automaton A
contains 18 states and 36 transitions, and A’ has 6 states
and 14 transitions. Based on our robot number constraint
calculation, We determine that the minimum number of
robots required to accomplish the task is 10.

3) Demonstration: Snapshots of the demonstration are
shown in Fig. 7. We set the communication range to be 2.8m
to make sure that the communication graph stays connected
when robots are distributed in r, and r3. We control the
environmental event “danger” d by clicking a button in a
graphical user interface. Initially, d is false and the swarm
forms three triangles in ry, r1, and r,. After the completion of
the triangles, we change d to be true and the swarm proceeds
to form a square and a hexagon around the targets.

We illustrate the bidding process in Fig. 7 before each
transition in the high-level task. Initially, three robots choose
r3 and seven robots choose r, based on the distance to
the target regions. Then, before forming the triangles, seven
robots bid for staying in the same region at first, but four
robots switch the target region to r in order to satisfy the
minimum number constraint for each formation. In addition,

when moving from r3 Ar4 to r, Ar3, three robots change the
target regions from r; to r3 based on the estimated distances.

VI. CONCLUSION AND DISCUSSION

In this work, we develop and demonstrate decentralized
execution of high-level reactive swarm tasks. This decentral-
ized approach to executing globally specified tasks retains the
formal guarantees of correctness we have shown in the past
and enables the algorithms to scale to larger swarm sizes, at
the expense of optimality.

Our approach makes several assumptions that may cause
limitations in wide scale deployment: First, we assume that
all robots bidding for the same task can form a connected
communication graph, which might be an obstacle to outdoor
applications for real swarms. In our demonstrations, we set a
fairly large communication range to satisfy the assumptions,
which resulted in a dense communication graph. Thus the
bidding process converged quickly. It would be interesting
to explore what information needs to be passed and how a
restricted communication graph affects the correct execution
of the task (see multi-robot exploration tasks [27]).

In addition, the reactivity in this work is non-
instantaneous, meaning that the swarm has to finish the
current transition before reacting to an environment change.
If we allow instantaneous reaction to environment signals,
the constraints on sub-swarm size may no longer be satisfied
because the environment can choose a behavior where the
robots must keep switching sub-swarm, causing livelock. It
would be interesting to further explore how to trade-off the
instantaneous reaction with the non-instantaneous motion for
a specific number of robots.

Finally, when implementing the algorithm on swarm
robots, we observe that the robots closer to goal points have
higher priority to make the decisions, and they usually reach
the goals quickly while other robots have to go around them
to reach the goals, which results in two disadvantages: 1)
swarms might get congested and have deadlocks in a narrow
workspace, and 2) it might take a long time to complete the
tasks. Although our approach is decentralized, we can still
improve it by incorporating ideas of swapping goals [28] to
speed up the execution and avoid deadlocks since each robot
plays a cooperative role in the swarm to achieve the task.
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Fig. 7: Snapshots of 10 Anki Vectors accomplishing a high-level task. The plots represent the region selections of robots
over time during the assignment. Each line represents the region selection of one robot over the number of auctions.
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