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Abstract— This paper presents a distributed strategy for au-
tomatically synthesizing controls for robotic swarms such that
they achieve reactive, high-level formation tasks. In our frame-
work, a user specifies formation and location-based swarm
tasks, which may include reactions to environmental events,
using linear temporal logic. Then, we synthesize a centralized
finite automaton that represents the symbolic behavior of the
swarm. To execute the automaton, we develop an auction-based
decentralized algorithm that assigns robots to different locations
and formations using only information from neighboring robots.
To guarantee that the swarm can achieve the specified high-level
tasks, we use integer programming to obtain the maximum and
minimum number of robots that need to be sent to different
locations during each symbolic transition, and we incorporate
the constraints on sub-swarm sizes into the auction-based
assignment algorithm. We demonstrate our control framework
in simulation and with ten Anki-Vector robots in the lab.

I. INTRODUCTION

Research in swarm robotics studies the coordination and

interaction of large numbers of simple robots in terms of

robustness, flexibility, and scalability [1]. Robot swarms

have various potential applications such as surveillance [2],

warehouse logistics [3], and collective construction [4].

While one direction of research on robot swarms focuses

on creating simple single robot behaviors and analyzing the

emergent behavior of the swarm [5]–[7] , recently researchers

have been developing control schemes to achieve high-

level swarm tasks in a top-down manner [8]–[11]. These

approaches use formal languages to specify global high-

level tasks, and synthesize controls for individual robots such

that the resulting swarm behaviors satisfy the specifications.

However, these approaches either require centralized control

for the robots [8], [9], or they lack reactivity to possible

environment events [10], [11]. In this work, we propose a

distributed control scheme for swarms to achieve reactive

high-level tasks.

As a motivating example, consider the workspace parti-

tioned into 5 rooms ri, i ∈ {0, ...,4} shown in Fig. 1. There

are two static targets in room r3 and r4. We assume that there

is an environmental event “danger” that the swarm must react

to; when there is no danger, the robots should form triangles

in r0, r1, and r2 at the same time but when danger is detected,

the robots should form a square and a hexagon around the

targets in r3 and r4.

Given such a reactive, globally-specified formation task,

our objective is to automatically synthesize controls for each

Sibley School of Mechanical and Aerospace Engineering, Cor-
nell University, Ithaca, NY, USA {jc3246,rs989, hadaskg}
@cornell.edu. This work is supported by NSF IIS-1830471.

Fig. 1: Part of a finite automaton representing a formation-

based reactive task where d is the environment event.

individual robot such that the swarm completes the task

correctly. Our previous work [12] proposed an abstraction

for formations and presented a centralized control synthesis

approach for accomplishing non-reactive high-level tasks

given as linear temporal logic (LTL) formulas over the

abstraction. However, in swarm applications, due to the scal-

ability and communication costs, one prefers decentralized

control, where robots only use their local information to

make decisions, to achieve the global specifications. In this

work, we present a novel control scheme, where we only

synthesize a centralized symbolic plan offline based on the

LTL specifications, but execute the symbolic plan in a de-

centralized manner by applying an auction-based algorithm

to task assignment during transitions in the symbolic plan.

Assumptions. In this work, our abstraction allows at most

one formation in a region at one time, as in [12]. Further-

more, we assume that the reactivity is non-instantaneous—

swarms only detect and react to an environmental event after

completing a transition in the symbolic plan. This means that

the swarm will not change its behavior in the middle of a

transition. We also assume that the map of the workspace is

known and all robots can detect the environment events.

Paper contributions. This paper presents (i) a distributed

control method for executing a reactive finite automaton for

swarm tasks, which satisfies robot number constraints. (ii) an

IP-based approach for calculating constraints on swarm size,

to ensure a priori feasibility of reactive high-level tasks. (iii)

demonstrations of simulated and physical swarms to illustrate

our approach.

II. RELATED WORK

Decentralized task assignment. There is a large body of

work on decentralized task assignment for teams of robots

(e.g. [13]–[16]). Some researchers focus on the communi-

cation mechanism that enables the robots to satisfy task



constraints: in [13], the authors propose an algorithm that

guarantees the satisfaction of hard constraints and incorpo-

rates soft constraints into task allocation. Our work similarly

uses auction-based methods, but we use our offline compu-

tation of sub-swarm size constraints to influence the online

decentralized assignment. Other work focuses on dynamic

assignment and planning during execution: [14] proposes a

decentralized framework for multi-robot task assignment to

satisfy LTL specifications under sensing uncertainties, and

[15] shows a method using redundant robots for efficient

task assignment with uncertain travel time. Unlike [14] that

focuses on task allocation during single transitions in the

policies, or [15] that requires redundant robots for a goal, our

work creates strict sub-swarm size constraints that take into

account the entire symbolic plan and applies them to online

task allocation. Our work has offline planning using linear

temporal logic synthesis, and uses online task assignment

that extends the auction-based algorithm in [16]. The main

difference of the assignment algorithm is that [16] requires

a fixed number of robots for each task while our algorithm

allows a flexible number for each task and also provides

guarantees of satisfying sub-swarm size constraints.

Reactive synthesis. Reactive synthesis [17] is the problem

of generating a strategy such that for every environment

behavior, the system has a behavior that will ensure a

specification is satisfied. We leverage the work in [18] which

presents reactive synthesis algorithms for a computationally

more efficient fragment of LTL (GR(1)). Reactive synthesis

has been applied to various robotics systems (e.g., humanoid

robots [19] and manipulators [20]). Recently, reactive syn-

thesis has been studied in the context of robotic swarms

[9] in a centralized manner. In this work we create a

decentralized execution of the symbolic plans generated by

reactive synthesis.

Top-down control synthesis for swarms. The authors in

[8] develop a hierarchical framework to create velocity com-

mands for robots in a swarm from high-level specifications.

Then, they construct the abstractions for individual robots

and propose an algorithm to reduce inter-robot commu-

nication from the global specifications in [21]. Recently,

[22], [23] presented a formal synthesis approach for creating

decentralized symbolic plans from global LTL specifications

for non-reactive swarm navigation problems, and we applied

the synthesized symbolic plans to physical robots and studied

the collision avoidance and deadlock mitigation during the

continuous execution [24]. Then, in [12], we propose an

abstraction and control synthesis framework that coordinates

swarms to achieve non-reactive formation-based tasks in a

centralized manner. Based on those synthesis approaches,

this work focuses on decentralized execution of a finite

automaton for reactive formation-based tasks. Our method

is different from [22], [23] in that we address reactive tasks.

III. PRELIMINARIES

A. Abstractions for formation-based swarm tasks

In our previous work [12], we proposed abstractions that

capture location and formation based swarm behaviors and

created LTL specifications for desired swarm tasks. Intu-

itively, locations indicate regions of interest in the workspace,

and formations are requirements on the relative distances

between the robots. In [12], swarm formations create polyg-

onal shapes where robots are distributed on the perimeters.

The abstractions we defined contain three sets of symbols:

location symbols R = {r1, ...,rm}, formation symbols F =
{F1, ...,Fk}, and a target symbol {G} which indicates whether

a point of interest exists in a region. We use these symbols

to create an atomic proposition set Prop = (F∪{ /0})×R×
{G, /0}, with the following semantics:

• ri = true indicates that at least one robot is in region ri.

• Fj ri G = true indicates that robots form the shape

Fj around the target G in region ri, and Fj ri = true

indicates that robots form the shape Fj in region ri

irrespective of the location or existence of the target,

where Fj is grounded to a 2D polygon (a list of vertices).

For example, for the task partially depicted in Fig. 1, R =
{ri|i ∈ {0, ...,4}} and F = {T,S,H} where T is a triangle,

S is a square, and H is a hexagon. The propositions, T r0,

T r1, and T r2 indicate robots forming triangles in r0, r1,

and r2, and S r3 G, H r4 G indicate robots forming a square

and a hexagon around targets in r3 and r4 respectively.

B. LTL Synthesis and Finite Automata

Given the propositions in Sec. III-A, we specify a high-

level task as a linear temporal logic (LTL) formula ϕ , and

use the algorithm in [18] to create a (not necessarily unique)

control automaton which, if executed, guarantees that the

robots will satisfy ϕ . The generated automaton is a tuple

A= (Q,Q0,X ,Y,δ ,L), where Q is a finite set of states, Q0 ⊆
Q is the set of initial states, X is the set of environment

propositions, Y is the set of robot propositions, δ ⊆ Q×Q is

a transition relation, and L : Q → 2X∪Y is a labeling function

which maps a state to a set of propositions that are true in that

state. Revisiting the example in section I, we synthesize an

automaton A shown in Fig. 3a that satisfies the specification.

C. Market-based task assignment

Market-based approaches have been applied to decen-

tralized task assignment for multi-robot systems [25]. The

auction assigning method in this work is built on [16], where

given n robots and m tasks, the authors proposed a distributed

bidding framework to split the robots into groups of size

nk (k ∈ {1, ...,m}), where each task k requires exactly nk

robots, and n = ∑
m
k=1 nk. In their framework, each robot i

(i ∈ {1, ...,n}) has a selection function fs(T ) to select a

task ki and create a bid bi ≥ 0. In addition, each robot i

has an estimation of the availability α
[i]
k (α

[i]
k ∈ {0, ...,nk})

of task k which represents the number of robots that can

still be assigned to task k. Robots communicate with their

neighbors, and the robot with the highest bid finalizes the

task selection, while other robots repeat the process until all

robots are assigned to tasks. The proposed auction method

guarantees that exactly nk robots are assigned to task k, and

the final assignment can be reached after exploring at most

n(n+1)/2 assignments.



IV. PROBLEM FORMULATION AND APPROACH

Fig. 2: Flowchart of our control synthesis approach for high-

level reactive swarm tasks. The contributions of this paper

are in the boxes with the thick border.

This paper solves the following problem: Given n robots,

a finite automaton A= (Q,Q0,X ,Y,δ ,L) synthesized from a

high-level reactive swarm task ϕ , a 2D workspace consisting

of polygonal regions R and targets, a set of possible 2D

formations F, and minimum and maximum numbers of

robots needed for a formation Fi or a region r j, we find,

in a distributed manner, controls for the individual robots

such that the swarm accomplishes the high-level task ϕ .

Our approach to the control synthesis problem is shown

in Fig. 2. Before execution, users specify reactive, high-level

tasks, from which we synthesize a finite automaton A [18].

We calculate constraints on the sub-swarm size for each

transition in A, based on the physical size of the regions

and robots, and on the transitions in A; these constraints are

used during execution.

When executing the task, each robot has a copy of A,

and for every transition, it communicates with its neighbors

to determine an assignment in a decentralized way. The

assignment has two phases: assigning robots to sub-swarms,

i.e. deciding which region they should go to and in which

formation, and assigning them to goal points. Both phases

use the same auction process described in Algorithm 2. Once

every robot has a goal point, it synthesizes continuous control

to reach the goal while avoiding collisions, as in [24]. Once

all robots reach their goals, the process repeats; based on

the environment state (the value of the propositions in X),

the robots determine the required transition and proceed to

determining sub-swarms and goal assignments followed by

motion to the goal. We assume the swarm observes the envi-

ronment state only once a transition has been completed, and

the swarm contains enough robots to satisfy all constraints

on the sub-swarm sizes—the total number of robots needed

is known before execution after computing the constraints.

A. Computing sub-swarm size constraints

The LTL synthesis algorithm does not take into account

the actual sub-swarm size because the specifications only

capture the symbolic abstraction of the swarm motions. How-

ever, to physically execute the synthesized finite automaton,

when distributing the robots into sub-swarms, we must make

sure that sub-swarm size can satisfy the requirement of the

corresponding behaviors. For example, we should assign at

least 4 robots to form a square, or we cannot assign more

robots than can safely move in a region.

Our previous work [12] myopically considered such

constraints for the current transition; this might result in

assignment failures when sub-swarm sizes cannot satisfy

constraints on future transitions. For example, consider a

transition that requires the swarm to be divided into two

sub-swarms a and b. If the next transition requires sub-

swarm a to be divided into three sub-swarms, then in the

current swarm assignment, we must require that a contain at

least three robots. In [12] we had no such constraints. In this

work, to eliminate future failures due to sub-swarm size, we

calculate, before execution, constraints on sub-swarm size

for all the transitions using integer-programming (IP). The

proposed method builds on the quantitative analysis of swarm

size in [23] which computes the minimum number of robots

for non-reactive location-based tasks.

(a) Automaton A that satisfies the specifications in section I.
Environment propositions are blue, robot propositions are black.

(b) A simplified automaton A
′ obtained from A.

Fig. 3: (a) An automaton that implements the specifications

in Section I. (b) the simplified automaton A
′ used to calculate

the robot number constraints for the transitions in A.

Abstracting A. For reactive tasks, the synthesized automaton

A, which is deterministic, usually contains many states

and transitions, since for any environment behavior, there

needs to be an appropriate reaction (system action). This

may result in intractability of computing sub-swarm size

constraints for each transition. However, we observe that

only the robot propositions Y , i.e. the regions and formations,

and not the environmental events, influence the constraints

on sub-swarm size. Thus, to calculate the constraints on

the number of robots per transition, we first abstract A by

a nondeterministic automaton A
′ = (Q′,Y,δ ′,L′) where Q′

is a set of states, Y is the same as in A, δ ′ is the state

transition function and L′ is the labeling function such that

L′(q′) ⊆ Y is the set of robot propositions that are true in

state q′ ∈ Q′. We create A
′, which has fewer transitions than

A, by grouping states in A with the same robot propositions



Y and maintaining a mapping f between transitions in A
′ and

transitions in A. We then calculate bounds on the number of

robots for transitions in A
′. When executing A, we use the

corresponding transitions in A
′ to determine the constraints

on the robot sub-swarm size.

Algorithm 1 Abstracting A

Input: A := (Q,Q0,X ,Y,δ ,L)
Output: A′ := (Q′,Y,δ ′,L′), f

1: Q′ := /0,δ ′ := /0, f := /0, h := /0

2: for q ∈ Q do

3: y := L(q)∩Y

4: if ∃u′ ∈ Q′ s.t. L′(u′) = y then

5: q′ := u′

6: else

7: q′ := createNewState(y)
8: Q′ := Q′∪{q′}
9: L′(q′) := y

10: end if

11: h := h∪{(q,q′)}
12: end for

13: for (q, p) ∈ δ do

14: f := f ∪{((q, p),(q′, p′))|(q,q′) ∈ h∧ (p, p′) ∈ h}
15: if (q′, p′) 6∈ δ ′ then

16: δ ′ := δ ′∪{(q′, p′)}
17: end if

18: end for

We present the procedure for obtaining A
′ = (Q′,Y,δ ′,L′)

from A = (Q,Q0,X ,Y,δ ,L) in Algorithm 1. We first group

states (Lines 2-12), and then map the transitions (Lines 13-

18). To group states, we create a state q′ for every unique

set of system propositions Y that appear in Q (Lines 4-

10). We create the mapping h to keep track of which state

in A
′ corresponds to states in A

′ (Line 11). To create f ,

that maps transitions in A to transitions in A
′, we find

the corresponding states q′, p′ ∈ Q′ for each (q, p) in δ
(Line 14). Finally, we create the transition set δ ′ (Lines 15-

17). Since (q′, p′) have the same robot propositions (sub-

swarm partition and formations) as (q, p), the calculation

of the bounds on the sub-swarm size is equivalent to the

direct computation on A. For example, the automaton A

synthesized from the specifications in section I, shown in

Fig. 3a, has eight states and 16 transitions. Using algorithm

1 to abstract A we get A
′ which only has four states and

six transitions (Fig. 3b). Each transition in A
′ is mapped

to some transition(s) in A, e.g., (q′0,q
′
1) in A

′ is mapped

to (q1,q3). We calculate the bounds on sub-swarm size for

transitions in A
′, and map them back to A during execution.

This reduces the number of variables and constraints in the

IP, which increases the scalability of our approach.

IP formulation. Given the simplified automaton A
′ =

(Q′,Y,δ ′,L′), for any state q′ ∈ Q′, we define the sets of

previous and post states of q′ as pre(q′) = {u′ ∈ Q′|(u′,q′) ∈
δ ′} and post(q′) = {v′ ∈ Q′|(q′,v′)∈ δ ′}. For each transition

(q′, p′)∈ δ ′, we define a set of non-negative integer variables

x
q′,p′

rq′ ,rp′
where rq′ and rp′ represent the regions that are in

the labels of state q′ and p′ respectively, such that they are

adjacent in the workspace, i.e. robots can move from rq′ to

rp′ . For example, in Fig. 3b, x
q′1,q

′
3

r0,r3
represents the number of

robots that are sent from r0 to r3 during the transition from

q′1 to q′3. Then, we define two integers, N
q′,min
ri

and N
q′,max
ri

,

to represent the minimum and maximum numbers of robots

that are allowed in region ri in state q′. For example, in Fig.

3b, N
q′1,min
r0

= 1 since r0 is true if at least one robot is in

region r0, and N
q′0,min
r0

= 3 because there should be at least

three robots to make proposition T r0 become true in state

q′0 (form a triangle). In this paper we determine N
q′,min
ri

and

N
q′,max
ri

based on the procedure in [12].

We create three sets of linear constraints to ensure the

sub-swarm sizes satisfy all the transitions in A
′. First, for

any transition (q′, p′), the sum of outgoing robots from a

region ri must fall in the range [Nq′,min
ri

,Nq′,max
ri

]:

Nq′,min
ri

≤ ∑
rp′

x
q′,p′

ri,rp′
≤ Nq′,max

ri
, (1)

where rp′ is the set of neighboring regions of ri in state p′.

Second, for every transition (q′, p′), the sum of incoming

robots to a region ri must fall in the range [N p′,min
ri

,N p′,max
ri

]:

N p′,min
ri

≤ ∑
rq′

x
q′,p′

rq′ ,ri
≤ N p′,max

ri
, (2)

where r′q is the set of neighboring regions of ri in state q′.

Finally, ∀q′ ∈ Q′, ∀u′ ∈ pre(q′), and ∀v′ ∈ post(q′), the sum

of robots entering or staying in region ri during the transition

(u′,q′), is equal to the sum of robots leaving or staying in

region ri during (q′,v′).

∑
ru′

x
u′,q′

ru′ ,ri
= ∑

rv′

x
q′,v′

ri,rv′
, (3)

where ru′ and rv′ are neighboring regions of ri in states u′

and v′ respectively. In the end, we formulate two integer

programs:

min ∑
(q′,p′)∈δ ′

x
q′,p′

rq′ ,rp′
subject to Eq.(1),(2),and(3) (4)

max ∑
(q′,p′)∈δ ′

x
q′,p′

rq′ ,rp′
subject to Eq.(1),(2),and(3) (5)

to obtain the upper and lower bounds of number of robots

for each pair of neighboring regions in each transition. We

use the resulting numbers in the decentralized assignment

(section IV-B) to make sure that the execution can satisfy

all the physical constraints. These constraints might not be

the most permissive if we were only considering single

transitions (See the example in Sec. V-B).

B. Auction-based decentralized assignment

Inspired by decentralized auction-based task assignment,

we present our swarm assignment algorithm that, based on

A and the robot number constraints (Sec. IV-A), assigns

robots to different sub-swarms and goals. We execute the



assignment algorithm twice for each transition in A, as shown

in Fig. 2; the first time robots choose their sub-swarm, i.e.

their region and formation, and the second time, given the

sub-swarm, robots choose goal points to travel to.

Algorithm 2, which builds on [16], describes the dis-

tributed assignment algorithm. We consider a set of tasks

T ; these tasks are region and formation pairs for the first

assignment, and goal points to reach for the second. For

each task t ∈ T we assign Nmin
t and Nmax

t , the minimum and

maximum number of robots that can be assigned to task t.

For the sub-swarm assignment, these numbers are given by

the IP discussed in Section IV-A; for the goal assignments,

Nmin
t =Nmax

t = 1 since we are assigning each robot to exactly

one point in the workspace. We assume the communication

graph is connected (the same assumption as in [16]) to ensure

the convergence of the assignment algorithm.

Notation: We define T ∗ ⊆ T as the set of tasks the robot can

be assigned to. This set is determined before the assignment

algorithm is performed, based on the current position of the

robot, the physical connectivity of regions, and the next state

in the automaton. For example, for the transition between q1

and q3 in the automaton in Fig. 3a, if the robot was in region

r0 in q1, T ∗ = {r0,r1} due to the environment connectivity

(it cannot magically transport to r2).

During the assignment algorithm, for each t ∈ T ∗, we

update each robot’s estimate of the minimum number of

robots still needed for the task, nmin
t , and the maximum

number of robots that can still be assigned to the task, nmax
t

(task availabilities). We denote the set of current minimum

and maximum numbers for the set of tasks as nmin
T ∗ and

nmax
T ∗ respectively. Furthermore, we define T need and T avail

such that T need = {t ∈ T ∗|nmin
t > 0} is the set of tasks that

must have robots assigned, i.e. the task has not yet been

assigned its minimum number of robots, and T avail = {t ∈
T ∗|nmax

t > 0} is the set of tasks which may still be assigned to

robots, i.e. their maximum constraint has not been exceeded.

We denote the robot’s set of neighbors, the robots within

communication range, as N .

Algorithm: At the beginning of each assignment, we initial-

ize nmin
T ∗ and nmax

T ∗ as noted above. Following the initialization,

the assignment is done in bidding rounds (Lines 4-22) until

the robot finalizes its task. At each round, the robot first

updates the availability of the tasks based on the information

it receives from its neighbors N (Lines 4-5). If it is the

first round of bidding or the task t the robot has chosen in

a previous round is no longer available, the robot chooses

a new task t and an associated bid b as described below

(Line 7). Then, the robot determines which of its neighbors

are competing for the same task and what their bids are. If

there are no neighbors or all their bids are lower, the robot

finalizes its task selection and updates the task availability

(Lines 14-15). If there is an identical bid, the robot increases

its bid (Line 18), and if the robot bid is lower than a

competing bid, the robot selects a task again. (Line 21).

Choosing t and b: The function chooseTask (Line 7)

chooses a task t from T need and T avail . Specifically, in this

paper, we selects t from T need if T need 6= /0 and from T avail

if T need = /0 such that the traveling distance from robot i to

task t is minimal. We choose the bid b as the reciprocal of

the distance to the formation center/goal point. We increase

bids by multiplying them by 2 in cases when they are the

same (Line 18), but due to our choice of bid, robots almost

never have identical bids since the distances are unlikely to

be exactly the same.

Algorithm 2 Distributed Auction for Task Assignment

Input: T ∗, Nmin
t , Nmax

t ∀t ∈ T ∗, N

Output: The robot assignment t

1: nmin
t := Nmin

t , nmax
t := Nmax

t ∀t ∈ T ∗

2: finalized := False

3: while !finalized do

4: (nmin
T ∗ ,nmax

T ∗ ) := updateAvailabilities(N )
5: (T need ,T avail) := updateTaskSet(nmin

T ∗ ,nmax
T ∗ ,T ∗)

6: if first time bidding or t 6∈ T avail then

7: t := chooseTask(T need ,T avail), b := createBid(t)
8: continue

9: end if

10: (Nt ,B) := f indNeighborBids(t,N )
11: if Nt = /0 or (Nt 6= /0 and b > maxi∈Nt

(bi ∈ B)) then

12: //No other robots are bidding on t,

13: //or b is the highest bid

14: finalized := True

15: nmin
t := nmin

t −1, nmax
t := nmax

t −1

16: else if bi = maxi∈Nt
(bi ∈ B) then

17: // Another robot has the same bid for task t

18: b := increaseBid(b)
19: else

20: // Another robot has a higher bid for task t

21: t := chooseTask(T need ,T avail), b := createBid(t)
22: end if

23: end while

Correctness and Completeness: In each bidding round in

Algorithm 2, a robot selects a task from T need until all

tasks have reached Nmin
t , and it always selects a task from

T avail , thus the auction is guaranteed to satisfy the sub-swarm

size constraints. In each auction round, except the first one,

at least one robot finalizes their selection and updates the

availability, which is then communicated to the other robots.

Therefore, such decentralized auction process ends within a

bounded time (n(n+1)/2 auctions as in [16]).

V. DEMONSTRATION AND EVALUATION

Fig. 4: Workspace of examples in Sec V. From left to right:

small environment, complex task, physical demonstration.



A. Simulation - small environment

1) Task description: In the workspace shown in Fig. 4

(left), robots are initially located in the charging base r0.

There is an environment signal e such that robots should

repeatedly form a square in r5 and a hexagon in r6 when e

is true, and stay in r0 when e is false. We enforce that there

should be no robots in r0 when there are robots in r3, r4, r5,

or r6, and vice versa.
2) High-level synthesis: We synthesize an automaton A,

using the approach in section III-B, which contains 15 states

and 30 transitions, and abstract it to A
′ with 5 states and

12 transitions. The automaton A contains transitions where

the swarm is split into two sub-swarms, one going to r5 and

the other to r6 when e is true. Using the approach in section

IV-A, we calculate the bounds on the number of robots for

these two sub-swarms as [4,36] and [6,36] respectively.
3) Evaluation: We evaluate our approach along two di-

mensions: the effect of choosing a decentralized approach on

the average distance traveled by the robots, and the effect of

the swarm size on the average number of bids per transition.

Fig. 5 summarizes the results.

The centralized approach is formulated as an IP that

centrally assigns robots to sub-swarms with the objective of

minimizing the sum of estimated travel distances towards the

target formations [12]. For the evaluation, we vary the swarm

size from 10 to 70 (based on the constraint calculation,

the swarm size should be between 10 and 72 inclusively),

and evaluate average distance traveled by the robots and

the number of bids per transition. For each swarm size, we

collect data for 20 runs; we randomly sample 20 sets of initial

poses, and we use the same initial poses for the centralized

and decentralized approaches.

The average travel distance is the accumulated distances

of all robots averaged by the number of robots. The number

of bids per transition is the accumulated number of auctions

from the last robot finalizing the task averaged by the number

of transitions for the entire execution of the automaton A. To

create the behaviors of the swarm, we set e to be true when

all robots are in r0, and false when robots finish forming a

square and a hexagon in r5 and r6. We stop the simulation

when all robots gather in r0 again. We set the communication

range as 16.0 units in the simulation environment to make

sure that two sub-swarms always stay connected.

Travel distance: The red lines in Fig. 5 present the differ-

ences in the average travel distances between the centralized

and decentralized approaches. As expected, for all the swarm

sizes from 10 to 70, the decentralized approach results in

larger average travel distances than the centralized approach,

since the decentralized assignment has no guarantees on

optimality while the centralized method does. The two ap-

proaches have the largest difference in average travel distance

when the swarm size is 40. This is due to the asymmetry

in the environment; the distance from points in r0 to r1 is,

on average, smaller than the distance to r2. This asymmetry

causes the optimal (centralized) assignment to assign as

many robots as possible to the sub-swarm moving to r5 ,

while satisfying Nmin
r2

= 6 and Nmax
r1

= 36. However, in the

Fig. 5: Comparison between centralized and decentralized

assignment on travel distances (red) and average number of

bids needed for robots per transition for the decentralized

approach (blue) with respect to the swarm size.

decentralized approach, some robots are assigned to r2 even

though they could have been assigned to r1 with shorter

travel distances, because some robots closer to r1 might first

regard r2 as T need , and after they are assigned to r2, there are

other robots closer to r2 that choose r2 from T avail . However,

for swarm sizes at the extremes (10 and 70), the difference

in travel distance is less noticeable because both approaches

will result in almost exactly the same sub-swarm assignment.

For a swarm of size 40, the difference is larger because a

greater portion of robots are assigned, by the decentralized

approach, to r2.

Average number of bids: The blue lines in Fig. 5 present

the number of bids needed for robots per transition; each

line represents one type of assignment—sub-swarm and goal

points. The number of bids grows almost linearly with

the number of robots, which shows the scalability of the

distributed approach. Therefore, even though the distributed

approach cannot guarantee optimality, it is more realistic for

applications of large swarms since the computation on each

robot scales linearly with the swarm size.

B. Simulation - complex task

1) Task description: In the workspace shown in Fig. 4

(middle), there are two environment events e1 and e2. We

require a swarm of robots, initially located in r0, to form

squares in r1, r2, and r3 simultaneously when e1 is true, and

to form hexagons in r5 and r8 simultaneously when e2 is

true. We assume that e1 and e2 can both be true at the same

time, and that once an environment event becomes true, it

stays true until the goal is achieved. (E.g., e1 stays true until

the swarm completes forming squares in r1, r2, and r3.)

2) Synthesis and Demonstration: We synthesize the au-

tomaton A which has 48 states and 125 transitions and

abstract it to A
′ which has 18 states and 52 transitions. We

compute the sub-swarm size during each transition based

on A
′, which shows that when e1 is true, the minimum

number of robots sent from r0 to r3 is 10 (constrained by

the minimum number required to form a square in r3 and

a hexagon in r8), and the minimum number from r0 to r1

and r2 are both seven (constrained by the minimum number

required to form squares in r1 and r2 and a hexagon in r5).

Similarly, the maximum sub-swarm size from r0 to r3 is 36



Fig. 6: Different sizes of simulated swarms performing the same transition (both e1 and e2 are true) in A (Sec. V-B). Swarm

sizes are 24, 40, 56, and 72 from left to right. Robots are purple circles, intended formations are displayed in red.

(constrained by the square in r3), and the maximum sub-

swarm sizes from r0 to r1 and r2 are both 18 (constrained

by the hexagon in r5). From these constraints we know that

the swarm should be composed of at least 24 robots and at

most 72. If we only allow e1 or e2 to be true at a time,

the minimum swarm size becomes 14; the maximum swarm

size remains 72 due to the maximum number allowed in

a square and a hexagon. Fig. 6 shows a snapshot of the

accompanying video where the swarm distributes into sub-

swarms for different swarm sizes (24, 40, 56, and 72) when

e1 and e2 are both true.

C. Physical demonstration

1) Task description: We demonstrate our approach using

10 Anki-Vector robots [26] and a motion capture system.

This demonstration simulates a scenario in which robots

monitor areas of interest when there is potential danger in

the environment. Specifically, robots are initially located in

three rooms, r0, r1, and r2 shown in Fig. 4 (right). The

environment signal d represents danger. Robots are required

to go to open spaces r3 and r4, and form a square and a

hexagon respectively around the targets when d is true, and

repeatedly gather and form triangles in the three rooms when

d is false. Robots should not be in r0 and r4 at the same time.

2) High-level Synthesis: The synthesized automaton A

contains 18 states and 36 transitions, and A
′ has 6 states

and 14 transitions. Based on our robot number constraint

calculation, We determine that the minimum number of

robots required to accomplish the task is 10.

3) Demonstration: Snapshots of the demonstration are

shown in Fig. 7. We set the communication range to be 2.8m

to make sure that the communication graph stays connected

when robots are distributed in r2 and r3. We control the

environmental event “danger” d by clicking a button in a

graphical user interface. Initially, d is false and the swarm

forms three triangles in r0, r1, and r2. After the completion of

the triangles, we change d to be true and the swarm proceeds

to form a square and a hexagon around the targets.

We illustrate the bidding process in Fig. 7 before each

transition in the high-level task. Initially, three robots choose

r3 and seven robots choose r2 based on the distance to

the target regions. Then, before forming the triangles, seven

robots bid for staying in the same region at first, but four

robots switch the target region to r1 in order to satisfy the

minimum number constraint for each formation. In addition,

when moving from r3∧ r4 to r2∧ r3, three robots change the

target regions from r2 to r3 based on the estimated distances.

VI. CONCLUSION AND DISCUSSION

In this work, we develop and demonstrate decentralized

execution of high-level reactive swarm tasks. This decentral-

ized approach to executing globally specified tasks retains the

formal guarantees of correctness we have shown in the past

and enables the algorithms to scale to larger swarm sizes, at

the expense of optimality.

Our approach makes several assumptions that may cause

limitations in wide scale deployment: First, we assume that

all robots bidding for the same task can form a connected

communication graph, which might be an obstacle to outdoor

applications for real swarms. In our demonstrations, we set a

fairly large communication range to satisfy the assumptions,

which resulted in a dense communication graph. Thus the

bidding process converged quickly. It would be interesting

to explore what information needs to be passed and how a

restricted communication graph affects the correct execution

of the task (see multi-robot exploration tasks [27]).

In addition, the reactivity in this work is non-

instantaneous, meaning that the swarm has to finish the

current transition before reacting to an environment change.

If we allow instantaneous reaction to environment signals,

the constraints on sub-swarm size may no longer be satisfied

because the environment can choose a behavior where the

robots must keep switching sub-swarm, causing livelock. It

would be interesting to further explore how to trade-off the

instantaneous reaction with the non-instantaneous motion for

a specific number of robots.

Finally, when implementing the algorithm on swarm

robots, we observe that the robots closer to goal points have

higher priority to make the decisions, and they usually reach

the goals quickly while other robots have to go around them

to reach the goals, which results in two disadvantages: 1)

swarms might get congested and have deadlocks in a narrow

workspace, and 2) it might take a long time to complete the

tasks. Although our approach is decentralized, we can still

improve it by incorporating ideas of swapping goals [28] to

speed up the execution and avoid deadlocks since each robot

plays a cooperative role in the swarm to achieve the task.



Fig. 7: Snapshots of 10 Anki Vectors accomplishing a high-level task. The plots represent the region selections of robots

over time during the assignment. Each line represents the region selection of one robot over the number of auctions.
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