
Deep learning versus kernel learning: an empirical

study of loss landscape geometry and the time

evolution of the Neural Tangent Kernel

Stanislav Fort
1⇤

Gintare Karolina Dziugaite
2⇤

Mansheej Paul
1

Sepideh Kharaghani
2

Daniel M. Roy
3,4

Surya Ganguli
1

1Stanford University 2Element AI 3University of Toronto 4Vector Institute

Abstract

In suitably initialized wide networks, small learning rates transform deep neural
networks (DNNs) into neural tangent kernel (NTK) machines, whose training
dynamics is well-approximated by a linear weight expansion of the network at ini-
tialization. Standard training, however, diverges from its linearization in ways that
are poorly understood. We study the relationship between the training dynamics of
nonlinear deep networks, the geometry of the loss landscape, and the time evolu-
tion of a data-dependent NTK. We do so through a large-scale phenomenological
analysis of training, synthesizing diverse measures characterizing loss landscape
geometry and NTK dynamics. In multiple neural architectures and datasets, we find
these diverse measures evolve in a highly correlated manner, revealing a universal
picture of the deep learning process. In this picture, deep network training exhibits
a highly chaotic rapid initial transient that within 2 to 3 epochs determines the final
linearly connected basin of low loss containing the end point of training. During
this chaotic transient, the NTK changes rapidly, learning useful features from the
training data that enables it to outperform the standard initial NTK by a factor of 3
in less than 3 to 4 epochs. After this rapid chaotic transient, the NTK changes at
constant velocity, and its performance matches that of full network training in 15%
to 45% of training time. Overall, our analysis reveals a striking correlation between
a diverse set of metrics over training time, governed by a rapid chaotic to stable
transition in the first few epochs, that together poses challenges and opportunities
for the development of more accurate theories of deep learning.

The remarkable empirical success of deep learning across a range of domains stands in stark contrast
to our theoretical understanding of the mechanisms underlying this same success [1]. Indeed, we are
currently far from a mature, unified mathematical theory of deep learning that is powerful enough to
universally guide engineering design choices. As in many other fields of inquiry, a key prerequisite to
any such theory is careful empirical measurements of the deep learning process, with the scientific
aim of unearthing combinations of variables that obey correlated dynamical laws that can serve as the
inspiration for future theories. Indeed, a large body of work has studied, mainly in isolation, diverse
and intriguing phenomenological properties, as well as extreme simplifying theoretical limits, of deep
learning. In particular, we focus on 3 intertwined aspects of deep learning that have previously been
studied largely in isolation: (1) the large scale structure of deep learning loss surfaces, (2) the local
geometry of such loss surfaces, and (3) and the performance of linearized training methods, like the
neural tangent kernel (NTK), that has gained attention through its ability to theoretically describe
an infinite width low learning rate limit of deep learning in terms of kernel machines with random
data-independent kernels. The fundamental goal of this work is to obtain a more integrative view of
the intertwined relations between loss landscape geometry at multiple scales of organization and the

⇤Equal contributions. Correspondence to: sfort1@stanford.edu, karolina.dziugaite@elementai.com

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.

Figure 1: A conceptual overview of diverse deep learning phenomenology. (A) A schematic picture
of the region of low loss (black area) in weight space as a network of high dimensional basins with
lower dimensional intersections, motivated by recent work [2, 3, 4, 5, 6]. Two networks (red points)
in different basins can be connected by a low loss nonlinear path (yellow) but not by a low loss
linear path (orange). (B) A schematic view of the process of hierarchically exploring loss landscapes
by spawning child networks [7]. A randomly initialized parent network (blue point) is trained up
to a certain spawn epoch (green point) at which two (or more) child networks are spawned from
with identical weights and then subsequently trained independently with different SGD minibatches
(bifurcating blue lines). Two children spawned later (earlier) than a very early transition time in parent
training, will arrive at the same (different) basin on the loss landscape. (C) A schematic view of NTK
training. The black curve is the space of functions fw realizable by varying the parameters w of a
neural network and full network training proceeds along this curved function manifold (blue to green
to red points). NTK training linearizes the manifold at initialization (blue point), and trains along
the tangent space (blue line). Such linearized training is equivalent to kernel regression in function
space where the kernel is closely related to the tangent plane along which training occurs. This panel
shows a case where NTK and full nonlinear training are similar in that the kernel at initialization
does not change much over learning, as shown schematically by the similar orientations of the initial
(blue), intermediate (green) and final (red) tangent spaces. (D) The same as in panel (C), except now
showing schematically a case where the NTK method is very different from full nonlinear training, in
which the kernel changes considerably, as evidenced by the strong twisting of tangent spaces (blue,
green and red lines), resulting in a final learned kernel (associated with the red tangent space) that is
quite different from the initial random kernel (associated with the blue tangent space). (E) Consider
an error landscape with a sharp and a wide minimum separated by an error barrier. With a small
learning rate (bottom), a learning trajectory starting at an initial point (blue) will slowly descend
through intermediate points (green) to a minimum position (red) in the sharp minimum, and is unable
to escape it. With a larger learning rate (top), a learning trajectory that starts in the sharp minimum at
a position (blue point) that is even lower than the error barrier, can escape the sharp minimum.

dynamics of learning in deep networks, by performing simultaneous measurements of many diverse
properties. We describe the previous work that motivates our current measurements in Section 1, and
we summarize our results and contributions in Section 8, which can be read right after Section 1.

1 Diverse aspects of deep learning phenomenology

The large scale geometric structure of neural loss landscapes. Recent work has revealed many
insights into the shape of loss functions over the high dimensional space of neural network parameters.
For example, [2, 3] demonstrates that training even within a random, low-dimensional affine subspace
of parameter space can yield a network with low test loss. This suggests that the region of parameter
space with low test loss must be a relatively high dimensional object, such that low dimensional
random affine hyperplanes can generically intersect it. Moreover, [4, 8, 5] show that different,
independently trained networks in weight space with low loss can be connected through nonlinear
pathways (found via an optimization process) that never leave this low loss manifold. However,
direct linear pathways connecting two such independently trained networks typically always leave
the low loss manifold. The loss function restricted to such linear paths then yields a loss barrier at
an intermediate point between the two networks. [6] builds and provides evidence for a unifying
geometric model of the low-loss manifold consisting of a network of mutually intersecting high
dimensional basins (Fig. 1A). Two networks within a basin can be connected by a straight line that
never leaves the low-loss manifold, while two networks in different basins can be connected by a
piecewise linear path of low loss that is forced to traverse the intersection between two basins. [9]
uses these insights to argue that deep ensembles are hard to beat using local subspace sampling

2

methods due to the geometry of this underlying loss landscape. [7] provides further evidence for this
large-scale structure by demonstrating that after a very early stage of training of a parent network
(but not earlier) two child networks trained starting from the parameters of the parent end up in the
same low loss basin at the end of training, and could be connected by a linear path in weight space
that does not leave the low loss manifold (Fig. 1B). Furthermore, [10, 11] show that the properties of
the final minimum found are strongly influenced by the very early stages of training. Taken together,
these results present an intriguing glimpse into the large scale structure of the low loss manifold, and
the importance of early training dynamics in determining the final position on the manifold.
Neural tangent kernels, linearized training and the infinite width limit. The neural tangent
kernel (NTK) has garnered much attention as it provides a theoretical foothold to understand deep
networks, at least in an infinite width limit with appropriate initialization scale and low learning rate
[12, 13]. In such a limit, a network does not move very far in weight space over the course of training,
and so one can view learning as a linear process occurring along the tangent space to the manifold of
functions fw realizable by the parameters w, at the initial function f 0 (Fig. 1C). This learning process
is well described by kernel regression with a certain random kernel associated with the tangent space
at initialization. The NTK is also a special case of Taylorized training [14], which approximates the
realizable function space fw to higher order in the vicinity of initialization. Various works compare
the training of deep networks to the NTK [15, 16, 17, 18]. In many cases, state of the art networks
outperform their random kernel counterparts by significant margins, suggesting that deep learning in
practice may indeed explore regions of function space far from initialization, with the tangent space
twisting significantly over training time, and hence the kernel being learned from the data (Fig. 1D).
However, the nature and extent of this function space motion, the degree of tangent space twisting,
and how and when data is infused into a learned tangent kernel, remains poorly understood.
The local geometric structure of neural loss landscapes. Much effort has gone into charac-
terizing the local geometry of loss landscapes in terms of Hessian curvature and its impact on
generalization and learning. Interestingly [19] analyses the Hessian eigenspectrum of loss landscapes
at scale, demonstrating that learning leads to the emergence of a small number of large Hessian
eigenvalues, and many small ones, bolstering evidence for the existence of many flat directions in low
loss regions depicted schematically in Fig. 1A. [20] shows that the gradients of logits with respect to
parameters cluster tightly based on the logit over training time, leading directly to the emergence
of very sharp Hessian eigenvalues. Moreover, a variety of work has explored relations between the
curvature of local minima found by training and their generalization properties [21, 22, 23, 24, 25,
6, 26], and how learning rate and batch size affect the curvature of the minima found [27, 28, 29],
with larger learning rates generically enabling escape from sharper minima (Fig. 1E). [30] makes
a connection between learning rates and the validity of NTK training, showing that for infinitely
wide networks, training with a learning rate above a scale determined by the top eigenvalue of the
Hessian at initialization results in a learning trajectory that outperforms NTK training, presumably by
exploring nonlocal regions of function space far away from initialization.
Towards an integrative view. Above, we have reviewed previously distinct strands of inquiry
into deep learning phenomenology that have made little to no contact with each other. Indeed, we
currently have no understanding of how local and global loss geometry interacts with the degree of
kernel learning in state of the art architectures and training regimes used in practice. For example, at
what point in training is the fate of the final chosen basin in Fig. 1 A,B irrevocably determined? Does
the kernel change significantly from initialization as in Fig. 1D? If so, when during training does
the tangent kernel start to acquire knowledge of the data? Also, when does kernel learning finally
stabilize? What relations do either of these times have to the time at which basin fate is determined?
How does local geometry in terms of curvature change as all these events occur? Here we address
these questions to obtain an integrative view of the learning process across a range of networks and
datasets. While we only present results for ResNet20 trained on CIFAR10 and CIFAR100 in the main
paper, in Appendix C we find similar results for a WideResNet, variations of Resnets and a Simple
CNN trained on CIFAR10 and CIFAR100, indicating our results hold generally across architectures,
datasets and training protocols. Many experimental details are covered in our Appendix.

2 Definition of measurement metrics for geometry and training

We now mathematically formalize the quantities introduced in the previous section as well as define
more quantities whose dynamics we will measure during training. Let S = ((xi,yi),1  i  m) be
m training examples, with yi 2 {0,1}K , where K is the number of classes. Let fw(x) denote the
K-dimensional output vector of logits, of a neural network parameterized by weights w 2 Rd on

3

input x. We are interested in the average classification error R0�1
S (w) over the samples S. For training

purposes, we also consider a (surrogate) loss `(ŷ,y) for predicting ŷ when the true label is y. Denote
by g(ŷ,y) the gradient of y0 7! `(y0,y), evaluated at y0 = ŷ. Write gw(S) for concatenation of the
gradient vectors g(fw(xi),yi), for i = 1, . . . ,m. Let Jw(x) 2 RK⇥d be the Jacobian of fw(x) with
respect to the parameters w. Define Jw(S) 2 RmK⇥d to be the concatenation of Jw(x1), . . . ,Jw(xm),
which is then the Jacobian of fw(S) with respect to the parameters w. The kth row of Jw(x), denoted
(Jw(x))k, is a vector in Rd . Let Hw(x) be the K⇥d⇥d tensor where (Hw(x))k = —w(Jw(x))k 2Rd⇥d

is the Hessian of logit k w.r.t. weights w.
Training Dynamics, Linearized training, and introduction of a data-dependent NTK. Let
(wt)t2N be the weights at each iteration of SGD, based on minibatch estimates of the training loss
R̂S̄(w) =

1
n Âxi2S̄ `(fw(xi),yi), where S̄⇢ S is a subsample of data of size n. We write ft(x) for fwt (x)

and similarly for gt , Jt , and Ht . The SGD update with learning rate h is then
Dt := wt+1�wt =�h—wRS̄(wt), (1)

Consider also a second-order Taylor expansion to approximate the change to the logits for input xi:
ft+1(xi)⇡ ft(xi)� Jt(xi)Dt +kDtkHt (xi), (2)

where
kDtk(Ht (xi))Tk

:= hDt ,(Ht(xi))Tk Dti. (3)

Note, that for an infinitesimal h , the dynamics in Eq. (1) are those of gradient flow, and terms higher
than order 1 in Eq. (2) vanish. In this case, steepest descent in the parameter space corresponds to
steepest descent in the function space using a neural tangent kernel (NTK),

kt(x,x0) = Jt(x)Jt(x0)T . (4)
Let kt(S) denote the m by m gram matrix with i, j entry kt(xi,x j). If kt(S) = kt0(S) for t > t0, i.e., if
the tangent kernel is constant over time, then the dynamics correspond to those of training the neural
network linearized at time t0. The kernel has been shown to be nearly constant in the case of very
wide neural networks at initialization (see, e.g., [12, 31, 32, 33, 16, 34]). Intuitively, we can think
of each of the d columns of Jw(x) 2 RK⇥d as a tangent vector to the manifold of realizable neural
network functions in the ambient space of all functions of K logits over input space x, at the point
fw(x) in function space. Thus the span of the d columns of Jw(x), as x varies, constitute the tangent
planes in function space depicted schematically in Fig. 1CD. Since the kernel is the Gram matrix
associated with these tangent functions, evaluated at the training points, then if the tangent space
twists substantially, the kernel necessarily changes (as in Fig. 1D).

Conversely, if the NTK does not change substantially from initialization, then the full SGD training
can be well approximated by training along the tangent space to f0 at initialization, yielding the
linearized training dynamics. This approach can be generalized to training along higher order Taylor
approximations of the manifold fw(x) in the vicinity of the initial function f0 [14]. In this work, in
order to explore function space geometry and its impact on training, we extend this approach by
doing full network training up to time t̃, and then linearized training subsequently. This yields a
linearized training trajectory {wt̃

t}Tt=t̃ , which can then be compared to the weight dynamics under full
training (see Appendix for details). This approach geometrically corresponds to training along an
intermediate tangent plane (one of the green planes in Fig. 1CD), or equivalently, corresponds to
learning with a data-dependent NTK. This novel examination of how much training time is required
to learn a high performing NTK, distinct from the random one used at initialization, and relations
between this time and both the local and large scale structure of the loss landscape, constitutes a key
contribution of our work.
Hierarchical exploration of the loss landscape through parents and children. In order to ex-
plore the loss landscape and the stability of training dynamics in a more multiscale hierarchical
manner than is possible using completely independent training runs, we employ a method of parent-
child spawning [7] (shown schematically in Fig. 1B). In this process, a parent network is trained from
initialization to a spawning time ts, yielding a parent weight trajectory {wt}tst=0. At the spawn time
ts, several copies of the parent network are made, and these so-called children are then trained with
independent minibatch stochasticity, yielding different child weight trajectories {wts,a

t }Tt=ts , where a
indexes the children, and T is the final training time. We will be interested in various measures of the
distance between children after training, as a function of their spawn time ts, as well as measures of
the distance between the same network (either parent or child) at two different training times. We
turn to these various distance measures next.

4

Kernel distance. For finite width networks, the kernel kt(S) = kwt (S) changes with training time t.
We compare two Kernel gram matrices in a scale-invariant manner by computing a kernel distance:

S(w,w0) = 1� Tr(kw(S)kT
w0 (S))p

Tr(kw(S)kT
w (S))

q
Tr(kw0 (S)kT

w0 (S))
.

Kernel velocity. We further track the speed at which the kernel changes. As discussed above, in
non-linear neural networks, we do not expect Eq. (3) to vanish. In order to capture the evolution of
the quantity in Eq. (3), we compute the kernel velocity v(t)⌘ S(wt ,wt+dt)/dt, i.e. the rate of change
of kernel distance. We use a time separation of 0.4 epochs to capture appreciable change.
Error barrier between children. To assess (and indeed define) whether two children arrive at the
same basin or not at the end of training (see e.g. Fig. 1AB), we compute the error barrier between
children along a linear path interpolating between them in weight space. Let wa

t = awt +(1�a)w0
t ,

where w0
t and wt are the weights of two child networks, spawned from some iteration ts, and a 2 [0,1].

At various ts we compute maxa2[0,1] R̂S(wa
t)� 1

2
�
R̂S(wt)+ R̂S(w0

t)
�
, which we call the error barrier.

Note, that the error barrier at the end of training between two children is the same as instability in [7].
ReLU activation pattern distance. In a ReLU network, the post-nonlinearity activations in layer
l are either greater or equal to 0. We can thus construct a tensor Bw(S), with (Bw(S))i, j,l = 1 if for
an input xi, jth node in the lth layer is strictly positive, and (Bw(S))i, j,l = 0 otherwise. We compare
ReLU on/off similarity between networks parameterized by w and w0 by computing the Hamming
distance between Bw(S) and Bw0(S), and normalizing by the total number of entries in Bw(S).

0 40 80 120 160
TrDLn ESRFK

0.0

0.2

0.4

0.6

0.8

1.0

Er
rR

r

ErrRr
TrDLn
Test

0 20 40 60
6SDwn ESRFK

0.0

0.2

0.4

0.6

0.8

1.0

Er
rR

r B
Dr

rLe
r

CKLld ErrRr BDrrLer
TrDLn
Test

0 40 80 120 160
TrDLn ESRFK

0

40

80

120

160

Tr
DL

n
ES

RF
K

5elu DLstDnFe

0 40 80 120 160
TrDLn ESRFK

0

40

80

120

160

Tr
DL

n
ES

RF
K

.ernel DLstDnFe

0 20 40 60
6SDwn ESRFK

0.0

0.2

0.4

0.6

0.8

1.0

D
Ls

tD
nF

e

CKLld DLstDnFes
5elu
Fn
.ernel

0.0

0.1

0.2

0.3

0.4

0.5

0.0

0.2

0.4

0.6

0.8

1.0

CIFA510 5es1et20 L5 drRS
A B C D E

Figure 2: SOTA ResNet20 trained on CIFAR10 using SGD with momentum and learning rate drops.

0 40 80 120 160 200
TrDLn ESRFK

0.0

0.2

0.4

0.6

0.8

1.0

Er
rR

r

ErrRr
TrDLn
Test

0 40 80 120 160
6SDwn ESRFK

0.0

0.2

0.4

0.6

0.8

1.0

Er
rR

r B
Dr

rLe
r

CKLld ErrRr BDrrLer
TrDLn
Test

0 40 80 120160200
TrDLn ESRFK

0

40

80

120

160

200

Tr
DL

n
ES

RF
K

5elu DLstDnFe

0 40 80 120160200
TrDLn ESRFK

0

40

80

120

160

200

Tr
DL

n
ES

RF
K

.ernel DLstDnFe

0 40 80 120 160
6SDwn ESRFK

0.0

0.2

0.4

0.6

0.8

1.0
D

Ls
tD

nF
e

CKLld DLstDnFes
5elu
Fn
.ernel

0.0

0.1

0.2

0.3

0.4

0.5

0.0

0.2

0.4

0.6

0.8

1.0

CIFA5100 5es1et20 L5 DrRS
A B C D E

Figure 3: ResNet20 trained on CIFAR100 using SGD with momentum and learning rate drops.

0 40 80 120 160
TrDLn ESRFK

0.0

0.2

0.4

0.6

0.8

1.0

Er
rR

r

ErrRr
TrDLn
Test

0 20 40 60 80 100
6SDwn ESRFK

0.0

0.2

0.4

0.6

0.8

1.0

Er
rR

r B
Dr

rLe
r

CKLld ErrRr BDrrLer
TrDLn
Test

0 40 80 120 160
TrDLn eSRFK

0

40

80

120

160

Tr
DL

n
eS

RF
K

5elu DLstDnFe

0 40 80 120 160
TrDLn ESRFK

0

40

80

120

160

Tr
DL

n
ES

RF
K

.ernel DLstDnFe

0 20 40 60 80 100
6SDwn ESRFK

0.0

0.2

0.4

0.6

0.8

1.0

D
Ls

tD
nF

e

CKLld DLstDnFes
5elu
Fn
.ernel

0.0

0.1

0.2

0.3

0.4

0.5

0.0

0.2

0.4

0.6

0.8

1.0

CIFA510 5es1et20 CRnstDnt L5
A B C D E

Figure 4: ResNet20 trained on CIFAR10 using SGD with momentum and constant learning rate.

Figures 2 to 4: An integrated view of learning. (A) Parent network learning curves. (B)
Error barrier between pairs of children at the end of training, as a function of spawn time, with
children trained for same number of epochs as the parent. (C) and (D) Heatmaps representing the
ReLU and kernel distance between a parent network at different pairs of training times. Dashed black
lines indicate epochs at which the learning rate is dropped. (E) ReLU, function space, and kernel
distances between pairs children at the end of training, as a function of spawn time.

Function space distance. To compute the distance between the two functions fw and fw0 , parameter-
ized by weights w and w0, we would ideally like to calculate the degree of disagreement between their
outputs averaged over the whole input space x. However, since this is computationally intractable, we
approximate this distance by the normalized fraction of test examples on which their predicted labels

5

disagree. Let Stest denote the test set. Then, k fw(x)� fw0(x)kStest = 1
Z|Stestx | Âx2Stestx

(fw(x) 6= fw0(x)) l
where Stestx are test inputs and Z is a normalizing constant chosen to aid comparison. In particular, we
define Z to be the expected number of examples on which two classifiers would disagree assuming
each made random independent predictions with the same error rates, p and p0, as their error rates on
the test set. This quantity is used also by [9], and is given by Z = p(1� p0)+ p0(1� p)+ pp0 K�2

K�1 ,
where K is the number of classes. A unit distance indicates two networks make uncorrelated errors.

3 An integrative view of learning dynamics

Figs. 2 and 3 plot the full range of metrics defined in Section 2 for two SOTA networks. Panel A
presents standard training curves. Panel B confirms the results of [7], that the error barrier on a linear
path between two children decreases rapidly with spawning time, falling close to 0 within two to
five epochs. Panel C and D indicate that the NTK changes rapidly early in training, and more slowly
later in training, as quantified by ReLU activation distance (C) and kernel distance (D) measured on
a parent run at different pairs of times in training. Finally, Panel E shows that function, kernel and
ReLU distances between children at the end of training also drop as a function of spawn time.

We note that the SOTA training protocols in Figs. 2 and 3 involve learning rate drops later in training,
which alone could account for a slowing of the NTK evolution. Therefore we ran a constant learning
rate experiment in Fig. 4. We see that all tracked metrics still exhibit the same key patterns: the error
barrier drops rapidly within a few epochs (B), the NTK evolves very rapidly early on, but continues
to evolve at a constant slow velocity later in training (C,D), and final distances between children drop
at an early spawn time and remain constant thereafter (E).

Overall, these results provide an integrative picture of the learning process, which reveals an early,
extremely short chaotic period in which the final basin chosen by a child is highly sensitive to SGD
noise and the NTK evolves very rapidly, followed by a later more stable phase in which the basin
selection is determined, the NTK continues to evolve, albeit more slowly, and the final distance
between children remains smaller. In the next few sections we explore these results in more detail.

Equivalent results for other networks are shown in the Appendix in Figures Figs. 12 to 17, together
with additional network properties tracked over epochs.

4 The local and global geometry of the loss landscape surrounding children

We first explore how both the global and local landscape geometry surrounding two child pairs and
their spawning parent depend on the spawn time ts in Fig. 5. These three networks define a 2D affine
plane in weight space and a curved 2D manifold in function space. The first two columns of Fig. 5
clearly indicate that two children spawned at an early time ts in the chaotic training regime arrive
at two different loss basins that are well separated in function space (top row), while two children
spawned at a later time ts in the stable training regime arrive at the same loss basin, though this loss
basin can still exhibit non-negligible function diversity (albeit smaller than the diversity between
basins). Furthermore, the right two columns of Fig. 5 indicate that the test error as a function of
position along the tangent plane to the 2D curved manifold in function space (either at the spawn point
or a child point) is insufficient to describe the error along the full curved 2D manifold in function
space when the children are in different basins (top row), but can approximately describe the loss
landscape when the children are in the same basin (bottom row). Thus Fig. 5 constitutes a new direct
data-driven visualization of loss landscape geometry that provides strong evidence for several aspects
of the conceptual picture laid out in Fig. 1: the existence of multiple basins (Fig. 1A), the chaotic
sensitivity of basin fate to SGD choices early in training (Fig. 1B), and the twisting of tangent planes
in function space that occur as one travels from one basin to another (Fig. 1ACD). See also Fig. 11
for a t-SNE visualization of the bifurcating evolution of all parents and children in function space
that further corroborates this picture of loss landscape geometry and its impact on training dynamics.

In Fig. 6 we explore more quantitatively the relationship between the final function space distance
between children, spawn time of children, and the error barrier. This figure demonstrates that the
error barrier drops to zero rapidly within 2-3 epochs, and then after that, the later two children are
spawned, the closer they remain to each other. Since these experiments were done by training parents
and children at a constant learning rate over 200 epochs such that child distances stabilized, the
reduction in achievable function space distance between children as a function of spawn time cannot
be explained either by learning rate drops or by insufficient training time for children (see Fig. 10).

6

Figure 5: The error landscape and function space geometry on a 2D section defined by a pair of
children (red and blue stars) and the spawning parent (purple cross) when the spawn point is in the
early chaotic (top row) and late stable (bottom row) regimes of training. All other training points are
projected to this 2D section. The left two columns show, as a function of position on this 2D section,
the test error and the function space distance to a chosen child (blue star). The right two columns
show the test error along an affine tangent plane in function space obtained by a first order Taylor
expansion of fw in weight space around the weights of two different networks (the spawning parent
and one of the children). A function space point along the tangent plane at fw is identified with a
point on the curved 2D section in function space through the relation fw+Dw ·—w fw ! fw+Dw.

Figure 6: Relation between error barrier and child function distance for ResNet20 on CIFAR 10 and
100. Left panels show how final child distance (near 200 epochs) falls off with spawn epoch (red
curve). The purple baseline indicates final distance between two independent parents. Right panels
plot function distance as a function of error barrier. See also Fig. 10 for detailed evolution of both
quantities with training rather than spawn epoch. Error bars reflect std. dev. across the last 25 epochs.
The function prediction embeddings are shown in Fig. 11.

5 NTK velocity slows down and stabilizes after basin fate is determined

We next explore the relation between error barrier and kernel velocity in Fig. 7 by zooming in on the
early epochs, compared to the full training shown in Fig. 2-3 panels B and D. This higher resolution
view clearly reveals that the early chaotic training regime is characterized by a tightly correlated
reduction in both error barrier and kernel velocity, with the latter stabilizing to a low non-zero velocity
after the error barrier disappears. Thus the NTK evolves relatively rapidly until basin fate is sealed.

6 The data-dependent NTK rapidly learns features useful for performance

The rapid evolution of the NTK during the chaotic training regime and its subsequent constant
velocity motion after basin fate determination, as shown in Fig. 7, raises a fundamental question: at
what point during training does the NTK learn useful features that can yield high task performance,
or even match full network training? We answer these questions in Fig. 8 through a two step training
protocol. We first train the full nonlinear network up to a time t̃. We then Taylor expand the full
nonlinear network fw obtained at time t̃ with respect to the weights w, and perform linearized training
thereafter up to a total time T . Geometrically this corresponds to training for time t̃ up to one of the
intermediate green points in Fig. 1CD, and then subsequently training only within the green tangent

7

0 5 10 15
6pawn (poFK

0.0

0.2

0.4

0.6

0.8

Te
st

 (
rr

or
 B

ar
rie

r C,)A5100
C,)A510

0 5 10 15
Train (poFK

0.5

1.0

1.5

.e
rn

er
l V

el
oF

ity

C,)A5100
C,)A510

0.0 0.2 0.4 0.6 0.8
Test (rror Barrier

0.5

1.0

1.5

.e
rn

er
l V

el
oF

ity

C,)A5100
C,)A510

5es1et20, (arly ,n Training: Test (rror Bump vs .ernel VeloFity (CalFulated 2ver 0.4 (poFKs)

Figure 7: Relation between test error barrier and kernel velocity for a ResNet20 trained on CIFAR10
and CIFAR100. Both the test error barrier between children (left) and the kernel velocity of the parent
(middle) fall off and stabilize early in time and exhibit strongly correlated dynamics (right).

space about that point in function space. We can think of this as training with a data-dependent NTK
kernel that has been learned using data from time 0 to t̃. Classic NTK training corresponds to a
random kernel arising when the onset time t̃ of linearized training is 0.

Using this two step procedure, Fig. 8 demonstrates several key findings. First, extremely rapidly,
within t̃ = 3 to 4 epochs, the data dependent NTK has learned features that allow it to achieve
significantly better performance (i.e. error drops by at least a factor of 3) compared to the classic NTK
obtained at initialization (see rapid initial drop of green curves in Fig. 8). Second, by about t̃ = 30
to 90 epochs, representing 15% to 45% of training, the data-dependent NTK essentially matches
the performance of a network trained for the standard full 200 epochs (compare green curves to
purple baseline in Fig. 8). This indicates that the early chaotic training period characterized by rapid
drops in error barrier and kernel velocity in Fig. 7 also corresponds to rapid kernel learning: useful
information is acquired within a few epochs. This kernel learning continues, albeit more slowly after
the initial chaotic learning period is over and the basin fate is already determined.

Figure 8: Linearized training vs. ordinary training. The red baseline curves show the (test/train)
error of a network using full nonlinear training as a function of training epoch t̃. The dashed purple
constant baseline, purely for reference, indicates the error obtained at epoch T = 200. The green line
indicates the error of a data dependent NTK obtained at training epoch t̃; i.e. the error for the green
line is obtained by full nonlinear network training up to time t̃, and then subsequent linearized training
with an optimal early stopping criterion for the test error. The train/test error at the optimal stopping
time is plotted as a function of the onset time t̃ of linearized training, reflecting the performance of
the data-dependent NTK at time t̃. The blue curve is obtained identically to the green curve, except
instead of using linearized training, we use full nonlinear training at the lowest possible learning rate
after time t̃, that still ensures convergence after 1000 epochs. We explore the gap between the green
and blue curves in Fig. 9. In the Appendix in Fig. 19 we show additional results for WideResNet and
in Fig. 18 Taylor expansions of order 2 for ResNet.

7 NTK and nonlinear training remain different even at low learning rates

In the NTK limit, which involves both infinite widths and infinitesimal learning rates, linearized
training and full nonlinear training dynamics provably coincide. However, the persistent performance
gap up to 30 to 90 epochs between linearized and full nonlinear training (green curves versus purple
baselines in Fig. 8) indicates the NTK limit does not accurately describe training dynamics used
in practice, at finite widths and large learning rates. We remove one of the two reasons for the
discrepancy by comparing the same linearized training dynamics to extremely low learning rate
nonlinear training dynamics (blue curves in Fig. 8). In this finite width low learning rate regime, we
find, remarkably, that a significant performance gap persists between linearized and nonlinear training

8

(the red nonlinear training advantage region in Fig. 9, left), but only during the first few epochs
of training, corresponding precisely to the chaotic regime before basin fate is sealed. Indeed the
disappearance of this low learning rate nonlinear advantage is tightly correlated with the disappearance
of the error barrier (Fig. 9, right). This indicates that while the data-dependent NTK limit can describe
well the low (but not high) learning rate dynamics after the first few epochs, this same NTK limit
cannot accurately describe the full nonlinear learning dynamics during the highly chaotic early
phase prior to basin fate determination, even when the full nonlinear training uses very low learning
rates, and when the NTK is learned from the data. We present additional experiments with Taylor
expansions of order 2 on ResNet in Fig. 18 and linear order for WideResNet in Fig. 19.

Figure 9: Relation between low learning rate nonlinear error advantage and error barrier size. For
each dataset, the left panel blue curves plot the error obtained by linearized training (green curve in
Fig. 8) against the error obtained by nonlinear low learning rate training (blue curves in Fig. 8), with
the epoch indicating the onset time t̃ of both. The dashed line is the unity line, and so the height of
the red region indicates the nonlinear advantage, or error reduction obtained by low learning rate
nonlinear training relative to linearized training. Right panels plot this nonlinear advantage against
error barrier size.

8 Summary of contributions and discussion

In summary we have performed large scale simultaneous measurements of diverse metrics (Figs. 2
to 4) finding a strikingly universal chaotic to stable training transition across datasets and architectures
that completes within two to three epochs. During the early chaotic transient: (1) the final basin
fate of a network is determined (Fig. 7 left); (2) the NTK rapidly changes at high speed (Fig. 7
middle and Fig. 4D); (3) the NTK rapidly learns useful features in training data, outperforming the
standard NTK at initialization by a factor of 3 within 3 to 4 epochs (Fig. 8 green curves); (4) even
low learning rate training retains a nonlinear performance advantage over linearized NTK training
with a learned kernel (Fig. 9 red regions); and (5) the error barrier, kernel velocity, and low learning
rate nonlinear advantage all fall together in a tightly correlated manner (Fig. 7, right) and (Fig. 9,
right). After this rapid chaotic transient, training enters a more stable regime in which: (6) SGD
stochasticity allows more limited child exploration in terms of function space distance, leading to
smaller function diversity within basins compared to between basins (Figs. 5 and 6); (7) the kernel
velocity stabilizes to a fixed nonzero speed (Fig. 7 middle and Fig. 4D); (8) the data dependent kernel
performance continues to improve, matching that of full network training by 30 to 90 epochs, of
training, representing 15% to 45% of the full 200 epochs (Fig. 8 green curves).

The empirical picture uncovered by our work is much richer than what any theory of deep learning
can currently capture. In particular, the NTK theory attempts to describe the entire nonlinear deep
learning process using a fixed random kernel at initialization. While this description is provably
accurate at infinite width and low learning rate, our results show it is a poor description of what
occurs in practice at finite widths and large learning rates (Figs. 7 and 8). More interestingly, the NTK
theory is even a poor description of nonlinear training at finite width and extremely low learning
rates, especially during the early chaotic training phase (Fig. 9).

This rich phenomenological picture of the rapid sequential nature of the learning process could
potentially yield practical dividends in terms of a theory for the rational design of learning rate
schedules. For example, the timing of optimized learning rate drops coincide with the time when
the data-dependent tangent kernel can achieve high accuracy. Indeed our observations are consistent
with findings in [11]. But more generally, we hope that our empirical measurements of such a rich
phenomenology may serve as an inspiration for developing an equally rich unifying theory of deep
learning that can simultaneously capture these diverse phenomena.

9

Broader Impact

The goal of our work is to gain a better understanding of deep neural networks. This could potentially
make machine learning applications more reliable and transparent in the long run.

Funding Sources

DMR was supported, in part, by an NSERC Discovery Grant, Ontario Early Researcher Award, and a
stipend provided by the Charles Simonyi Endowment. SG thanks the Simons Foundation, James S.
McDonnell Foundation, NTT Research, and an NSF Career award for support. This research was in
part carried out while GKD and DMR participated in the Special Year on Optimization, Statistics,
and Theoretical Machine Learning at the Institute of Advanced Studies.

Acknowledgements

The authors would like to thank Jonathan Frankle and Mufan Li for feedback on drafts, and Shems
Saleh for helping to produce Fig. 1.

References

[1] Y. Bahri, J. Kadmon, J. Pennington, S. S. Schoenholz, J. Sohl-Dickstein, and S. Ganguli.
“Statistical Mechanics of Deep Learning”. en. Annual Review of Condensed Matter Physics
(Mar. 2020).

[2] C. Li, H. Farkhoor, R. Liu, and J. Yosinski.Measuring the Intrinsic Dimension of Objective
Landscapes. 2018. arXiv: 1804.08838 [cs.LG].

[3] S. Fort and A. Scherlis. “The Goldilocks Zone: Towards Better Understanding of Neural
Network Loss Landscapes”. Proc. AAAI Conf. Artificial Intelligence 33 (July 2019), pp. 3574–
3581. ISSN: 2159-5399.

[4] F. Draxler, K. Veschgini, M. Salmhofer, and F. A. Hamprecht. Essentially No Barriers in
Neural Network Energy Landscape. 2018. arXiv: 1803.00885 [stat.ML].

[5] T. Garipov, P. Izmailov, D. Podoprikhin, D. P. Vetrov, and A. G. Wilson. “Loss surfaces, mode
connectivity, and fast ensembling of dnns”. In: Advances in Neural Information Processing
Systems. 2018, pp. 8789–8798.

[6] S. Fort and S. Jastrzebski. Large Scale Structure of Neural Network Loss Landscapes. 2019.
arXiv: 1906.04724 [cs.LG].

[7] J. Frankle, G. K. Dziugaite, D. M. Roy, and M. Carbin. “Linear Mode Connectivity and
the Lottery Ticket Hypothesis”. In: Proc. Int. Conf. Machine Learning (ICML). 2020. arXiv:
1912.05671.

[8] R. Kuditipudi, X. Wang, H. Lee, Y. Zhang, Z. Li, W. Hu, R. Ge, and S. Arora. “Explaining
Landscape Connectivity of Low-cost Solutions for Multilayer Nets”. In: Advances in Neural
Information Processing Systems. 2019, pp. 14574–14583.

[9] S. Fort, H. Hu, and B. Lakshminarayanan. Deep Ensembles: A Loss Landscape Perspective.
2019. arXiv: 1912.02757 [stat.ML].

[10] S. Jastrzebski, M. Szymczak, S. Fort, D. Arpit, J. Tabor, K. Cho, and K. Geras. The Break-
Even Point on Optimization Trajectories of Deep Neural Networks. 2020. arXiv: 2002.09572
[cs.LG].

[11] G. Leclerc and A. Madry. The Two Regimes of Deep Network Training. 2020. arXiv: 2002.
10376.

[12] A. Jacot, F. Gabriel, and C. Hongler. Neural Tangent Kernel: Convergence and Generalization
in Neural Networks. 2018. arXiv: 1806.07572 [cs.LG].

[13] R. Novak, L. Xiao, J. Hron, J. Lee, A. A. Alemi, J. Sohl-Dickstein, and S. S. Schoenholz.
Neural Tangents: Fast and Easy Infinite Neural Networks in Python. 2019. arXiv: 1912.02803
[stat.ML].

[14] Y. Bai, B. Krause, H. Wang, C. Xiong, and R. Socher. Taylorized Training: Towards Better
Approximation of Neural Network Training at Finite Width. 2020. arXiv: 2002.04010 [cs.LG].

10

https://arxiv.org/abs/1804.08838
https://arxiv.org/abs/1803.00885
https://arxiv.org/abs/1906.04724
https://arxiv.org/abs/1912.05671
https://arxiv.org/abs/1912.02757
https://arxiv.org/abs/2002.09572
https://arxiv.org/abs/2002.09572
https://arxiv.org/abs/2002.10376
https://arxiv.org/abs/2002.10376
https://arxiv.org/abs/1806.07572
https://arxiv.org/abs/1912.02803
https://arxiv.org/abs/1912.02803
https://arxiv.org/abs/2002.04010

[15] S. Arora, S. S. Du, W. Hu, Z. Li, R. R. Salakhutdinov, and R. Wang. “On exact computation
with an infinitely wide neural net”. In: Advances in Neural Information Processing Systems.
2019, pp. 8139–8148.

[16] J. Lee, L. Xiao, S. Schoenholz, Y. Bahri, R. Novak, J. Sohl-Dickstein, and J. Pennington. “Wide
neural networks of any depth evolve as linear models under gradient descent”. In: Advances in
neural information processing systems. 2019, pp. 8570–8581.

[17] S. Arora, S. S. Du, Z. Li, R. Salakhutdinov, R. Wang, and D. Yu. “Harnessing the Power of
Infinitely Wide Deep Nets on Small-data Tasks”. arXiv preprint arXiv:1910.01663 (2019).

[18] V. Shankar, A. Fang, W. Guo, S. Fridovich-Keil, L. Schmidt, J. Ragan-Kelley, and B. Recht.
“Neural Kernels Without Tangents”. arXiv preprint arXiv:2003.02237 (2020).

[19] V. Papyan. “Measurements of three-level hierarchical structure in the outliers in the spectrum
of deepnet hessians”. arXiv preprint arXiv:1901.08244 (2019).

[20] S. Fort and S. Ganguli. Emergent properties of the local geometry of neural loss landscapes.
2019. arXiv: 1910.05929.

[21] G. K. Dziugaite and D. M. Roy. “Computing nonvacuous generalization bounds for deep
(stochastic) neural networks with many more parameters than training data”. In: Proc. Uncer-
tainty in AI (UAI). 2017. arXiv: 1703.11008.

[22] P. Chaudhari, A. Choromanska, S. Soatto, Y. LeCun, C. Baldassi, C. Borgs, J. Chayes, L.
Sagun, and R. Zecchina. “Entropy-sgd: Biasing gradient descent into wide valleys”. Journal of
Statistical Mechanics: Theory and Experiment 2019.12 (2019), p. 124018.

[23] J. Langford and R. Caruana. “Bounding the True Error”. Advances in Neural Information
Processing Systems 14 (2002), pp. 809–816.

[24] S. Hochreiter and J. Schmidhuber. “Flat minima”. Neural Computation 9.1 (1997), pp. 1–42.
[25] N. S. Keskar, D. Mudigere, J. Nocedal, M. Smelyanskiy, and P. T. P. Tang. “On large-batch train-

ing for deep learning: Generalization gap and sharp minima”. arXiv preprint arXiv:1609.04836
(2016).

[26] S. Fort and A. Scherlis. The Goldilocks zone: Towards better understanding of neural network
loss landscapes. 2018. arXiv: 1807.02581 [cs.LG].

[27] S. Jastrzębski, Z. Kenton, D. Arpit, N. Ballas, A. Fischer, Y. Bengio, and A. Storkey. Three
Factors Influencing Minima in SGD. 2017. arXiv: 1711.04623 [cs.LG].

[28] L. Sagun, U. Evci, V. U. Guney, Y. Dauphin, and L. Bottou. Empirical Analysis of the Hessian
of Over-Parametrized Neural Networks. 2017. arXiv: 1706.04454 [cs.LG].

[29] L. Wu, C. Ma, and W. E. “How SGD Selects the Global Minima in Over-parameterized
Learning: A Dynamical Stability Perspective”. In: Advances in Neural Information Processing
Systems 31. Ed. by S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and
R. Garnett. Curran Associates, Inc., 2018, pp. 8279–8288.

[30] A. Lewkowycz, Y. Bahri, E. Dyer, J. Sohl-Dickstein, and G. Gur-Ari. The large learning rate
phase of deep learning: the catapult mechanism. 2020. arXiv: 2003.02218.

[31] D. Zou and Q. Gu. “An improved analysis of training over-parameterized deep neural net-
works”. In: Advances in Neural Information Processing Systems. 2019, pp. 2053–2062.

[32] Z. Ji and M. Telgarsky. “Polylogarithmic width suffices for gradient descent to achieve
arbitrarily small test error with shallow ReLU networks”. arXiv preprint arXiv:1909.12292
(2019).

[33] S. S. Du, J. D. Lee, H. Li, L. Wang, and X. Zhai. “Gradient descent finds global minima of
deep neural networks”. arXiv preprint arXiv:1811.03804 (2018).

[34] Z. Chen, Y. Cao, D. Zou, and Q. Gu. “How Much Over-parameterization Is Sufficient to Learn
Deep ReLU Networks?” arXiv preprint arXiv:1911.12360 (2019).

[35] L. van der Maaten and G. Hinton. “Visualizing Data using t-SNE”. Journal of Machine
Learning Research 9 (2008), pp. 2579–2605.

[36] V. Papyan. “Measurements of Three-Level Hierarchical Structure in the Outliers in the Spec-
trum of Deepnet Hessians”. In: ICML. 2019.

[37] K. He, X. Zhang, S. Ren, and J. Sun. Delving Deep into Rectifiers: Surpassing Human-Level
Performance on ImageNet Classification. 2015. arXiv: 1502.01852 [cs.CV].

[38] K. He, X. Zhang, S. Ren, and J. Sun. Deep Residual Learning for Image Recognition. 2015.
arXiv: 1512.03385 [cs.CV].

11

https://arxiv.org/abs/1910.05929
https://arxiv.org/abs/1703.11008
https://arxiv.org/abs/1807.02581
https://arxiv.org/abs/1711.04623
https://arxiv.org/abs/1706.04454
https://arxiv.org/abs/2003.02218
https://arxiv.org/abs/1502.01852
https://arxiv.org/abs/1512.03385

[39] S. Zagoruyko and N. Komodakis.Wide Residual Networks. 2016. arXiv: 1605.07146 [cs.CV].
[40] R. Novak, L. Xiao, J. Hron, J. Lee, A. A. Alemi, J. Sohl-Dickstein, and S. S. Schoenholz. “Neu-

ral Tangents: Fast and Easy Infinite Neural Networks in Python”. In: International Conference
on Learning Representations. 2020.

[41] J. Bradbury, R. Frostig, P. Hawkins, M. J. Johnson, C. Leary, D. Maclaurin, and S. Wanderman-
Milne. JAX: composable transformations of Python+NumPy programs. Version 0.1.55. 2018.

12

https://arxiv.org/abs/1605.07146

	Diverse aspects of deep learning phenomenology
	Definition of measurement metrics for geometry and training
	An integrative view of learning dynamics
	The local and global geometry of the loss landscape surrounding children
	NTK velocity slows down and stabilizes after basin fate is determined
	The data-dependent NTK rapidly learns features useful for performance
	NTK and nonlinear training remain different even at low learning rates
	Summary of contributions and discussion
	Function distance between children runs
	Definitions of additional metrics
	Logit gradient centroid alignment
	Logit gradient centroids and the top Hessian eigenvectors
	Escape threshold

	Additional results
	Diverse metrics for loss landscape and training are highly correlated
	Further discussion

	Experimental details
	Networks
	Training Details
	Extended training time and learning rate ablations
	Linearized training details

