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Abstract

We introduce a class of first-order methods for smooth constrained optimization that are based on
an analogy to non-smooth dynamical systems. Two distinctive features of our approach are that (i)
projections or optimizations over the entire feasible set are avoided, in stark contrast to projected
gradient methods or the Frank-Wolfe method, and (ii) iterates are allowed to become infeasible,
which differs from active set or feasible direction methods, where the descent motion stops as soon
as a new constraint is encountered. The resulting algorithmic procedure is simple to implement even
when constraints are nonlinear, and is suitable for large-scale constrained optimization problems in
which the feasible set fails to have a simple structure. The key underlying idea is that constraints
are expressed in terms of velocities instead of positions, which has the algorithmic consequence
that optimizations over feasible sets at each iteration are replaced with optimizations over local,
sparse convex approximations. The result is a simplified suite of algorithms and an expanded range
of possible applications in machine learning.

Keywords: Convex optimization, nonconvex optimization, constrained optimization, non-smooth
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1. Introduction

Optimization has played an essential role in machine learning in recent years, providing a concep-
tual and practical platform on which algorithms, systems, and datasets can be brought together at
unprecedented scales. This joint platform has led to high-impact applications, the discovery of new
phenomena, and the development of new theory. One of the major themes that have catalyzed the
interplay between optimization and learning is that “simple is good.” Whereas classical optimiza-
tion has tended to focus on relatively complex schemes for determining update directions and step
sizes, the recent focus of research at the learning/optimization interface has been on algorithms
that use simple, stochastic approximations to first-order operators and that set step sizes via simple
averaging schemes, or even employ constant step sizes. The simplifications have worked well in
practice and have triggered the development of commodity software systems that are increasingly
general and robust. They have also, appealingly, created new challenges for theoreticians, who have
begun to develop new tools to fill in the gaps that the absence of strong assumptions has opened up.
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Somewhat overlooked in all of these developments is the treatment of constraints in machine-
learning problems. Machine-learning practitioners often handle constraints on parameters and pre-
dictions via simple, adhoc reparameterizations. This reflects the “simple is good” dictum, but it
also creates a need to develop special-case reparameterizations in many cases and it poses addi-
tional challenges for theory, as convergence rates can be affected by the reparameterizations. More
significantly, it overlooks the broader potential role that constrained optimization can play in ma-
chine learning. Moving beyond pattern recognition, emerging problems involving decision-making
in real-world, multi-agent settings often involve contextual-driven constraints. Control-theoretic
problems generally involve interactions with physical, biological, and social systems, whose laws
are often expressed in terms of fundamental constraints. Mathematically, constraints can simplify
statements of existence and uniqueness, simplify the specification of sets of solutions, and allow
duality principles to be brought to bear.

There is a nascent thread of research on constrained optimization in machine learning that has
aimed to build on the success of first-order methods. It has focused primarily on projected gradient
algorithms and the Frank-Wolfe method. Both of these methods involve an inner loop nested inside
of the overall procedure—in the former case the optimization of a quadratic function and in the latter
case the optimization of a linear function. In both cases the optimization is over the entire feasible
set. From a theoretical point of view, these are relatively simple methods, providing hooks such that
convergence analyses from the unconstrained case can be readily brought to bear. Moreover, they
can be easy to implement when the feasible set has a simple structure, such as a norm ball or a low-
dimensional hyperplane. In these cases it is often possible to obtain closed-form expressions for
the inner loop. This simplicity can disappear entirely, however, when the feasible set fails to have a
simple structure. In such cases, optimizing a quadratic or linear function over the entire feasible set
becomes prohibitive, and the “simple is good” dictum provides no clear path forward.

When the structure of the feasible set fails to enable closed-form projections or closed-form
solutions for Frank-Wolfe updates, optimization theorists often turn to interior point or sequential
quadratic programming methods. The idea of interior point methods is to reduce the constrained
optimization problem to an unconstrained one by using barrier functions that assign a high cost to
points close to the boundary of the feasible set. In sequential quadratic programming, the underlying
nonlinear problem is approximated by a series of quadratic programs. While both classes of methods
have been proposed for applications in machine learning (see, e.g., Koh et al., 2007; Ferris and
Munson, 2003; Domahidi et al., 2012), they are significantly more complex than the stochastic-
gradient methods that have been so successful in unconstrained machine learning. There remains a
need for a learning-friendly approach to constrained optimization.

In the current paper, we present a class of first-order methods that are applicable to a wide range
of problems in machine learning. A notable simplification of these methods, relative to classical
constrained optimization methods, including projection methods and Frank-Wolfe, is that our meth-
ods rely exclusively on local approximations of the feasible set. These local approximations are
a natural generalization of Clarke’s tangent cone and are well defined for feasible and infeasible
points. Moreover, as we will show, they make possible a key algorithmic simplification—they yield
algorithms that converge even with a constant step size. Technically, they handle the case when
the iterates become infeasible. This makes the resulting algorithmic procedure simple to implement
and also ensures that the descent motion is not necessarily stopped as soon as a new constraint is
violated. Finally, while the entire feasible set might be described by a very large (or even infinite)
number of nonlinear constraints, the local approximation typically only includes a small number
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of linear constraints, which substantially reduces the amount of computation required for a single
iteration.

We believe that these simplifications make our methods a natural candidate for large-scale con-
strained machine-learning problems. Our main goal in the current paper is to provide a theoretical
foundation to support such a claim. We also present results from a preliminary set of numerical ex-
periments, which include, for example, randomly generated high-dimensional quadratic programs.
Comparing the new methods to the interior point solver CVXOPT of Andersen et al. (2011), we find
that the complexity of the new methods scales roughly with n? (where n is the problem dimension),
whereas the complexity of the interior point solver scales with n3. When n is large, this may lead
to speedups of several orders of magnitude.

As our discussion has hinted, while our methods are relatively simple to specify and deploy,
their analysis brings new challenges. Our treatment builds on recent progress in using continuous-
time dynamical systems tools to analyze discrete-time algorithms in gradient-based optimization (Su
et al., 2016; Wibisono et al., 2016; Diakonikolas and Jordan, 2021; Krichene et al., 2015; Franca
et al., 2020; Betancourt et al., 2018; Muehlebach and Jordan, 2019, 2020, 2021). Much of the
work in this vein is focused on understanding accelerated first-order optimization methods, such
as Nesterov’s algorithm, where the understanding arises by exposing links between differential and
symplectic geometry, dynamical systems, and mechanics. These links, which supply a mechanical
interpretation of accelerated methods and provide a rigorous interpretation of concepts such as “mo-
mentum,” are often easiest to derive in continuous time, making use of variational, Hamiltonian, and
control-theoretic perspectives. Indeed, the most complex part of these analyses often arises in the
conversion from continuous time to discrete time.

In line with this recent literature, our treatment of constrained optimization also straddles the
boundary between continuous time and discrete time. As in the unconstrained setting, the contin-
uous case is relatively straightforward and the major challenges arise in the conversion to discrete
time. Indeed, the key novelty is that in our constrained setting, the discrete-time function that maps
one iterate to the next is discontinuous. Thus, tools such as smooth Lyapunov functions or the
theory of monotone operators that have been widely employed in the unconstrained setting are not
applicable in our setting, and a new analysis framework is needed. We develop such a framework
by making use of ideas from non-smooth mechanics. Indeed, as we will discuss in the following
section, the closest point of contact with existing literature is the notion of Moreau time-stepping in
non-smooth mechanics.

Related work: In the following paragraphs we highlight some of the connections of our ap-
proach to the existing literature. Due to the wealth of work on constrained optimization over the
last several decades, a comprehensive summary seems out of reach. We will therefore focus on
ideas that are most closely related to our approach and refer to the textbooks of Bertsekas (1999),
Nesterov (2004), Nocedal and Wright (2006), or Luenberger and Ye (2016) for a broader overview.

Our approach is in the spirit of projected gradient methodology. The basic idea of the projected
gradient method is to compute a step along the negative gradient of the objective function and to
project the resulting point back to the feasible set (see, e.g., Bertsekas, 1999, Ch. 2.3). From a
theoretical point of view, the analysis of projected gradients strongly parallels that of unconstrained
gradient descent. Indeed, by generalizing the notion of gradients to the “gradient mapping” (Nes-
terov, 2004, p. 86), arguments can be readily translated from the unconstrained to the constrained
case. More generally, projected gradients can be viewed as an instance of a proximal point algo-
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rithm (Parikh and Boyd, 2013), which itself can be elegantly described with the theory of monotone
operators (Bauschke and Combettes, 2011; Rockafellar, 1976).

The key difference between our approach and classical projected gradients is that our approach
is based on a local approximation of the feasible set. This local approximation includes only the
active constraints! and is guaranteed to be a convex cone even if the underlying set is nonconvex.
Our approach can be viewed as an inexact projected gradient method, and as such has similarities
to the work of Wang and Liu (2006) and Birgin et al. (2003). However, in contrast to this work,
we do not impose a monotone decrease of the cost function by an appropriate line search. In fact,
our approach converges even with a constant step size, whereby the objective function fails to be
monotonically decreasing (in general).

While projected gradient approaches have been successfully applied in various machine learning
problems (see, e.g., Beck and Teboulle, 2011; Bloom et al., 2016), an even simpler algorithm—the
Frank-Wolfe algorithm—has also received considerable attention in recent years (Jaggi, 2013). At
each iteration of the Frank-Wolfe algorithm, a feasible descent direction is computed by maximizing
the inner product with the negative gradient. This reduces to the minimization of a linear objective
function over the feasible set, which, compared to projected gradients, can lead to considerable
simplification. The simplification is in accord with the “simple is good” dictum of machine learn-
ing, and indeed it has been found that the Frank-Wolfe algorithm provides a unified theoretical
framework for many greedy machine learning algorithms, including support vector machines, on-
line estimation of mixtures of probability densities, and boosting (Clarkson, 2010). Recent results
extend the Frank-Wolfe algorithm to the stochastic setting (Hazan and Kale, 2012; Zhang et al.,
2020), or improve on its relatively slow convergence rate (Combettes and Pokutta, 2020; Garber
and Hazan, 2015).

As we have already discussed, alternatives to projected gradients and Frank-Wolfe include inte-
rior point methods and sequential quadratic programming. Interior point methods provide practical
solutions to many problems in constrained optimization, and they are guaranteed to return approx-
imate solutions to many convex nonlinear programming problems in polynomial time (Nesterov
and Nemirovskii, 1994). They can be particularly efficient if the underlying Karush-Kuhn-Tucker
system is sparse, which can be exploited for simplifying the Newton updates (Domahidi et al.,
2012). Similarly, in sequential quadratic programming, the underlying Karush-Kuhn-Tucker sys-
tem resembles the Newton update of interior point methods. There are many different flavors of
sequential quadratic programming, depending on the type of line search, whether only approximate
second order information is used, or whether equality constraints are eliminated. An implementa-
tion that is widely used to solve complex optimal control and planning problems is presented in Gill
et al. (2005). Recent advances in sequential quadratic programming share some similarity with our
approach; see, for example, Torrisi et al. (2018) and Héberle et al. (2021). Both of these methods in-
volve linearizing both the active and inactive constraints. The fact that all constraints are taken into
account at each iteration enables the algorithms to anticipate constraint violations and distinguishes
these approaches from the methods that will be discussed herein.

Finally, a main goal of the current paper is to bring to the fore an analogy between constrained
optimization and non-smooth mechanics. Indeed, from a certain point of view, finding station-
ary points of a constrained optimization problem is equivalent to computing equilibria of a cor-

1. We say that the ith constraint is active at the iterate xy, if g;(zr) < 0, where the smooth function g : R™ — R
describes the feasible set as {x € R™ | g(z) > 0}. It is important to note that this definition of active constraints
does not require the corresponding dual multipliers to be nonzero.



ON CONSTRAINTS IN FIRST-ORDER OPTIMIZATION

responding non-smooth mechanical system. The classical approach to simulating such systems is
event-based integration, which is a relatively complex algorithm that switches between smooth and
non-smooth motion. An alternative is Moreau time-stepping (Moreau, 1988), which is based on the
discretization of a measure-differential inclusion that captures the smooth and non-smooth parts of
the motion. Moreau’s algorithm can handle multiple (or even an infinite number of) discontinuities
that may all happen within one time step. Further background can be found in the texts of Glocker
(2001) and Studer (2009). Recent work in this area includes extensions to continuum mechanics
(Capobianco and Eugster, 2018) and higher-order integration schemes (Acary, 2012).

Although we will exploit analogies to the simulation of physical systems, the focus of our the-
oretical analysis is in developing algorithms that efficiently compute approximate local minima of
constrained nonlinear programming problems. In this setting, it will be crucial to consider large
time steps, to handle constraint violations (which are often ignored when simulating non-smooth
mechanical systems), and to provide convergence guarantees in discrete time.

Compared to classical treatments of constrained optimization, our treatment exhibits a key fea-
ture that arises directly from the physical analogy. Rather than expressing constraints at the language
of positions or configurations, as is standard in optimization, our constraints will be expressed in
terms of velocities. Thus, we will distinguish between constraints on the “position level” and con-
straints on the “velocity level.” Our focus on the latter will be seen to lead directly to a local, convex
approximation of the feasible set. By a constraint on velocity level, we mean a constraint on the for-
ward increment limgy o (z (¢t +dt) — 2(¢))/dt in continuous time or the difference (z441 —x)/T in
discrete time, where 7' is the step size. In continuous time, a given position constraint can (in most
cases) be reformulated as an equivalent velocity constraint. However, this equivalence breaks down
in discrete time, which necessitates a careful analysis of the resulting discrete-time algorithms. We
also note that there are (many) mechanical systems that have velocity constraints which cannot be
formulated as position constraints. For example, while ice skater can move to any position in a
skating rink, their velocity is constrained to lie parallel to the blades of the skates.

Notation: We follow standard notation from convex analysis. In particular, R denotes the real
numbers, R> the nonnegative real numbers, R<( the nonpositive real numbers, and Z the set of all
integers. The notation | - | is reserved for the Euclidean norm or the cardinality of a set. The gradient
of a function h : R™ — R"™ is denoted by VA : R” — R™*™ and the indicator function of the set
C is referred to as ¢ : R™ — R U {oo}, that is, 1) (x) takes the value zero for x € C and oo
otherwise. The subgradient of a convex function g : R® — R evaluated at x € R” is denoted by
Og(x) and is defined as the set {v € R™ | vT (y — x) < g(y) — g(x), Vy € R"}. The tangent cone
(in the sense of Clarke) at any point x € C'is referred to as T(x), that is, 0 € T (x) if there exist
two sequences z; — x, z; € C, t; | 0, such that (x; — x)/t; — éx. The corresponding normal
cone is denoted by N¢ () := {\ € R" | ATéx < 0,¥5x € To(x)}. Finally, we use subscripts
to denote both single components of a vector and the iteration number of a discrete algorithm. The
distinction will be made from context (we usually reserve the subscript & for the iteration number).

2. Overview of the Results

We consider the following optimization problem:

min f(z), st g(z) 2 0,h(z) =0, (D



MUEHLEBACH AND JORDAN

where the function f : R” — R defines the objective function, the functions g : R" — R
and h : R" — R™ define the constraints, and where n, n,, and ny, are positive integers. The
function f is assumed to be such that f(z) — oo for || — oco. We denote the set of all z € R™
that satisfy the constraints g(x) > 0 and h(z) = 0 by C, which we assume to be non-empty and
bounded. Combined with the properties of f this guarantees that the minimum in (1) is attained.
The functions f, g, and h are continuously differentiable and have a Lipschitz continuous gradient.

Brief summary of the main contributions: In mathematical optimization constraints are typi-
cally treated by direct reference to positions, meaning that z or x(t) are constrained to lie in C' for
all k > Oorall t > 0, respectively. We adopt a fundamentally different point of view—instead of
constraining z(¢) or zj, we constrain the forward velocity & (¢)* = limge o (z(¢t + dt) — z(¢)) /dt or
forward increments (541 — x)/T. At a given position x € R", the set of all admissible velocities
will be denoted by V,,(z) C R™. When x € C, the set V,,(x) corresponds to the tangent cone of the
set C' at z. We will introduce an appropriate generalization of V,,(z) in order to also capture cases
in which ¢ C. The two different point of views on constraints are illustrated in Figure 1.

In continuous time, the resulting velocity constraint is equivalent to the original position con-
straint, assuming constraint qualification. However, this equivalence breaks down in discrete time,
and may lead to infeasible iterates over the course of the optimization. One of our main results is
a guarantee that the resulting discrete algorithm nonetheless converges to stationary points, despite
the possibility of infeasible iterates and despite the discontinuous nature of the map from zj to
Z+1- In addition to providing such a guarantee, we derive rates of convergence and we show that a
formulation of constraints on the velocity level can lead to computational advantages. In particular,
we show that at each iteration, only a linear and convex approximation of the original nonlinear
and nonconvex feasible set needs to be considered. Moreover, the linear approximation includes
only the constraints that are active at z(¢) or xx. On randomly generated dense quadratic programs,
for example, the complexity of the proposed method scales with n? (empirically), which contrasts
with state-of-the-art implementations of an interior point method, which scale with n3. Moreover,
in many practical problems (for example, support vector machines) the proposed algorithm greatly
reduces the number of constraints that must be considered at each iteration.

Detailed summary of the main contributions: In order to discuss the results in greater detail,
we introduce the following definition and assumption, which will hold throughout the remainder of
the article.

Definition 1 The point x € R" satisfies the Mangasarian-Fromovitz constraint qualification if
the columns of Vh(x) are linearly independent and if there exists a vector w € R™ such that
Vh(z)"w = 0 and Vg;(z)"w > 0 for all i € I, where I, denotes the set of active inequality
constraints at x, i.e., I, == {i € Z | gi(z) < 0}.1

Assumption 1 The Mangasarian-Fromovitz constraint qualification is satisfied for all x € R™.
From the definition of T (x) it follows that every dx € Te(x) satisfies VA(z)dz = 0 and

Vgi(z)Téx > 0, for all i € I,. Assumption 1 ensures that the converse is also true, which guaran-
tees that all stationary points of (1) satisfy the corresponding Karush-Kuhn-Tucker conditions. We

1. We would like to point out that our definition of active constraints does not require constraints to have corresponding
dual multipliers that are nonzero.
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& (t)

x(t)

position constraint velocity constraint velocity constraint

Figure 1: The figure contrasts position constraints with velocity constraints. The leftmost sketch
illustrates the position constraint, where x(t) is constrained to the feasible set as indicated
by the shaded region. The center and right figure illustrate the induced constraints on
the velocity Z(#)" (which will be precisely defined below). If x(#) is in the interior of
the feasible set, there are no restrictions on the forward velocity, as indicated with the
shaded ball without border (center). The figure on the right illustrates the case where
x(t) lies on the boundary of the feasible set. As a result, ()" is constrained to lie in
the cone indicated by the shaded region. In the discrete-time case @(¢) " is replaced with

(Thy1 — i) /T

further introduce the set
Va(@) i= {v € R | Vh(2)Tv + ah(z) =0, Vgi@)Tv+ag(a) =0, Vie L}, @

where o > 0 is a positive scalar. The role of a will be discussed below. As a result of the constraint
qualification, the set V, (x) reduces to the tangent cone T () of the set C for any =z € C. Moreover,
for a fixed z € R", V,,(x) is a convex polyhedral set, involving only the active constraints [,.

With the notation in place, we are ready to state our main results. We start with a general
framework based on a continuous-time gradient flow which will be used as a starting point for our
discrete algorithm.

Proposition 2 (constrained gradient flow) Let x : [0,00) — R™ be an absolutely continuous tra-
Jjectory, which has a piecewise continuous derivative. Then, for any x(0) € C, the following are
equivalent:

#(t) = —V (@) + RE), —R(t) € No(x(t)), Vte [0,00) ae,  (3)
'S.C(t)Jr = —Vf(.f(t)) + R(t)a —R(t) € 6¢Va(m(t))($(t)+)a vt € [Oa OO), @)
#(t)" = argmin <o + V()2 vt € [0, 00), )

vEVa(z(t))

where i:(t)" denotes the right-hand derivative of x at t.
For any x(0) € R", (4) and (5) are equivalent and lead to a unique trajectory x(t) (if it exists),
which is guaranteed to converge to the set of stationary points of (1) (for a > 0); that is, x(t) — C
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ast — oo and
Jim |~ Vf(x(t) + R()] =0,

where R(t) is defined in (4). Moreover, if the stationary points are isolated, the trajectory x(t)
converges to a single stationary point.

When C' is convex, f is strongly convex with strong convexity constant p, and o < 2u, the
trajectory satisfying (4) and (5) converges exponentially:

(A(2(0)), min{0, g(z(0)) )TN e < f(z(t)) — f* < (f(a(0)) — f*)e >, ©)

for all x(0) € R"™, where f* is the value of the minimizer in (1) and \* is a multiplier that satisfies
the Karush-Kuhn-Tucker conditions.

We make the following remarks:

* The first condition, (3), amounts to a differential inclusion, whereas (4) and (5) give rise to
differential equations that have a discontinuous right-hand side. We restrict ourselves from
the outset to piecewise smooth motion, that is, trajectories that are absolutely continuous and
have a piecewise continuous derivative. Absolute continuity means that x(¢) — x(0) can be
expressed as the Lebesgue integral over the velocity &; that is, z(t) = x(0) + f(f &(7)dr for
all ¢ > 0. The assumption that & is piecewise continuous means that on any finite interval,
& is continuous except at a finite number of points, where left and right limits, denoted by
#(to)~ and i (o)™, are well-defined. The value (t) at the discontinuity t( is of no interest
and may or may not exist.

* The assumptions on & are used for establishing the equivalence between (3) and (4). Con-
vergence results for (4) and (5) similar to those of Proposition 2 can still be obtained when
the restrictions on 2 are relaxed. We also note that by applying the theory of Filippov (1988),
(4) and (5) can be extended to a differential inclusion that is guaranteed to have an absolutely
continuous solution. We refer the reader who is interested in existence results to the work of
Filippov (1988) and Aubin and Cellina (1984). The equivalence between (3) and (4) under
weaker assumptions on z is discussed in Brogliato et al. (2006), which also provides a short
existence proof (requiring, however, that C' is convex).

* The variable R(t) in (3) can be regarded as a reaction force that imposes the constraint z(t) €
C for all t € [0, 00) (by definition, the normal cone is empty if x(¢) & C). We therefore say
that (3) includes the constraint on the position level. In contrast, the reaction force R(t) in (4)
enforces Z(t)™ € V,(x(t)) forall t € [0, 00), which reduces to & (¢)* € To(x(t)) for z(t) €
C. The condition #(t)* € V,(x(t)) can be viewed as an extension of z(t)* € To(z(t)) to
allow also for z(t) ¢ C. Interpreting (4) as a stationarity condition for (¢)* yields (5). We
therefore say that (4) and (5) impose the constraints on the velocity level.

* The intuition behind the equivalence of (3), (4), and (5) can be summarized in the following
way. For an absolutely continuous trajectory x(t), the constraint z(t) € C for all t € [0, c0)
is equivalent to z(t)" € V,(x(t)) for all t € [0,00), z(0) € C, (Moreau, 1988, Remark
2.5).! If we think of x(t) as the position of a point mass, and #(¢)T as its velocity, this can

1. Constraint qualification is needed for the equivalence to hold.
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be stated as follows: A constraint on the position of the point mass induces a constraint on
its velocity. Conversely, the constraint ()" € V,(z(¢)) on the velocity ensures that the
position constraint is satisfied for all times ¢ > 0, provided that x(0) € C.

* The reformulation (5) emphasizes that at each point in time, the velocity is chosen to match
unconstrained gradient flow as closely as possible, subject to the velocity constraint & (¢) " €
Va(z(t)) (which for feasible z(¢) reduces to @(t)" € To(z(t))). This can be seen as an
analogue of the principle of least constraint in mechanics (Glocker, 2001, Ch. 9).

* The set V,(x) can be viewed as an extension of T () to all of R™. This enables a general-
ization of constrained gradient flow, according to (4) and (5), which accounts for infeasible
initial conditions. Imposing & (t)* € V,(z(¢)) for all ¢ € [0, c0), concludes, by definition of
the set V,(x) and by applying Gronwall’s inequality,

gi(2(t)) = gi(2(0))e™, i € L), N(z(t)) = h(x(0))e™™, N

forall t € [0, 00). Consequently, the constant « controls how quickly the constraint violations
decay.

* By reformulating the constraint on the velocity level as in (4) and (5), the velocity ()™
can by computed by relying on a local and linear approximation of the set C' via @(t)" €
Va(z(t)), which includes only the active constraints I,). Hence, even for a nonconvex
optimization problem such as (1), the optimization given by the right-hand side of (5) is
convex.

By replacing z ()" with (w11 — x) /T and z(t) with zx in (4) or (5), we obtain the following
discrete algorithm

Tyl = Tk — TVf(.%'k) + TRy, —Rpe€ 8¢Va(xk)(($k+1 — xk)/T), k=0,1,2,..., (8

which for any zg € R", leads to well-defined (unique) iterates, as long as the Mangasarian-
Fromovitz constraint qualification is satisfied for all z € R". As in the continuous-time setting,
the discrete algorithm relies on a local approximation of the feasible set at each iteration, which
includes only the active constraints I, . Projections or optimization over the entire feasible set C'
(at each iteration) are therefore avoided. While this reduces computation, it also complicates the
analysis.

It is important to note that (8) can be reformulated in a number of equivalent ways. The choice
made in Algorithm 1 is particularly suitable for numerical implementation.

The following definitions will be useful for characterizing the behavior and the convergence rate
of (8). We start by introducing the function v : R™ — R", which assigns the velocity v(z) to each
zeR™ )

v(x) := argmin — v + V f(z)|>. )
vEVL () 2
Clearly, in continuous time, (4) and (5) evolve as @(t)* = v(z(t)), whereas in discrete time, (8)
imposes (zp11 — xx)/T = v(x). As aresult of the constraint qualification, strong duality holds
and we obtain the following dual

1
d(.%’) = /I\IelaDX l(l‘,)\) - %‘Vrﬂl(wa)‘)P’ (10)
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where V, denotes the gradient with respect to x, and the Lagrangian [ : R™ x (R™ x Rzgo) — Ris
defined as -

Uz, ) = f(x) = ATg(x), (1D
with g(x) := (h(z), g(z)). The set D, in (10) is given by

D, = {/\ € R™ x RT;O ‘ Anpti = 0,Vi & Im}’

and includes only multipliers A; # 0 that correspond to equality constraints or active inequality
constraints, defined by ¢ € I,. The multipliers A, ;, which correspond to inactive inequality
constraints, i.e., i & I, are set to zero, and can therefore be eliminated from the outset when
solving (10) (as is done in Algorithm 1). In general, there might be multiple A € D, that attain the
maximum in (10). We will denote any one of them by A(x). As a consequence of Lagrange duality,
A(z) is related to the minimizer of (9) by

v(z) = =Vl(z, \(x)) = =V f(z) + W(z)\(x), (12)

where W (z) := Vg(z). We also note that the variable R(¢) in (4) or Ry in (8) can therefore be
expressed as R(t) = W (x(t))\(xz(t)) and Ry = W (k) \(xx), respectively.

The maximum curvature of f (the Lipschitz constant of V f) limits the maximum admissible
step size of gradient descent in the unconstrained case. We will see that the maximum curvature of
I(-, \) (for a fixed \) will play a similar role for (8). We denote by fi;(A\) and L;()\) the smoothness
and strong convexity constant of [(-,\) : R” — R™ (for a fixed A). In case C is convex and f
is strongly convex, the strong convexity constant p of f is a natural lower bound for fi(A), A €
R™ x RZ, which is attained for A = 0.

We will also consider modifications of (1), where some inequality constraints are removed. The
resulting optimal costs are denoted by

fi= fel]iRr}L () st h(z)=0, g(x)>0, i€l (13)
where [ is any subset of {1, ..., ng}. The minimum in (13) is guaranteed to be attained, due to the
assumptions on f and C'. Itis clear that fi‘} < f; < f* and we will denote any choice of multipliers
that satisfy the Karush-Kuhn-Tucker conditions of (13) by A7.

With this notation in place, we are now ready to state the main results that characterize (8).

Proposition 3 (constrained gradient descent) Let C be convex and let f be strongly convex with
strong convexity constant 1. Then, for any xog € R", the iterates xy, of (8) are well-defined (unique)
and guaranteed to converge to the minimizer of (1) for

T< ,  a<pu,
T Litp :
where Ly is such that Ly > Ly(\(z)) for all z € R™.!
The velocity (xy1 — xp)/T converges with
: f* = d(zo)
— Vi) +R|>P<—"  Vk>0, VzpeR",
(0 K} | flag) + Byl < c1(k+1) - 0

1. In case g is affine, L; = L, where L is the smoothness constant of f.

10
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where c; = T'(u/a — 1)(1 — uT'/2) > 0 is constant.
The sequence d(xy) is monotonically increasing in k and it holds that d(xy) < f};k < f*

Each level set {x € R™ | d(x) > f;}, where I is any subset of {1,2,...,ng}, is closed, invariant
and attractive. Provided that L; > Li(\} ), the trajectories converge at a linear rate:
Tk

darir) — £, = (- eT)(d() - ff, ).

where ¢y = 20(1 — puT'/2)(p — @) /(L; — o) > 0 is constant.

Algorithm 1 Implementation of the gradient descent scheme (8).
Require: zy € R", TOL, MAXITER, T > 0, oT € (0, 1]
k=0
while £ < MAXITER do
Determine the set of closed constraints I,
Define W := (Vh(xx), Vai(2h)icr,, ) and Dy, := R™ x RLg"
Define gy, := (h(zk), 9i(wk)ict., )
Find \;, € Dy, such that —\;, € 9¢p, (WkTWk)\k — W,;FVf(a:k) + agy) (see Section 6, (27))
Perform the update ;11 = xx — TV f(z) + TWiAg
if ‘$k+1 — .%'k| < T - TOL then
return x|
end if
k<—k+1
end while

The following remarks are important:

* Algorithm (8) does not anticipate any constraints that could potentially be violated at future
iterations. Unlike in the continuous-time case, where constraint violations decrease exponen-
tially over time (see (7)), a constraint may therefore open up, and close again a few iterations
later. Nevertheless, the algorithm is guaranteed to converge at nearly a linear rate, which we
find remarkable.

* The convergence rate is dimension independent, which distinguishes the algorithm from
interior-point methods, for example, where O(,/ny) Newton-iterations are required to de-
crease the value of the objective function by a constant factor.

* In the important special case where constraints are affine, all the above results hold for I,; =
L, where L is the smoothness constant of f. The constant L; is related to the maximum
curvature of the Lagrangian, which seems a natural generalization from the unconstrained to
the constrained case.

* Another important special case is given for a single nonlinear inequality constraint (ny = 1,
nn = 0). We then obtain

Vg(z)TVf(x)—ag(z)
Az) = { e forg(z) <0, Vy(x) 'V f(z) — ag(x) >0,

0 otherwise.

11
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In this case, the constant L; is given by the largest eigenvalue of the Hessian d?//dz? =
d?f/dx? — \(z) d?g/d2? over all z € R™.

* The restriction o < p on the constant « is likely to be conservative. We observed in numerical
experiments that a choice a1 close to unity yields faster convergence. The restriction oT" < 1
is, however, necessary for convergence.

* The convergence analysis will point to immediate extensions and variants of (8), which in-
clude line-search strategies, or alternations between gradient updates of the Lagrangian with
fixed multipliers (which are computationally inexpensive) and updates of the multipliers ac-
cording to (10). These extensions will be discussed in Section 5.1.

The remainder of the article is concerned with proving Proposition 2 and Proposition 3, pro-
viding context for both algorithms, discussing a particular implementation of Algorithm 1, and
illustrating the algorithms with numerical examples.

3. Motivation

The continuous-time formulation given in Proposition 2 can be motivated by drawing analogies
to non-smooth mechanics. We will start by viewing the stationarity conditions of (1) as the static
equilibrium of a mechanical system. We will then apply d’ Alembert’s principle (see, e.g., Lanczos,
1952), which relates this variational characterization of equilibria to the variational characterization
of motion. In the context of optimization, this leads to the algorithm (3), and also enables gen-
eralizations to accelerated first-order methods or Newton-type methods. We further establish the
equivalence between (3) and (4), which, in the context of mechanics, can be related to the equiv-
alence between the principle of virtual work and the principle of virtual power. We then discuss
various interpretations of (4), which lie at the heart of the discretization in (8).

We consider a mechanical system that consists of a point mass located at x € R™ on which the
external force F' := —V f(x) acts. The point mass is constrained to the set C.! For a given z € C
we start by investigating whether the point mass is in static equilibrium; i.e., it does not move
under the influence of the external force and the constraint x € C'. In order to do so, we isolate the
point mass and replace the interaction with the constraint by a (constraint) force, —R € N¢(Z). The
corresponding graphical procedure, often referred to as free-body diagram, is illustrated in Figure 2.
The principle of virtual work, which is the fundamental postulate of classical mechanics, can now
be stated.

Postulate 1 The point mass is in static equilibrium if and only if the virtual work vanishes for any
virtual displacement 5z € R™. The virtual work is defined as (F + R)"6x, where F is the external
force and R € —N¢(x) the constraint force.

Due to the fact that arbitrary virtual displacements are allowed, Postulate 1 concludes that the point
mass is in static equilibrium at z € C'if the following conditions are fulfilled

—Vf(z)+ R=0, —Re€ N¢(2). (14)

1. From a physical perspective the constraint can be thought of as a second rigid body with infinite mass that consists
of all points R™ \ C'. We seek to model the interaction between the point mass and the constraint.

12
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T
) Ry € —N¢(x2)

R1 c —Nc(xl) —Vf(xQ)

Figure 2: The figure illustrates the concept of a free-body diagram, where the geometric boundary
condition g(x) > 0, as shown on the left, is replaced by the constraint forces, —R €
Nc(z), as shown on the right. We note that x; is in static equilibrium, since —V f (1)
and R; cancel, whereas x5 is not.

By virtue of the constraint qualification, these are equivalent to the Karush-Kuhn-Tucker conditions
of (1). Thus, with our choice F' := —V f(x), we can relate the stationarity conditions of (1) to the
static equilibrium of a mechanical system, as characterized by the principle of virtual work.

The connections to optimization are even more explicit when restricting ourselves to admissible
virtual displacements; i.e., dx € T¢(Zz). By definition, constraint forces satisfy —R"x < 0
for all o= € T () or, in the language of classical mechanics, constraint forces are such that their
contribution to the virtual work is nonnegative.! This leads to the principle of d’ Alembert-Lagrange,
which represents the cornerstone of Lagrangian mechanics.

Corollary 4 If the point mass located at T € C'is in static equilibrium, the virtual work of the
external forces satisfies F76x < 0 for all admissible variations 5z € To(z).

Through the lens of optimization, this means that —6f = —V f(Z)Tdz < 0 for all admissible
variations dx € T (), or equivalently, f(z) < f(z) for all z in an open neighborhood of Z with
x € C. The relations are summarized in Figure 3 (left).

The important insight from classical mechanics (essentially due to d’ Alembert) is that the prin-
ciple of virtual work, Postulate 1, and the principle of d’ Alembert-Lagrange, Corollary 4, naturally
extend from the static equilibrium to the dynamic equilibrium that characterizes the motion of a
mechanical system. It suffices to add the “forces of inertia,” which for the point mass amounts to
adding —m to the external forces F' (Lanczos, 1952, Ch. 4). We will apply these ideas to gradient
flow, where the “forces of inertia” are given by —z. This yields (3), which we restate as follows:

x(t) = =V f(x(t)) + R(t), —R(t) € Nc(x(t)), Vtel]0,00) ae.

We restrict ourselves to trajectories x : [0,00) — R"™ that are absolutely continuous and that have
a derivative (almost everywhere) which is piecewise continuous. The former requirement ensures
that a change in position, z(t) — x(0), can be expressed as the Lebesgue integral of the velocity:

1. In most classical textbooks only equality constraints are considered. In that case, constraint forces exert no virtual
work.
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optimization mechanics (static eq.) optimization mechanics (static eq.)
stationarity <« p. of d’Alembert-Lagrange stationarity p. of agrange
-Vf@)+R=0 p. of virtual work ;zvfii) + RN: 0 «——— p. of virtual work
z —R € limsup N¢(z
—R € N¢(7) mﬂoip c(z)
KKT KKT

Figure 3: The figure summarizes the analogies between constrained optimization and non-smooth
mechanics. On the left, constraint qualifications are assumed to hold ensuring that the set
C is regular in the sense of Clarke. On the right, the set C' fails to be regular, for example
due to a reintrant (inward facing) corner. In that case, the notion of equilibrium needs to
be extended by an appropriate closure of N (x); see, for example, Rockafellar and Wets
(1997, Ch. 6). The resulting equilibrium condition is no longer sufficient for stationarity
and its equivalence to the Karush-Kuhn-Tucker conditions breaks down, (Rockafellar and
Wets, 1997, Thm. 6.14). Moreover, the principle of d’ Alembert-Lagrange is no longer a
consequence of the principle of virtual work and therefore fails to characterize static
equilibria when C is not regular (May and Panagiotopoulous, 1985). There are important
examples of mechanical systems where C fails to be regular; see, for example, Glocker
(2001, Ch. 11).

z(t) = z(0) + fg #(7)dr. The latter requirement implies that the velocity is almost everywhere
continuous. On any finite interval, the velocity has a finite number of discontinuities, where left and
right limits exist.

The condition (3) can still be viewed as a force balance between z(t) + V f(x(t)) and R(t),
whereby the reaction force R(t) ensures that z(¢) remains feasible. Moreover, when the system is
at rest, & vanishes and (3) reduces to the Karush-Kuhn-Tucker conditions (14). If z(¢) happens to be
in the interior of C, the reaction force R(t) vanishes, and z(t) evolves according to unconstrained
gradient flow. The almost everywhere quantifier is clearly needed—if z(¢) approaches the boundary
of the set C, an instantaneous velocity jump might be required for ensuring that x(¢) remains in C'
(at the time instant of the velocity jump, & is no longer defined).

As mentioned in Section 2, the constraint z:(¢) € C for all t € [0, c0) can be reformulated as a
constraint on the velocity, i.e., @:(t)™ € V,(z(t)). This forms the basis for the equivalence between
(3) and (4):

Proposition 5 (Similar to Moreau (1988, Prop. 5.1), Glocker (2001, Ch. 7)) Let x : [0, 00) — R™,
x(0) € C, be an absolutely continuous trajectory that has a piecewise continuous derivative. Then,
x(t) satisfies (3) if and only if it satisfies (4):

@()" ==V f(z(t)) + R(t), —R(t) € 0Py, (@(t)"), V€ [0,00).

Proof The proof is adapted from Moreau (1988, Prop. 5.1). We start by assuming that x(¢) satisfies
(4). The fact that the subdifferential of the indicator function is non-empty implies that (¢)" €

14
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Va(z(t)) for all t € [0,00). Combined with z(0) € C, we therefore have z(t) € C forall ¢ €
[0,00), and Vi, (z(t)) = Tc(x(t)). In addition, it follows from the definition of the subdifferential
that —R(t)"T (v — @(t)*) < 0 for all v € To(x(t)). Due to the fact that T (2(t)) is a cone, this
implies —R(t)Tv < 0 for all v € T (2(t)) (otherwise we could derive a contradiction by scaling
an appropriate v € Te(x(t))), or in other words, —R(t) € N¢(x(t)). This shows that any ()
with 2(0) € C satisfying (4) also satisfies (3).

In order to show the converse we start by assuming that z(t) satisfies (3). We consider any inter-
val (¢, t1) where @(t) is continuous. By definition of the tangent cone, we have limg;_,o(z(t+dt)—
x(t))/dt = &(t) € Te(x(t)) and limgy_o(x(t—dt)—z(t)) = —z(t) € Te(x(t)) forall t € (tg, t1).
Thus, from —R(t) € N¢(z(t)) it follows that —R(t) T2 (¢) < 0 and R(t) T2 (¢) < 0, which implies
that — R(t)T@(t) = Oforall t € (tg,1). In addition, by definition of the normal cone, it follows that
—R(t)Tv < 0forall v € To(x(t)). Combining these two facts results in —R(#)T (v — @(t)) < 0
for all v € Te(x(t)) and all t € (to,t1). Hence, —R(t) € Vg, (o)) (%(t)) for all t € (to,t1),
which implies (4) for any time interval where #(¢) is continuous. By taking the right-limit ¢ | ¢,
we conclude that —R(to) ™ € 9Yr (o(1e)) (£(t0) ). (to)t = =V f(x(to)) + R(to)*, since x(t) is
continuous. Thus, (4) holds for ¢ = ¢(, and therefore also at any other time instant where & (t) is
discontinuous. |

Three important points are worth mentioning:

* The piecewise continuity assumptions on & are only used for showing that (3) implies (4);
absolute continuity of x is enough for the converse to hold (provided the constraint qualifica-
tions are satisfied).

* When the solution z(¢) slides along the boundary of the constraint (i(¢) is continuous), the
reaction force is necessarily orthogonal to the velocity. From the point of view of classical
mechanics, this means that the constraint reaction forces are passive and do not exert any
power (at almost every time instant). This directly implies that the function f(x(¢)) necessar-
ily decreases along the trajectories of (3) or (4).

* The condition (4) describes the forward evolution of x(¢) by prescribing the right-hand deriva-
tive of & at each point in time. An equivalent formulation for the backwards evolution also
exists. We will concentrate on the forward evolution, since we are interested in minimizing

f.

The above proposition proves the equivalence between (3) and (4) as stated in Proposition 2.
The equivalence between (4) and (5) follows by interpreting (4) as stationarity condition for ().
The assumption that the Mangasarian-Fromovitz constraint qualification holds for all z € C' implies
that Slater’s condition holds for T-(z) for all z € C'. A similar statement applies to the set V,(z),
as shown in the following proposition.

Proposition 6 Let the Mangasarian-Fromovitz constraint qualification be satisfied for all x € R".
This implies that Slater’s condition holds for V,(z); i.e., for any x € R", there exists av € R™ such
that Vh(z)"v + ah(x) = 0 and Vg;(z) v + agi(z) > 0 forall i € I,.

Proof We pick a© € R" such that Vh(z) o = —ah(z). Due to the fact that the columns of Vh(x)
are linearly independent, such a v exists. Thus, for a sufficiently large constant £ > 0, we have that
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Vh(z)" (0 + €w) = —ah(z), Vgi(z)T (0 + Ew) > —ag;(z) forall i € I, where w € R™ satisfies
Vh(z)Tw = 0and Vg;(x) "w > 0 forall i € I,.. By assumption such a w exists. Thus, v = o + &w
satisfies the required conditions. |

Thus, (5) amounts to optimizing a strongly convex objective over a closed non-empty convex set,
which implies that there exists a unique solution ()" for all ¢ € [0, 00). The constraint qualifica-
tion further implies that strong duality holds for all ¢ € [0, c0). The corresponding dual problem is
stated in (10) and can be restated as

max —~[W(2)\ — V()2 — arTg(z). (15)
XeD; 2
Solving the dual problem at time ¢ for a given x(t) yields the corresponding constraint force R(t)
via R(t) = W(x(t))A(t), where A(t) is a maximizer of (15) (or (10)). The quadratic term in
the cost function in (15) leads to the following dual interpretation of (4) and (5): At each point
in time, the constraint force (or dual variable) is roughly chosen to minimize the Euclidean norm
of the forward velocity 4(¢)™ subject to the constraint A(t) € D). The forward velocity can be
viewed as the residual of the Karush-Kuhn-Tucker conditions evaluated at (). The additional term
ATg(z) vanishes whenever x € C. For z ¢ C, AT g(z) can be interpreted as a potential function of
the constraint x € C (see, for example, Lanczos, 1952).

For a > 0, maximizing (15) is equivalent to maximizing (10). When f is strongly convex with
constant u, « < pu, and C' is convex, (10) maximizes a lower bound on f*. More precisely, the
strong convexity of f and the convexity of C' imply that (-, A) is strongly convex with constant 1
(for a fixed A € D,), which means that

1
72 fi, 2 mf Uz d) 2 Ue X) = o[ Val(@ ), YA€ Do, (16)
z€R™
> 1(z,\) — 2i|v$1(:c, M, VA€ D,,
(6%

where the last inequality follows from a@ < p. The lower bound in (16) corresponds to the cost
function in (10), which shows that (10) (or (15)) indeed maximizes a lower bound on f*. The
bound (16) will also be useful for deriving convergence rates, as it relates the velocity z(t)" =
—Vl(z(t), A(t)) to the difference of the Lagrangian, [(z(t), A(t)) — f*.

The stationarity condition for (15) (or (10)) is given by

W (@ ()W (2(t)A(t) — W (x(t)) TV f(z(t) + ag(a(t) € dp,, (A®))- (17

This turns out to be an ideal starting point for computing \(¢) via fixed-point iteration, as will be
discussed in detail in Section 6.

We close the section by proving the remaining statements of Proposition 2; i.e., showing that
the solutions of (3), (4), and (5) converge to stationary points of (1) and deriving convergence rates
in case C is convex and f is strongly convex.

We start by proving the following intermediate lemma, which will also be important for the
discrete-time analysis.

Lemma 7 Let the assumptions of Proposition 2 be satisfied. Then, for every ty > 0, there exists
d > 0 such that \(t) € Dy, for allt € (to — 6, to).
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Proof We fix tg > 0 and consider the set of inequality constraints that are inactive at tg; that is,
gi(x(to)) > 0. Due to the continuity of x and g there exists an interval (o — J, o), where § > 0
is small enough, such that g;(z(t)) > 0 forall t € (to — d,%0) and for all i & I, ). As aresult,
Loty C Ly forall t € (o — d,t0) and the result follows. |

Claim 1 Let the assumptions of Proposition 2 be satisfied. For any x(0) € R", (4) and (5) are
equivalent and lead to a unique trajectory x(t), which is guaranteed to converge to the set of sta-
tionary points of (1) (for a > 0). Moreover, if the stationary points are isolated, the trajectory x(t)
converges to a single stationary point.

Proof The equivalence between (4) and (5) follows from the fact that (4) corresponds to the station-
arity condition of (5), which, by strong convexity and non-emptiness of V,,(z(t)), uniquely defines
#(t)" for each t € (0,00). This concludes that z(t) is unique.

We argue next that z(t) — C for t — oo, and that, as a result, z(t) and A(¢) are bounded.
According to (7), the constraint violations at time ¢ can be bounded by g;(z(t)) > g;(x(0))e~* for
all i € Iy and |h(x(t))| < |h(x(0))|e~*". We therefore conclude that 2:(t) — C for t — co. The
fact that C' is bounded and z is continuous implies that x(¢) is bounded for all ¢ > 0. As a result,
there exist bounded dual variables A(t) satisfying (15).

The stationarity condition (17) implies that

AW (2 ()T W (2(£)A(t) = V£ (2(t)] + aA(t)Tg(x(t) =0,

due to complementary slackness. This can be restated as —R(t)T2(t)* = a\(t)Tg(x(t)), which,
in view of (4), yields

%f(fv(t))+ = —[&(t)*]* — aX(t)g(x(?)). (18)

This means that f necessarily decreases for large ¢, since —\(¢)"g(x(t)) decreases exponentially.
We further note that f(x(t¢)) is bounded below, which, by taking the integral of the right-hand side
of (18), implies

/Ooo L) — ad®) ()t > —co. (19)

We note that the integrand is closely related to the objective function in (15), which we denote as

&a(t):
1. _
§a(t) = =g |a() " — oA () Tg(=(1).

From the fact that A(t) is bounded and that —\(t) T g(x(t)) decays exponentially, we conclude that
lim sup;_, ., &a(t) < 0. From (19) it also follows that the integral of {4 over R>( is bounded below.

We will now establish that lim;_,, &4(¢) = 0 by applying a variant of Barbalat’s lemma; see
Lemma 11 in Appendix A. We start by observing that \ inherits the continuity properties of ™,
due to the fact that W (z(t))A\(t) = V f(z(t)) + ©(¢)T. This means that X is piecewise continuous,
and for each time ¢y > 0, A(tg) = limy ¢, A(t). The same applies for {g. We now characterize the
discontinuities of {4 and provide a lower bound on its derivative, whenever it exists. We fix 5 > 0.
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By virtue of Lemma 7, we conclude that \(¢) is a feasible candidate for (15) at time ¢y as long as
t € (to — 6,tp) for a small enough § > 0. This means

Salto) = —%\W(Zv(to))k(t) = Vf(x(to)* — ag(z(te)) " A(#),
> &a(t) — ri(to)lz(to) — z(t)] — r2(to)|a(to) — x (1), (20)

forall t € (to — d,tp), where r1(tp) > 0 and 72(fp) > O are related to the remainder terms of a
first-order Taylor expansion of V,I(x, A(t)) and A(¢)Tg(z) with respect to = at (z(t), A(t)). The
fact that 2 (¢) and A(¢) are bounded implies that r1 (to) and 72 (to) are likewise bounded (uniformly)
for all ¢y > 0. Furthermore, #(¢)" is bounded, which implies the existence of a constant 7, > 0
(independent of ¢y) such that

a(to) = &a(t) — 710,

for a small enough 0 and all t € (ty — d,t9). We can now distinguish two cases, depending on
whether &4 is continuous at ¢y or not. If &4 is discontinuous at ¢, we obtain &4(tg) > &q(to) ™. The
other case yields £q4(t2) > &q(t1) —71(ta —t1), forall t9 > t1, as long as &g is continuous on (¢y, t2).

We are now ready to apply Lemma 11 (see Appendix A), which implies that lim;_, £4(t) = 0.
As a result of the exponential convergence of \(t)Tg(z(t)), we obtain lim; . |Z(¢)*| = 0, and
conclude that z(t) necessarily converges to the union of all stationary points.

It remains to show that z:(¢) converges to a single stationary point in case that the stationary
points are isolated. To that extent, we consider the sequence z(k), k& > 0. Due to the fact that ()"
converges, we can find, for every ¢ > 0, an integer N > 0 such that |x(k + 1) — x(k)| < € for
all k > N. Choosing e small enough implies that x (k) necessarily converges to a single stationary
point, which we denote by x; (this would otherwise contradict the fact that the stationary points are
isolated). Moreover, |z(t) — x| < |x(t) — 2 (k¢)| + |z (ki) — x|, where k; is the largest integer such
that k; < ¢. We conclude lim;_,, z(t) = x by observing that |z(t) — z(k;)| is bounded by the
supremum of |&(7) " | over 7 € (k¢, t), which becomes arbitrarily small for large ¢. [ |

Claim 2 Let the assumptions of Proposition 2 be satisfied and let C be convex and f strongly convex
with strong convexity constant p and o < 2. Then the following holds:

(A(2(0)), min{0, g(z(0))}) TN e < f(z(t)) — f* < (f(a(0)) — fF)e >,

for all x(0) € R"™, where x(t) satisfies (4) and (5), f* is the optimal cost in (1) and \* is a
corresponding multiplier that satisfies the Karush-Kuhn-Tucker conditions.

Proof We will use (18) as a starting point for deriving the upper bound. From (16) we conclude
that

—[a(6) P < —2u(f(2(t)) — £*) +2uA(t)Tg(t).
Thus, inserting the upper bound on —|(¢)|? in (18), we obtain

S F0)T < —2p(F(0) ~ F(a7) + 2 — O g(a(1).

For o < 2y, the term (21 — a)A\(t) T g(x(t)) is certainly negative (or vanishes completely if (0) €
(), which readily proves the upper bound.
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The lower bound follows from a perturbation analysis. For a given 2:(0) € C, we define

F1(t) = min f(z), st h(z) = h(@(0)e™,  g(2) = min{0, g((0))}e™,

which is of the form (1), with the sole difference that the right-hand side of the constraints has been
replaced with the vector (h(z(0)), min{0, g(z(0))}) exp(—at). The trajectory z(t) is guaranteed
to be feasible with respect to these modified constraints, which implies that f*(¢) < f(z(t)). The
above minimum is attained for all ¢ € [0, c0), due to the fact that f is bounded below and the mod-
ified set of feasible points is closed. A multiplier A\* satisfying the Karush-Kuhn-Tucker conditions
of (1) captures the sensitivity of the cost function with respect to perturbations of the right-hand side
of the constraints. More precisely, —A* is guaranteed to satisfy the following inequality (see, e.g.,
Rockafellar, 1970, p. 277):

F1(&) = f* = (h((0)), min{0, g((0))}) T A" exp(—at).

The lower bound of (6) in Proposition 2 then follows from the fact that f(x(t)) > f*(¢) for all
t €[0,00). [ |

4. A First Example

We start by discussing an example that illustrates the behavior of (4) and (8). We consider the
following problem:

5211% 1—10(.%» +1)2, st z€l0,2], 1)
which has the unique minimum z* = 0. The function f is therefore given by (x + 1)2/10, whereas
g1(x) = x and go(z) = 2 — . It will be instructive to plot the function V,Il(z, A\(x)) = V f(x) —
R(z), where the multiplier A(z) is obtained from (15). This yields a continuous-time gradient flow
that is given by ()" = —V.l(z(t), A\(t)), whereas the discrete-time version is given by xj 1 —
xp = —TVl(zk, A\k), where A(t) and Ay are implicitly dependent on x(t) and xy, respectively.
Furthermore, we can interpret V,[(xz, A(x)) as the gradient of a continuous function F, : R — R,
with F,(0) = f*. We also plot the function d(x) as defined in (10).

The plots are shown in Figure 4 for two different cv. The left column is prototypical for o < 1/5,
the right column for o« > 1/5, where 1/5 amounts to the Hessian of f. It is important to note
that V[ is discontinuous at the origin, but nonetheless unique. In the continuous-time case, the
discontinuity at the origin is less of an issue, since the solutions to (¢)* = —V,l(x(t), A(t))
approach the origin either from z(¢) > 0 or from z(¢) < 0 and never cross the origin. When
the solution approaches the origin from negative values, x(¢) < 0, the velocity 4(¢) continuously
reduces to zero for ¢ — oo. If the solutions approach the origin from positive values, x(t) > 0, the
velocity continuously reduces to (¢)~ = —0.2 at which point it instantly drops to zero. Hence,
if z(t) approaches the origin from positive values, the convergence is in finite time. The origin is
therefore a stable and attractive equilibrium in the sense of Lyapunov.

In discrete time, the situation changes drastically. Starting from a generic initial condition, zo >
0, the solution to xx1 = xx — TV, l(xk, A;) crosses the origin and eventually always approaches
the origin from x; < 0 (provided that o and 7" are small enough). For small o and 7', the origin
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Figure 4: This figure shows the values of V[, F,,, and d for « = 1/10 (left column) and o = 4/5
(right column). Top row: The solid thick black line represents V., which is discontinu-
ous at the origin, where it takes the value zero (the origin is the minimizer of (21)). For
values x < 0, V[ is given by min{V f(z), ax} and for values z > 2, V,l is given
by max{V f(z),a(x — 2)}, which is represented by the dashed lines in blue and in red.
Middle row: The solid thick black line represents F|,, which is continuous and has its
minimum at the origin (the origin is the minimizer of (21)). The objective function f
is indicated with dashed lines. Last row: The function d is discontinuous at the origin
for a # 1/5, unbounded below for a < 1/5, and unbounded above for « > 1/5. For
a < 1/5, d(x) is upper bounded by f7 , thatis, d(z) < f* = f{iy = 0.1 forz < 0and
d(z) < f{y = f{yy = 0forz > 0, where g1(x) = z and ga2(x) = 2 — z. As we will
show in Section 5, this holds more generally provided that f and C' are convex.
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can therefore be viewed as a semi-permeable membrane; solutions cross from x; > 0 to i1 < 0,
but not vice versa. The origin is not a stable equilibrium, since trajectories starting arbitrarily close
to the origin will jump to a negative x1, such that |x1| > [0.27 — (1 — 0.27")xz¢| ~ 0.2T. (Hence,
no matter how small we choose 6 > 0, there exists an initial condition zo with |xo| < J such that
|xg| > 0.17 for some k& > 0.) We therefore conclude that any attempt to find a continuous Lyapunov
function for proving convergence in discrete time is doomed to fail. Indeed, as we will show in the
following, proving convergence of (8) hinges on the analysis of the discontinuous function d(x),
which can be shown to be monotonically increasing along trajectories xj, for small enough o and T'.
The analysis can also be interpreted as choosing an appropriate sequence of nested invariant sets,
which generalizes the above discussion of the origin acting as a semi-permeable membrane. Each
of these invariant sets can then be shown to be attractive, whereby trajectories converge at a linear
rate.

We would like to emphasize that even though the origin is not stable in the sense of Lyapunov
(in discrete time), it is still attractive; that is, xj converges to origin for small enough « and 7.
From Figure 4, it follows that o7’ < 1 is necessary for ensuring that trajectories approach the origin
from z;, < O for large k. If o' > 1, we observe oscillations about the origin. We further note
that already the analysis of a two-dimensional problem with multiple linear constraints appears to
be very challenging due to the discontinuity of V! and the discrete nature of (8), which results
in a multitude of different constraints that may or may not become active over the course of the
optimization.

5. The Discrete-Time Case

This section analyzes the convergence of algorithm (8) to stationary points of (1). In contrast to the
continuous-time setting, where a trajectory starting from x(0) € C'is guaranteed to remain feasible,
a discrete trajectory x; may become infeasible in the course of the optimization, even if zg € C.
This is due to the finite length of each step of the discrete algorithm and the fact that only the active
constraints I, are taken into account. While this potentially saves computation and distinguishes
our algorithm from other methods, it also complicates the analysis. As we discussed in the previous
section, while trajectories still converge to the minimizer of (1) (assuming convexity and appropri-
ately chosen parameters 1" and «v), the minimizer may not correspond to a stable equilibrium in the
sense of Lyapunov.

In Section 4, we saw that for o/I' < 1, the solutions xj, of algorithm (8) cross the origin from
zr > 0to xk41 < 0, but not vice versa. The property is crucial for guaranteeing convergence, as
it excludes oscillations about the origin. We can therefore visualize the boundary of the feasible set
as a semi-permeable membrane; trajectories can pass from the feasible to the infeasible region, but
not the other way. The following lemma will be the first step in making this observation precise.

Lemma 8 Let C be convex. Provided that oT' < 1, the inequality constraints at time k for which
the corresponding \y; is nonzero, will remain active at time k + 1. In other words, A\i; > 0 implies

gi(xr41) < 0.

Proof The stationarity condition (17), which applies in the same way to the discrete algorithm
(8) (it suffices to replace z(t) with x, A\(t) by A, and @(t)* = (zxr1 — xx)/T), implies that
MeiWilxr) T (2py1 — 2x) = —aTg;(zp) g forall i € {1,2,... ny + ng} (complementary slack-
ness). Due to the fact that C' is convex, which means that / is linear and g is concave, it follows
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that

(z) + TVh(x)" (2ps1 — k),

h(zk41) x
(z1) + TVg(xp) " (€41 — x5).

=h
g(xr41) < g

g

Combined with the fact that A, € R™ x Rzo’ this implies
MeiGi(Trr1) < (1= aT)Aigi(),

forany i € {1,2,...,ny + ng}. The result follows by noting that A;;g;(zx) < 0and 1 —aT > 0.
|

Lemma 8 implies that Ay, € Dy, ,, ensuring that A, is a feasible candidate for (10), or (15), at time
k + 1. Lemma 8 also concludes that D, C D, ., and can therefore be viewed as the discrete-time
version of Lemma 7. As in the continuous-time case, Lemma 8 will be of paramount importance
for proving convergence.

The convergence proof will also rely on the following bounds for d(z).

Lemma 9 Let C be convex. For 0 < a < p and any x € R" the following upper and lower bounds
on d(zx) hold

-t (1= )bl < d@) < fi-gn (122 bl <

200 v
where Ly > Li(X}).

Proof The upper bound follows directly from (16). In order to obtain the lower bound, we first note
that the smoothness of [(-, A7 ) (where A} is fixed) implies

* : * * 1 *
flz :Zle%{nl(z’)\[z) Sl(m,)\lz) — E|vxl(x’)\ z)|2 (22)
We further consider the modified primal and dual problems (where « is replaced by L;):

1 1
vm(7) = argmin ~|v + Vf(2)|?, Am(z) € argmaxi(z,\) — —|Vl(x, \)|?,
veVL, (z) 2 AED, 2L

and note that v(x)L;/a € Vi, (), hence v(z)L;/c is a feasible candidate for minimization over
V1, (). This means that

L
—U

2
S om@)P + (@) V(@) < 5 L fo(a) P + o)V @)

Complementary slackness implies that v(2) TV f(z) = —|v(z)> — ag(x)TA(x) and similarly

vm(2) TV () = —|vm(2)|> — Lig(x) T Am(2), and yields therefore

1

3l @) = L) (o) < 32 (2 = 2) (@) - Lig) Ao
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Dividing by L; and adding f(x) on both sides implies that

1 2 1 L 2
- < — | — = .
irel%)il(x,)\) 5 I\Vgcl(ac,)\)\ d(x) + ( 1) lv(x)

N 1 N 1 L
1o ,) = 5 Vel )P < o)+ o (2= 1) ol

2a
Combining the previous inequality with (22) yields the desired lower bound. |

We are now ready to prove Proposition 3. We will divide the proof into several smaller claims:

Claim 3 Let the assumption of Proposition 3 be satisfied. Then, the sequence d(xy) is monotoni-
cally increasing and bounded above by f*.

Proof The fact that d(zy) is bounded above by f* follows from Lemma 9. We note that due to
Lemma 8, the multiplier )\, is a feasible candidate for the dual (15) (or (10)) at time k£ + 1; that is,
Ak € Dy, . This means that

1
d(zr11) = Uzkr1, M) = o[ Val(zat, o)l
Due to the strong convexity of (-, Ag) (for a fixed \y) it follows that

W@gts Ae) > U@, M) + TVl (2, M) Tog + g:r’2|v,€|2 = (g, M) — Tvg|? + %T%k\?.

Moreover, by using Taylor’s theorem, we can relate the gradient V,l(xg1, A\x) to the gradient
Vl(zg, i) in the following way:

vrl(karla )\k) = vﬂ?l('xka /\k> + TAIEZ(&C? )\k) Vi,

where Al denotes the second derivative of [ with respect to x, and &, lies between xy and xy1.
Hence, we obtain the following lower bound for d(x41):
T 17
i) = dlar) + —of Aul v = S—0f (AsD)” v — Tlorl” + gT%kP,
where the arguments of the Hessian A,l(, xx) have been omitted to simplify notation. We note
that the Hessian A, is positive definite due to the convexity of (-, \;;) and has eigenvalues that

are lower bounded by y and upper bounded by ;. Moreover, the matrix (A,l)? has the same
eigenvectors as A,l, which means that

1
g | AT — ZALPT? Y v > o> min s — s%/2.
2 s€[uT,LiT)

It can be shown that this minimum is lower bounded by pT'(1 — uT/2) aslong as T' < 2/(L; + p).!
This yields
wl

d(zsr) > d(ay) + T (1 - 2) (g - 1) Jog 2. (23)

=c1

1. The choice T' = 2/(L; + p) corresponds to the maximizer of maxr minge[,r,r,7) s — 5°/2.
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From T' < 2/(L; 4+ 1) and o < p we conclude that ¢; > 0, which proves the claim. |

Claim 4 Let the assumptions of Proposition 3 be satisfied. The velocity (x+1 — xy)/T is guaran-
teed to converge with

[ —d(zo)

Vk >0, V R"
Cl(k—i—l)’ = Y, To € )

i —Vf(z) + Rj|* <
je{glll,?.,k}‘ f($])+ J’ =

where ¢y = T(u/a — 1)(1 — pT'/2) > 0 is constant.

Proof The result follows from Claim 3 by expanding d(xj1) as a telescoping sum

k
f* > d(zpga) = d(wo) + > d(wj11) — d(z))
=0
> d(xo) + Cl(k} + 1)je{%]l,111,1.1..,k} | — Vf(l’j) + Rj|2,

where (23) has been used for the last step. |

Claim 5 Let the assumptions of Proposition 3 be satisfied. Each level set {x € R™ | d(x) > f;},
where I is any subset of {1,2,...,n.}, is closed, invariant and attractive. Provided that L; >
Ll()\} ), trajectories converge at a linear rate, that is,

Tk

d(xp1) = f1,, = (1= c2T)(d(zk) — 1, ),
where co = 20(1 — uT/2)(u — «)/(L; — o) > 0 is constant.

Proof We conclude from Rockafellar and Wets (1997, Theorem 1.17, p. 16) that d is upper semi-
continuous, which means that the level sets {z € R™ | d(x) > f} are closed. The fact that these
are attractive and invariant follows directly from Claim 3. For obtaining the linear rate, we start
from (23) and apply the lower bound on d(z)) provided by Lemma 9. This yields

C1 .
+ Li/(202)(1 — a/Ll)(fIfk —d(xg)).

d(wg41) > d(zy)

Substracting f};k on both sides yields the desired result (we note that d(zy) < f }lk ) |

The last claim provides a geometrical picture of the convergence of (8). At any iteration j, the
algorithm converges to the level set {z € R" | d(x) > f} }, where I} = I,;. At each iteration,
d(wy) — ff, decreases at least by a constant factor. Once this set is reached, the trajectory is guar-
anteed to remain inside, and will converge to the next smaller level set (where I; is replaced with
I,.,). The process continues until finally d(x) approaches f* from below.

With this geometrical picture in mind, we will discuss two extensions of (8). The resulting
trajectories can be shown to converge to the minimizer of (1) with the same arguments as used for
Claim 3 - Claim 5.
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5.1 Extensions

The convergence proof hinges on the following two properties of (8): (i) the multiplier Ay, is fea-
sible for the dual (15) at time k + 1, and (ii) the function I(z, A\x) — |Vl (zk, M) |?/20 increases
sufficiently from xj, to z 1 (for a fixed A). We can therefore extend (8) by including the following
line-search mechanism:

1

T := argmax l(l‘k + TV, /\k) - —\Vxl(:ck + TV, /\k)|27 Th+1 = Tk + Tk,
>0,a7<1 2a

where the velocity vy, is determined by solving (9), as before. As an alternative, we can alternate

between updating Ay via (15) and applying gradient steps (with \; fixed):

xj+1:xj—Tvxl(fL‘j,)\k), j=kk+1,...,

as long as g;(xj+1) < 0 for all ¢ € I, with corresponding multipliers A\;; > 0 (constraints that
were active and had a nonzero multiplier A; at time k are not allowed to open up). As is immediate
from the arguments of Claim 3, each of these gradient steps increases I (x, A\y) — |Val(z, \p)|?/ (22)
by 1|Vl (z;, \x)|?. Evaluating V! for a fixed )y, is computationally cheap and requires only the
evaluation of V f and W (x).

6. Computational Aspects

This section highlights two important aspects of the implementation of the discrete-time algorithm
(8): (i) the computation of the constraint force Ry, = W (xx)Ag, and (ii) how to deal with round-off
errors and inaccuracies.

6.1 Computing the constraint force 17y

The constraint forces are determined by the dual problem (15), which can be solved with various al-
gorithms. The simple nature of the set D,, makes (accelerated) projected gradient descent schemes
appealing. In the following, we present a procedure that is inspired by the method of successive
over-relaxation, and solves (15) very efficiently. The procedure is useful for solving large linear
complementary problems and is commonly used in the non-smooth mechanics community (see,
e.g., Studer, 2009). For completeness, we give a rough overview of the main points and refer the
reader to the work of Cottle et al. (2009) for further details. The stationarity conditions of (15) are
given by

W/ Wi — W'V f(ax) + ag(ax) + 0¢p,, (Ak) 3 0, (24)

where we used the notation introduced in Algorithm 1.! The underlying idea relies on a suitable
splitting of the matrix WkT W), that enables fixed-point iteration. We introduce )’ as the approxima-
tion of Ay at iteration j, j = 0,1, ... and further suppress the subscript k for ease of notation. We
denote the strictly upper triangular part of W TV by U and the diagonal by D. The matrix W W is
therefore given by U + D + U, where the diagonal elements are guaranteed to be strictly positive.
We can split the matrix WTW into UT 4+ w™!D and U + (1 — w™!) D, where w € (0, 2) is fixed,
leading to

(UT 4+ w DN 4 0yp, MY + (U + (1 —w HD)N = WTVf(x) + ag(z) 0, (25)

1. Compared to the notation in (15), for example, we exclude all multipliers \; that correspond to inactive inequality
constraints; that is, ¢ & I, .
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where we have omitted the subscript k; hence, x = xp, W = W), = W (xy), etc. The role of the
variable w as a tuning parameter will become apparent below. We note that (25) reduces to (24) for
M*HL = M. As aresult of the fact that U is strictly lower triangular, (25) reduces to the following
inclusion for a single component: )\g 1

W DN £ oPr(NMT) 4520, or wT DN T 4 0gpso(M ) 45,20, (26)

depending whether ¢ < ny or ¢ > ny, where x; is a placeholder for all remaining terms that are

constant or only depend on A/ and )\{H, e )\zfll . The inclusion in (26) can be seen as a stationarity

conditions for )\g 1 which uniquely determines )\g *! from A and A{+1, e )\ffll We can therefore

express (25) as
N = prox,, ()\j —wD N UTNT  (D+UWN - WV (z) + ag(x))) . QD
where proxp, : R™ X Rl — R™ x Rg‘gl is defined as

(proxp_(£))i = &, i=1,...,np,
(proxp, (£))i = max{&;,0}, i=mny+1,...00+ |L],

and where we have used the fact that w™'D;; > 0. It is important to note that (27) provides an
explicit rule for computing M ! from M, since U is strictly lower triangular. In particular, by sub-
stituting the newly computed elements M1 directly in the right-hand side of (27), i.e., overwriting
AJ with A 1 as soon as it becomes available, the expression on the right-hand side of (27) reduces
to

Prox . ()\j WD Y WTWN - WV f(z) + ag(x))) :

which becomes very convenient for a computer implementation. The expression (27) can there-
fore be viewed as an extension of the method of successive over-relaxation that accounts for the
complementary slackness induced by the inequality constraints. The method reduces to a variant of
the Gauss-Seidel method for w = 1. The following proposition due to Cottle et al. (2009, p. 400)
ensures convergence of the M/ — A as long as w € (0,2). The proof follows Cottle et al. (2009,
p- 400) and is included in Appendix C for completeness.

Proposition 10 Cottle et al. (2009, p. 400) The sequence N, defined according to (27), converges
for w € (0,2). The resulting multiplier lim;_, N = )\ satisfies (24) and therefore maximizes
(15).

In our numerical experiments, the choice w = 1 (Gauss-Seidel variant) yielded good results.

6.2 Dealing with round-off errors and inaccuracies in the computation of 1,

In Section 4 and Section 5 we noted that the minimizer of (1) is typically not a stable equilibrium
in the sense of Lyapunov for (8). If we revisit the example of Section 4 we realize that a trajectory
initialized at zg = € > 0, where € > 0 is arbitrarily small, will make a relatively large stepto z; < 0
before approaching the origin from x; < 0. Thus, if we set the constraint force Iy, to be slightly too
large by mistake, when approaching the origin from z;, < 0, this might push xj again to positive
values (x; > 0), at which point the cycle would start again. For a practical implementation of (8), it
is therefore important to address and discuss the effect of round-off errors and inexact computations
of Rk.
We can address the problem with a combination of the following two strategies:
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(i) Slightly extending the infeasible set: We extend the set I, to {i € Z | g;(z) < €}, where
€g > 0 is a user-specified tolerance for constraint satisfaction. Provided that =*, the minimizer of
(1), lies on the boundary of the feasible set, this has the effect that in a neighborhood about x*
inequality constraints are treated as equality constraints, which prevents x; from cycling even in the
presence of round-off errors and inexact computations of Rj. We illustrate the situation with the
example of Section 4, where Figure 5 shows the gradient V,I. The introduction of the parameter
€y slightly extends the infeasible region, and moves the discontinuity of V[ from z* to 2* + €.
This renders the origin stable in the sense of Lyapunov and therefore mitigates the effect of small
round-off errors and slight inaccuracies in the computation of Ry.

(ii) Adapting the stopping criteria of (27): In continuous time, the complementary slackness
states that \; > 0 implies dg;(z(t))/dt + agi(z(t)) = 0 (constraint ¢ remains active), whereas
dgi(z(t))/dt + ag;(x(t)) > 0 for \; = 0 (constraint 7 might open up). Since we are solving the
complementary slackness conditions only approximately, it might happen that even for \; > 0,
dg(z(t));/dt becomes too large such that the constraint incorrectly opens up in the next iteration
of our discrete approximation. This can be avoided by stopping the iteration (27) only if for each
inequality constraint ¢ with A\; > 0, we have

(WIWA = WV f(z1))i +agi(z1) < €gr/2. (28)

~dgi(x(t))/dt

For convex constraints (g is concave) this inequality ensures that
gi(xr1) < (1 —aT)gi(zr) + €012,

for all constraints where the corresponding multiplier )\; is strictly positive. The fact that g;(xy) <
€, (see point (i) above) and 0 < o7 < 1 guarantees that g;(x;11) < €, which means that the
constraint remains active.

Algorithm 2 summarizes the discussions of the two previous sections. The next section will be
concerned with the empirical evaluation of Algorithm 2 on various examples. The exact implemen-
tation in Python and C++ will be made available as supplementary material.

7. Numerical Examples

The following section illustrates the application of Algorithm 2 to the following problems: (i) Ran-
domly generated quadratic programs, (ii) trust region optimization, (iii) v-support vector machines,
and (iv) computing a catenary subject to nonlinear constraints. The examples (i)-(iii) lead to convex
quadratic programs or convex second-order cone programs, whereas the last example is a noncon-
vex problem. Algorithm 2 is implemented in C++ and we use pybind11 (Jakob et al., 2017), as a
Python interface. The experiments are conducted on a Dell Precision Tower 3620 that runs Ubuntu
20.04LTS and is equipped with an Intel Core 17-6700 processor (8x3.4GHz) and 64GB of random
access memory. All matrices are stored in compressed row storage for exploiting sparsity. The
parameters of Algorithm 2, which are used for the experiments are summarized in Table 1.

The section will also highlight that Algorithm 2 is competitive with the state-of-the-art interior
point solver CVXOPT (Andersen et al., 2011) for larger problem instances.
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Figure 5: This figure shows the values of V[ (solid thick line) for « = 1/10 (left) and o = 4/5
(right), where €, = 0.2. We note that the discontinuity of V[ is now at ¢, > 0, which
means that the origin is an asymptotically stable equilibrium in the sense of Lyapunov.
The parameter €, has no effect on the constraint = > 2. The original gradient V f is again
shown in blue (dashed) and the functions cwz and o(z — 2) are shown in red (dashed).

Algorithm 2 Implementation of the gradient descent scheme (8).
Require: 2o € R",T > 0,aT € (0,1], ¢, > 0,w € (0,2),
TOL, MAXITER, MAXITER _PROX, TOL_PROX
k=0
while £ < MAXITER do
Determine the set of closed constraints I, = {i € Z | gl(a:k? <€}
Define Wy, := (Vh(xy), Vgi(zk)icr,) and Dy, := R™ x RUE|
Define gy, := (h(z), gi(zk)icr, )

j=0,A0=0 > initialization with A\;_; is also possible
while j < MAXITER_PROX do

N = proxp, (M —wD YW UTNT + N — W]V f(zi) + ogi))

if Mt — \J| < TOL_PROX and Vi > ny, : \; > 0,

(W,;er)\jJrl — W,;er(.%'k))z + agy; < GgOzT/Q, then
break

end if
end while
N\ = pVan

Perform the update x5 1 = x — TV f(zx) + TWiAk
if |$k:+1 - -Tk:| < T -TOL then
return x|
end if
k+—k+1
end while
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Parameters 1) Rand.QP | 2) Trust region | 3) ¥-SVM | 4) Catenary
T 2L+ | 2Lit+p) |2/L+p) | 2/n
oT 0.4 0.4 0.4 0.8

€g le-6 le-6 le-6 le-6

w 1 1 1 1
TOL le-6 le-6 le-6 le-6
MAXITER 1000 1000 1000 10000
MAXITER _PROX 200 200 200 10000
TOL_PROX le-6 le-6 le-6 le-8

Table 1: Parameters of Algorithm 2 used for the experiments, where L and p refer to the smoothness
and strong convexity constants of f. The variable n denotes the number of chain links of
the catenary, as defined in Section 7.4.

7.1 Randomly generated quadratic programs

We generate quadratic programs of the following form:

) 1
min  -z'Qx + ¢' =z,
zeRn 2

st. Az +be R%z X R”/4,

where the entries of A and b are independent samples from a normal distribution with zero mean
and unit variance, the entries of ¢ are independent samples of a uniform distribution supported on
[—1,1], and @ is a diagonal matrix. The first two diagonal elements of ) are set to 1/20 and 1,
respectively, whereas the remaining elements are independent samples of a uniform distribution in
[1/20, 1]. The condition number of () is therefore fixed to 20. The problem dimension 7 is chosen
such that n/4 (the number of equality constraints) and n/2 the number (of inequality constraints)
are integers. We initialize Algorithm 2 with ¢ = 0, A\g = 0.

The results for a randomly generated quadratic program of size n = 1000 are shown in Figure 6.
We observe very little difference between different randomly generated programs. We also observe
little change when increasing n; even though the computational complexity increases, the number
of iterations required for convergence remains at about 35, the maximum number of iterations that
are required for computing A\ remains at about 70, and only about 50% of the inequality constraints
are active. Figure 7 compares the runtime of Algorithm 2 to the interior point solver CVXOPT.!
The execution time of Algorithm 2 scales favorably in the problem dimension n. For n = 20, 000
the execution time is roughly reduced by a factor of five; larger improvements seem possible when
increasing n further.

1. We ran CVXOPT by exploiting sparsity of the Hessian and standard tolerance settings.
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Figure 6: Trajectories for a single randomly generated convex quadratic program with n = 1000.
The figure on the left indicates linear convergence of the iterate xj, the multiplier A, and
the constraint violations. The figures on the right display the number of iterations of the
inner loop of Algorithm 2 (top) and the ratio of constraints that enter |/, | (bottom).
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Figure 7: This plot shows the results obtained for randomly generated quadratic programs (left) and
the randomly generated trust region problems (right). In the case of quadratic programs
(left), Algorithm 2 seems to achieve a better scaling with respect to the problem size n
(an exponent of 2.1 instead of 2.9), leading to a speedup of a factor of roughly 5.5 for
n = 2 - 10% For the trust region problems (right), Algorithm 2 achieves a speedup of
roughly two orders of magnitude for large »; the scaling with n seems similar, however

(the execution time of Algorithm 2 scales roughly with n

30

2.2).



ON CONSTRAINTS IN FIRST-ORDER OPTIMIZATION

§ 80 -
§ 60 — 1l ! | Lol
8 40+ = 10° 2 ——Alg. 2 3
X 20 - - &2 4 —-CVXOPT i
= o 10t < L
= 0= \ \ \ \ \ T § 3 =
0 5 10 15 20 25 = 100 4 B
‘ ‘ ‘ £
¥ 3 F
= © 5] C
8 0.5 — 1077 3 g
T T T TTTT] T T T
0 B 102 10% 10%
T T T g
0 10 20
iterations

Figure 8: The left panel shows a trajectory of Algorithm 2 for the trust region problem. The top right
indicates the number of iterations requitred in the inner loop for computing the multiplier
A, which decreases steadily. The constraint |xg| < 1 is initially not active, leading to
a violation at the fourth iteration. The violation then decreases at a linear rate, which
parallels the continuous-time case. The right graph shows the execution times for the v -
support vector machine when varying n. Compared to CVXOPT, a constant speedup of
roughly a factor of five can be observed across all problem instances.

7.2 Trust-region optimization

In order to demonstrate that Algorithm 2 can efficiently handle nonlinear constraints, we extend the
example of the previous section and consider the trust-region optimization

) 1
min —z'Qz +c'z,
z€Rn 2

st. Az € R;L/(f x R4, |z <1,

where the matrices ¢} and A and the vector ¢ are generated as in Section 7.1. According to Ap-
pendix B, the constant I; can be upper bounded as

Li<Li:=a+L2+|Q v2/2).

We choose T = 2/(L; + p) and oT = 0.4, which parallels the previous section. Figure 8 (left)
shows the number of iterations needed for computing \j and the evolution of |xj| on an example
withn = 1000. The iterations of the inner loop are comparable to Section 7.1. The constraint |z| <
1 is initially not active leading to a violation at the fourth iteration. At this point, the constraint enters
the set | [, | and its violation decreases linearly over the remaining iterations. Figure 7 (right) shows
how the execution time scales with the problem size n. Compared to CVXOPT, a speedup of up to
two orders of magnitude is achieved.
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7.3 v - support vector machine

We use the support vector machine formulation suggested by Scholkopf et al. (2000), which leads
to the following quadratic program:

ns Mg

. 1 .
resr 2Z;Z;$mjliljk(ri7rj) + 5|x’
i=1 j=

Ng Ns
s.t. 0§$i§1/ns, inli:(), Z%izyg,
=0

n=1

where r; € R? are the training samples with labels [; € {—1,1},7 = 1,...,ns, the integer ng > 0
denotes the number training samples, v; and v are regularization parameters, and & : RZ — R2
is the kernel function. The kernel is chosen to be a radial basis function kernel with unit standard
deviation. We set 1 = 0.1ug and v2 = 0.1, where ux denotes the smallest eigenvalue of the kernel
matrix k(r;,7;). The parameter v; therefore improves the conditioning of the Hessian, whereas the
parameter v, can be interpreted as an upper bound on the fraction of margin errors; i.e., the training
samples which lie on the “wrong” side of the boundary. It is clear that Algorithm 2, which is based
on gradient descent, has difficulties with ill-conditioned objective functions (its rate that scales with
1/k). The purpose of the regularization with v is to reduce these effects.

We generate the training samples in the following way: The points with label +1 are generated
in polar coordinates where the radius is sampled from a normal distribution with mean two and
standard deviation 0.5, and the angle is uniformly sampled in [0, 27). The points with label -1 are
likewise generated in polar coordinates where the radius is sampled from a normal distribution with
mean zero and standard deviation 0.5, and the angle is uniformly sampled in [0, 27). As an example,
the training data and the resulting classifier are shown in Figure 9 for ng = 1000. Due to the nature
of the problem, only very few inequality constraints tend to be active at the optimum (in this case
just one). The numerical results indicate that Algorithm 2 can indeed take advantage of this fact
and identifies the correct active inequality constraint after very few iterations (in this case just one).
The number of constraints that enter the computation of the reaction force Ry, is therefore largely
reduced after the first iterations enabling a rapid convergence of the inner loop of Algorithm 2.

Figure 8 shows how the execution time scales with the problem dimension ng. Compared to
CVXOPT, we observe a speedup of a factor of five across all problem instances. The scaling with
ng seems similar.

7.4 Catenary

We consider an idealized chain of length two, which has n chain links and is suspended at the
points (0,0) and (1,0) (in a two-dimensional coordinate system). The aim is to solve the following
problem:

n

9.81
min Z Ui
(z,y)eRPHIxR+1 1+ 1 s

st @ —zi P+ |y — yi | = 4/n?,
|z — 052+ |y + 08> > 052, i=1,....n
(xlayl) = (070)’ (xn—i-l;yn—f—l) = (170)'

32



ON CONSTRAINTS IN FIRST-ORDER OPTIMIZATION

1072
| w 1.5 -] -
w2 1 N B
- ~<
0.5 B
0 T T T T T 3
L 0 10 20 30 40
| | | | |
. Eon 0.4 I~
—2 7 —classifier e he et i & 0.2 B
x data points (-1) ° =
» data points (+1) 01 ] ] \ el
: ‘ ‘ 0 10 20 30 40
-2 0 2 iterations

Figure 9: This figure shows the training data and the resulting classifier (left), as well as the dual
variables Ay (top right) and the percentage of constraints that are active (bottom right).
Only two dual variables are nonzero: The first one corresponds to the equality constraints
(blue line), whereas the second one corresponds to the support constraint (green line). All
remaining constraints are inactive.

The position of the ith joint is described by the tuple (z;,y;) and we have included the nonlinear
constraint that each joint is required to lie outside a circle centered at (0.5, —0.8) with radius 0.5
(the chain therefore lies on a circular object). The cost function captures the potential energy of the
chain. We found that a time step of 7" = 2/n works well, which can be motivated by the fact that
Ly is roughly O(n) (considering the continuous limit of the chain). The results for a chain of length
n = 40 can be found in Figure 10. Starting from a random initialization that violates the equality
constraints (see Figure 10 (left, black)) the solution evolves and finds a local minimum that satisfies
all the constraints. We note that the cost has a plateau at about iteration 1000, which corresponds
to a symmetric shape, where the chain lies on top of the round object (see Figure 10 (left, green)).
This corresponds to an unstable equilibrium, since the slightest deviation will cause the chain to
slide down either to the left or the right. This is precisely what we observe in our numerical results,
leading to the final solution shown in red.

8. Conclusions

We have presented a new class of primal first-order algorithms for smooth constrained optimization.
The key feature of these algorithms is that at each iteration, a low-dimensional, local, and convex
approximation of the feasible set is constructed and used for computing the next iterate. The local
approximation is a natural generalization of the tangent cone (in the sense of Clarke) to include
infeasible points. It can be motivated by drawing analogies to non-smooth mechanical systems
and can be viewed as a reformulation of constraint optimization on the velocity level. That is, the
algorithm imposes a constraint on xg; — xx rather than on z;. While in our continuous-time
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Figure 10: This figure shows the evolution of the solution of the catenary problem (left) as well
as the violation of the equality constraints and the evolution of the cost (right). We
can clearly see that the symmetric shape (roughly corresponding to the solution at time
k = 1000) is suboptimal, and unstable from a physics perspective. Thus, the chain slides
to the right and reaches a lower energy state. (We suspect that the random initialization
and the finite precision brakes the symmetry.)

formulation constraints on the position level and the velocity level are equivalent, this is no longer
true for the resulting discrete-time algorithms. We found that a formulation of constraints on the
velocity level leads to efficient first-order algorithms that avoid projection or optimization over the
entire feasible set at each iteration. This simplification does a more complex theoretical analysis,
but, as we have shown, that analysis can be carried out with a blend of ideas from dynamical systems
and mathematical optimization.

The purpose of the article was to highlight and explain our different point of view on constrained
optimization. Many aspects deserve a more thorough treatment. For example, we have not discussed
existence of solutions to the non-smooth differential equations or the differential inclusions that
were introduced. Similarly, the strong convexity assumptions on the objective function for proving
convergence of our discrete algorithm can most likely be relaxed, and the numerical experiments do
not include an extensive comparison to different state-of-the-art solvers. We also acknowledge that
there are software packages that are tailored to, for example, support vector machines, which would
most likely outperform our method by orders of magnitudes. However, we felt that a thorough
discussion of all these issues is outside of the scope of the present article and would distract the
reader from the main points.

There are many opportunities for further research in this vein. In particular, the analogies to
non-smooth mechanical systems that are made throughout the article enable extensions to Newton-
type methods or accelerated first-order methods. We hope that our perspective helps to trigger
further developments at the intersection between non-smooth dynamics, constrained optimization,
and machine learning.
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Appendix A. Barbalat’s Lemma

Lemma 11 (Variant of Barbalat’s lemma) Let § : R>o — R be piecewise continuous, such that
oo
—00 < / E(r)dr, &))" > &), E(t2) —&(t) > —7(t2 — t),
0

for any ta > t1 > 0 such that § is continuous on (t1,t2) and any t > 0. If€: Rog — Rsq, with
&(x) := max{{(x), 0}, is integrable and such that lim;_,~ £(t) = 0, then lim;_,~ £(t) = 0 holds.

Proof The proof follows a standard argument, which is also used for proving Barbalat’s lemma (see,
e.g., Sastry, 1999, p. 204). We start by assuming that lim; o, £(t) # 0 (provided that limy_, o £(t)
exists) and show that this leads to a contradiction. This means that there exists an ¢ > 0 and a
sequence t;, > 0, such that £(t;) < —e for all k& > 0 (taking into account that lim; o £(t) = 0).
However, since £(t)* > £(t) atevery t where ¢ is discontinuous, we conclude that £(t) < £(t1) +
7(t; —t) for all t < t1, where ¢; > 0 is arbitrary (looking backwards in time, the function increases
by a slope of at most 7). For each ¢, we thus conclude £(t) < —e/2 aslong ast € (tx —e/(27), ).
This means that for any subsequence ty;, j = 1,2, ... such that ;1) > t; + €/(27),

/Ooo £(r)dr = i /tkje/(%) E(r)dr + /tkj E(r)dr < /000 E(r)dr — i e/ (47),

i1 Ytr@G—1) trj—e/(27) j=1

where tjq is defined as ¢y = 0 for notational convenience. The right-hand side is unbounded below
leading to the desired contradiction. |

Appendix B. Nonlinear constraints

When estimating the constant L;, a bound on ) is often useful. The following proposition, which
can be generalized to multiple constraints by a similar argument, establishes such a bound.

Proposition 12 Let g : R™ — R be a scalar Lg-smooth and pig-strongly concave function. Then,
in the absence of any other constraints, the corresponding multiplier X > 0 is bounded by

1

v (ot L0 oy oL/ Gata)).
g

where xyis the (unconstrained) minimizer of f, x4 the (unconstrained) maximizer of g, L the smooth-

ness constant of f, and kg := Lg/ t,.
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Proof It follows from (5) that

SIW@AP = Slo(e) + Vi@ <

> or + V()P

N |

for any v € V. (). In particular, we can set vy = a(xg — ), which satisfies vy € V,,(z), due to the
concavity of g. Moreover, from W (z) = Vg(x) and the strong concavity of g we conclude

pglr — zg|A < |a(zg — x) + Vf(2)| < alo — x| + Lz — a4,
where A > 0 by definition of ). This yields the following bound on the dual variable
1 Llz —
A< sup (Mw),
g(x)<0 Mg | — ]

which can be further simplified to

1 1
A< — |a+ L+ Ljzg — xf| sup )
™ g(@)<0 |7 — T

Due to the strong concavity of g, it follows that g(z) > g(z4) — Le|x — x4|?/2 forall z € R"™. Asa
consequence, Le|z — z¢|>/2 > g(x.), for all z € R" such that g(x) < 0, which means that the last
supremum is bounded by /L, /(2g(x,)). [

Appendix C. Proof of Proposition 10

Proof The proof follows the presentation of Cottle et al. (2009, p. 400). In order to simplify
the notation we define G := W, Wy, ¢ := —WVf(zy) + ag(zg), B == UT +w™'D, C =
U + (1 —w™1)D, and omit the subscript k. We can therefore express (24) concisely as

GA+q+ 0yYp,(N) 3 0.
Furthermore, by virtue of the conjugate subgradient theorem, (25) is equivalent to
Nt eD,, —BNTI—CON-—qgeD: NTT(=BNT -CON-g¢) =0, (29

where D} := {0}™ x R‘ngl is the polar cone of D,.. We further introduce the function d : D, — R,

d(\) = ATGA/2 4+ ATq. Due to the fact that G is positive semi-definite, d is convex and can be
shown to be bounded below for A € D,.. We further have that

j()\j) _ CZ(/\J‘-H) =NV - )\j+1)T(q + GNTY + %()\j —NIOTGN — M),

As a consequence of (29) and some elementary manipulations, the decrease in d can be expressed
as

d(N) —d(X T = M (g + BN+ ON) + %(/\j ~NTHT(B - )N — N1

> S(V = NVYT(B - O)(V - M),

N =
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For the last inequality we have used —BN ™1 — C)N — ¢ € D? and MV € D, which ensures that
(g + BN*1 4+ CAN)TA > 0. The symmetric part of B — C is given by (2w™! — 1) D, which is
guaranteed to be positive definite for w € (0,2) (the elements of D are given by |Vg;(z)? > 0).
This concludes that ci()\j ) is a monotonically decreasing sequence, which therefore converges. Thus,
the above inequality implies, in the limit as j — oo,

1 . . ) .
0= lim S(V — NIOHT(B — )V — M+,

j—00

which, due to the positive definiteness of the symmetric part of B — C, implies that A/ converges.
Moreover, lim;_,o, A’ satisfies (24) by construction. |
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