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Abstract

We introduce a class of first-order methods for smooth constrained optimization that are based on

an analogy to non-smooth dynamical systems. Two distinctive features of our approach are that (i)

projections or optimizations over the entire feasible set are avoided, in stark contrast to projected

gradient methods or the Frank-Wolfe method, and (ii) iterates are allowed to become infeasible,

which differs from active set or feasible direction methods, where the descent motion stops as soon

as a new constraint is encountered. The resulting algorithmic procedure is simple to implement even

when constraints are nonlinear, and is suitable for large-scale constrained optimization problems in

which the feasible set fails to have a simple structure. The key underlying idea is that constraints

are expressed in terms of velocities instead of positions, which has the algorithmic consequence

that optimizations over feasible sets at each iteration are replaced with optimizations over local,

sparse convex approximations. The result is a simplified suite of algorithms and an expanded range

of possible applications in machine learning.

Keywords: Convex optimization, nonconvex optimization, constrained optimization, non-smooth

dynamical systems, gradient-based optimization, convergence rate analysis

1. Introduction

Optimization has played an essential role in machine learning in recent years, providing a concep-

tual and practical platform on which algorithms, systems, and datasets can be brought together at

unprecedented scales. This joint platform has led to high-impact applications, the discovery of new

phenomena, and the development of new theory. One of the major themes that have catalyzed the

interplay between optimization and learning is that “simple is good.” Whereas classical optimiza-

tion has tended to focus on relatively complex schemes for determining update directions and step

sizes, the recent focus of research at the learning/optimization interface has been on algorithms

that use simple, stochastic approximations to first-order operators and that set step sizes via simple

averaging schemes, or even employ constant step sizes. The simplifications have worked well in

practice and have triggered the development of commodity software systems that are increasingly

general and robust. They have also, appealingly, created new challenges for theoreticians, who have

begun to develop new tools to fill in the gaps that the absence of strong assumptions has opened up.
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Somewhat overlooked in all of these developments is the treatment of constraints in machine-

learning problems. Machine-learning practitioners often handle constraints on parameters and pre-

dictions via simple, adhoc reparameterizations. This reflects the “simple is good” dictum, but it

also creates a need to develop special-case reparameterizations in many cases and it poses addi-

tional challenges for theory, as convergence rates can be affected by the reparameterizations. More

significantly, it overlooks the broader potential role that constrained optimization can play in ma-

chine learning. Moving beyond pattern recognition, emerging problems involving decision-making

in real-world, multi-agent settings often involve contextual-driven constraints. Control-theoretic

problems generally involve interactions with physical, biological, and social systems, whose laws

are often expressed in terms of fundamental constraints. Mathematically, constraints can simplify

statements of existence and uniqueness, simplify the specification of sets of solutions, and allow

duality principles to be brought to bear.

There is a nascent thread of research on constrained optimization in machine learning that has

aimed to build on the success of first-order methods. It has focused primarily on projected gradient

algorithms and the Frank-Wolfe method. Both of these methods involve an inner loop nested inside

of the overall procedure—in the former case the optimization of a quadratic function and in the latter

case the optimization of a linear function. In both cases the optimization is over the entire feasible

set. From a theoretical point of view, these are relatively simple methods, providing hooks such that

convergence analyses from the unconstrained case can be readily brought to bear. Moreover, they

can be easy to implement when the feasible set has a simple structure, such as a norm ball or a low-

dimensional hyperplane. In these cases it is often possible to obtain closed-form expressions for

the inner loop. This simplicity can disappear entirely, however, when the feasible set fails to have a

simple structure. In such cases, optimizing a quadratic or linear function over the entire feasible set

becomes prohibitive, and the “simple is good” dictum provides no clear path forward.

When the structure of the feasible set fails to enable closed-form projections or closed-form

solutions for Frank-Wolfe updates, optimization theorists often turn to interior point or sequential

quadratic programming methods. The idea of interior point methods is to reduce the constrained

optimization problem to an unconstrained one by using barrier functions that assign a high cost to

points close to the boundary of the feasible set. In sequential quadratic programming, the underlying

nonlinear problem is approximated by a series of quadratic programs. While both classes of methods

have been proposed for applications in machine learning (see, e.g., Koh et al., 2007; Ferris and

Munson, 2003; Domahidi et al., 2012), they are significantly more complex than the stochastic-

gradient methods that have been so successful in unconstrained machine learning. There remains a

need for a learning-friendly approach to constrained optimization.

In the current paper, we present a class of first-order methods that are applicable to a wide range

of problems in machine learning. A notable simplification of these methods, relative to classical

constrained optimization methods, including projection methods and Frank-Wolfe, is that our meth-

ods rely exclusively on local approximations of the feasible set. These local approximations are

a natural generalization of Clarke’s tangent cone and are well defined for feasible and infeasible

points. Moreover, as we will show, they make possible a key algorithmic simplification—they yield

algorithms that converge even with a constant step size. Technically, they handle the case when

the iterates become infeasible. This makes the resulting algorithmic procedure simple to implement

and also ensures that the descent motion is not necessarily stopped as soon as a new constraint is

violated. Finally, while the entire feasible set might be described by a very large (or even infinite)

number of nonlinear constraints, the local approximation typically only includes a small number
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of linear constraints, which substantially reduces the amount of computation required for a single

iteration.

We believe that these simplifications make our methods a natural candidate for large-scale con-

strained machine-learning problems. Our main goal in the current paper is to provide a theoretical

foundation to support such a claim. We also present results from a preliminary set of numerical ex-

periments, which include, for example, randomly generated high-dimensional quadratic programs.

Comparing the new methods to the interior point solver CVXOPT of Andersen et al. (2011), we find

that the complexity of the new methods scales roughly with n2 (where n is the problem dimension),

whereas the complexity of the interior point solver scales with n3. When n is large, this may lead

to speedups of several orders of magnitude.

As our discussion has hinted, while our methods are relatively simple to specify and deploy,

their analysis brings new challenges. Our treatment builds on recent progress in using continuous-

time dynamical systems tools to analyze discrete-time algorithms in gradient-based optimization (Su

et al., 2016; Wibisono et al., 2016; Diakonikolas and Jordan, 2021; Krichene et al., 2015; França

et al., 2020; Betancourt et al., 2018; Muehlebach and Jordan, 2019, 2020, 2021). Much of the

work in this vein is focused on understanding accelerated first-order optimization methods, such

as Nesterov’s algorithm, where the understanding arises by exposing links between differential and

symplectic geometry, dynamical systems, and mechanics. These links, which supply a mechanical

interpretation of accelerated methods and provide a rigorous interpretation of concepts such as “mo-

mentum,” are often easiest to derive in continuous time, making use of variational, Hamiltonian, and

control-theoretic perspectives. Indeed, the most complex part of these analyses often arises in the

conversion from continuous time to discrete time.

In line with this recent literature, our treatment of constrained optimization also straddles the

boundary between continuous time and discrete time. As in the unconstrained setting, the contin-

uous case is relatively straightforward and the major challenges arise in the conversion to discrete

time. Indeed, the key novelty is that in our constrained setting, the discrete-time function that maps

one iterate to the next is discontinuous. Thus, tools such as smooth Lyapunov functions or the

theory of monotone operators that have been widely employed in the unconstrained setting are not

applicable in our setting, and a new analysis framework is needed. We develop such a framework

by making use of ideas from non-smooth mechanics. Indeed, as we will discuss in the following

section, the closest point of contact with existing literature is the notion of Moreau time-stepping in

non-smooth mechanics.

Related work: In the following paragraphs we highlight some of the connections of our ap-

proach to the existing literature. Due to the wealth of work on constrained optimization over the

last several decades, a comprehensive summary seems out of reach. We will therefore focus on

ideas that are most closely related to our approach and refer to the textbooks of Bertsekas (1999),

Nesterov (2004), Nocedal and Wright (2006), or Luenberger and Ye (2016) for a broader overview.

Our approach is in the spirit of projected gradient methodology. The basic idea of the projected

gradient method is to compute a step along the negative gradient of the objective function and to

project the resulting point back to the feasible set (see, e.g., Bertsekas, 1999, Ch. 2.3). From a

theoretical point of view, the analysis of projected gradients strongly parallels that of unconstrained

gradient descent. Indeed, by generalizing the notion of gradients to the “gradient mapping” (Nes-

terov, 2004, p. 86), arguments can be readily translated from the unconstrained to the constrained

case. More generally, projected gradients can be viewed as an instance of a proximal point algo-
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rithm (Parikh and Boyd, 2013), which itself can be elegantly described with the theory of monotone

operators (Bauschke and Combettes, 2011; Rockafellar, 1976).

The key difference between our approach and classical projected gradients is that our approach

is based on a local approximation of the feasible set. This local approximation includes only the

active constraints1 and is guaranteed to be a convex cone even if the underlying set is nonconvex.

Our approach can be viewed as an inexact projected gradient method, and as such has similarities

to the work of Wang and Liu (2006) and Birgin et al. (2003). However, in contrast to this work,

we do not impose a monotone decrease of the cost function by an appropriate line search. In fact,

our approach converges even with a constant step size, whereby the objective function fails to be

monotonically decreasing (in general).

While projected gradient approaches have been successfully applied in various machine learning

problems (see, e.g., Beck and Teboulle, 2011; Bloom et al., 2016), an even simpler algorithm—the

Frank-Wolfe algorithm—has also received considerable attention in recent years (Jaggi, 2013). At

each iteration of the Frank-Wolfe algorithm, a feasible descent direction is computed by maximizing

the inner product with the negative gradient. This reduces to the minimization of a linear objective

function over the feasible set, which, compared to projected gradients, can lead to considerable

simplification. The simplification is in accord with the “simple is good” dictum of machine learn-

ing, and indeed it has been found that the Frank-Wolfe algorithm provides a unified theoretical

framework for many greedy machine learning algorithms, including support vector machines, on-

line estimation of mixtures of probability densities, and boosting (Clarkson, 2010). Recent results

extend the Frank-Wolfe algorithm to the stochastic setting (Hazan and Kale, 2012; Zhang et al.,

2020), or improve on its relatively slow convergence rate (Combettes and Pokutta, 2020; Garber

and Hazan, 2015).

As we have already discussed, alternatives to projected gradients and Frank-Wolfe include inte-

rior point methods and sequential quadratic programming. Interior point methods provide practical

solutions to many problems in constrained optimization, and they are guaranteed to return approx-

imate solutions to many convex nonlinear programming problems in polynomial time (Nesterov

and Nemirovskii, 1994). They can be particularly efficient if the underlying Karush-Kuhn-Tucker

system is sparse, which can be exploited for simplifying the Newton updates (Domahidi et al.,

2012). Similarly, in sequential quadratic programming, the underlying Karush-Kuhn-Tucker sys-

tem resembles the Newton update of interior point methods. There are many different flavors of

sequential quadratic programming, depending on the type of line search, whether only approximate

second order information is used, or whether equality constraints are eliminated. An implementa-

tion that is widely used to solve complex optimal control and planning problems is presented in Gill

et al. (2005). Recent advances in sequential quadratic programming share some similarity with our

approach; see, for example, Torrisi et al. (2018) and Häberle et al. (2021). Both of these methods in-

volve linearizing both the active and inactive constraints. The fact that all constraints are taken into

account at each iteration enables the algorithms to anticipate constraint violations and distinguishes

these approaches from the methods that will be discussed herein.

Finally, a main goal of the current paper is to bring to the fore an analogy between constrained

optimization and non-smooth mechanics. Indeed, from a certain point of view, finding station-

ary points of a constrained optimization problem is equivalent to computing equilibria of a cor-

1. We say that the ith constraint is active at the iterate xk if gi(xk) ≤ 0, where the smooth function g : Rn → R
ng

describes the feasible set as {x ∈ R
n | g(x) ≥ 0}. It is important to note that this definition of active constraints

does not require the corresponding dual multipliers to be nonzero.
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responding non-smooth mechanical system. The classical approach to simulating such systems is

event-based integration, which is a relatively complex algorithm that switches between smooth and

non-smooth motion. An alternative is Moreau time-stepping (Moreau, 1988), which is based on the

discretization of a measure-differential inclusion that captures the smooth and non-smooth parts of

the motion. Moreau’s algorithm can handle multiple (or even an infinite number of) discontinuities

that may all happen within one time step. Further background can be found in the texts of Glocker

(2001) and Studer (2009). Recent work in this area includes extensions to continuum mechanics

(Capobianco and Eugster, 2018) and higher-order integration schemes (Acary, 2012).

Although we will exploit analogies to the simulation of physical systems, the focus of our the-

oretical analysis is in developing algorithms that efficiently compute approximate local minima of

constrained nonlinear programming problems. In this setting, it will be crucial to consider large

time steps, to handle constraint violations (which are often ignored when simulating non-smooth

mechanical systems), and to provide convergence guarantees in discrete time.

Compared to classical treatments of constrained optimization, our treatment exhibits a key fea-

ture that arises directly from the physical analogy. Rather than expressing constraints at the language

of positions or configurations, as is standard in optimization, our constraints will be expressed in

terms of velocities. Thus, we will distinguish between constraints on the “position level” and con-

straints on the “velocity level.” Our focus on the latter will be seen to lead directly to a local, convex

approximation of the feasible set. By a constraint on velocity level, we mean a constraint on the for-

ward increment limdt↓0(x(t+dt)−x(t))/dt in continuous time or the difference (xk+1−xk)/T in

discrete time, where T is the step size. In continuous time, a given position constraint can (in most

cases) be reformulated as an equivalent velocity constraint. However, this equivalence breaks down

in discrete time, which necessitates a careful analysis of the resulting discrete-time algorithms. We

also note that there are (many) mechanical systems that have velocity constraints which cannot be

formulated as position constraints. For example, while ice skater can move to any position in a

skating rink, their velocity is constrained to lie parallel to the blades of the skates.

Notation: We follow standard notation from convex analysis. In particular, R denotes the real

numbers, R≥0 the nonnegative real numbers, R≤0 the nonpositive real numbers, and Z the set of all

integers. The notation | · | is reserved for the Euclidean norm or the cardinality of a set. The gradient

of a function h : Rn → R
m is denoted by ∇h : Rn → R

n×m and the indicator function of the set

C is referred to as ψC : Rn → R ∪ {∞}, that is, ψC(x) takes the value zero for x ∈ C and ∞
otherwise. The subgradient of a convex function g : Rn → R evaluated at x ∈ R

n is denoted by

∂g(x) and is defined as the set {v ∈ R
n | vT(y − x) ≤ g(y)− g(x), ∀y ∈ R

n}. The tangent cone

(in the sense of Clarke) at any point x ∈ C is referred to as TC(x), that is, δx ∈ TC(x) if there exist

two sequences xj → x, xj ∈ C, tj ↓ 0, such that (xj − x)/tj → δx. The corresponding normal

cone is denoted by NC(x) := {λ ∈ R
n | λTδx ≤ 0, ∀δx ∈ TC(x)}. Finally, we use subscripts

to denote both single components of a vector and the iteration number of a discrete algorithm. The

distinction will be made from context (we usually reserve the subscript k for the iteration number).

2. Overview of the Results

We consider the following optimization problem:

min
x∈Rn

f(x), s.t. g(x) ≥ 0, h(x) = 0, (1)
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where the function f : R
n → R defines the objective function, the functions g : R

n → R
ng

and h : R
n → R

nh define the constraints, and where n, ng, and nh are positive integers. The

function f is assumed to be such that f(x) → ∞ for |x| → ∞. We denote the set of all x ∈ R
n

that satisfy the constraints g(x) ≥ 0 and h(x) = 0 by C, which we assume to be non-empty and

bounded. Combined with the properties of f this guarantees that the minimum in (1) is attained.

The functions f , g, and h are continuously differentiable and have a Lipschitz continuous gradient.

Brief summary of the main contributions: In mathematical optimization constraints are typi-

cally treated by direct reference to positions, meaning that xk or x(t) are constrained to lie in C for

all k ≥ 0 or all t ≥ 0, respectively. We adopt a fundamentally different point of view—instead of

constraining x(t) or xk, we constrain the forward velocity ẋ(t)+ = limdt↓0(x(t+dt)−x(t))/dt or

forward increments (xk+1− xk)/T . At a given position x ∈ R
n, the set of all admissible velocities

will be denoted by Vα(x) ⊂ R
n. When x ∈ C, the set Vα(x) corresponds to the tangent cone of the

set C at x. We will introduce an appropriate generalization of Vα(x) in order to also capture cases

in which x 6∈ C. The two different point of views on constraints are illustrated in Figure 1.

In continuous time, the resulting velocity constraint is equivalent to the original position con-

straint, assuming constraint qualification. However, this equivalence breaks down in discrete time,

and may lead to infeasible iterates over the course of the optimization. One of our main results is

a guarantee that the resulting discrete algorithm nonetheless converges to stationary points, despite

the possibility of infeasible iterates and despite the discontinuous nature of the map from xk to

xk+1. In addition to providing such a guarantee, we derive rates of convergence and we show that a

formulation of constraints on the velocity level can lead to computational advantages. In particular,

we show that at each iteration, only a linear and convex approximation of the original nonlinear

and nonconvex feasible set needs to be considered. Moreover, the linear approximation includes

only the constraints that are active at x(t) or xk. On randomly generated dense quadratic programs,

for example, the complexity of the proposed method scales with n2 (empirically), which contrasts

with state-of-the-art implementations of an interior point method, which scale with n3. Moreover,

in many practical problems (for example, support vector machines) the proposed algorithm greatly

reduces the number of constraints that must be considered at each iteration.

Detailed summary of the main contributions: In order to discuss the results in greater detail,

we introduce the following definition and assumption, which will hold throughout the remainder of

the article.

Definition 1 The point x ∈ R
n satisfies the Mangasarian-Fromovitz constraint qualification if

the columns of ∇h(x) are linearly independent and if there exists a vector w ∈ R
n such that

∇h(x)Tw = 0 and ∇gi(x)Tw > 0 for all i ∈ Ix, where Ix denotes the set of active inequality

constraints at x, i.e., Ix := {i ∈ Z | gi(x) ≤ 0}.1

Assumption 1 The Mangasarian-Fromovitz constraint qualification is satisfied for all x ∈ R
n.

From the definition of TC(x) it follows that every δx ∈ TC(x) satisfies ∇h(x)δx = 0 and

∇gi(x)Tδx ≥ 0, for all i ∈ Ix. Assumption 1 ensures that the converse is also true, which guaran-

tees that all stationary points of (1) satisfy the corresponding Karush-Kuhn-Tucker conditions. We

1. We would like to point out that our definition of active constraints does not require constraints to have corresponding

dual multipliers that are nonzero.
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as t→∞ and

lim
t→∞
| − ∇f(x(t)) +R(t)| = 0,

where R(t) is defined in (4). Moreover, if the stationary points are isolated, the trajectory x(t)
converges to a single stationary point.

When C is convex, f is strongly convex with strong convexity constant µ, and α ≤ 2µ, the

trajectory satisfying (4) and (5) converges exponentially:

(h(x(0)),min{0, g(x(0))})Tλ∗e−αt ≤ f(x(t))− f∗ ≤ (f(x(0))− f∗)e−2µt, (6)

for all x(0) ∈ R
n, where f∗ is the value of the minimizer in (1) and λ∗ is a multiplier that satisfies

the Karush-Kuhn-Tucker conditions.

We make the following remarks:

• The first condition, (3), amounts to a differential inclusion, whereas (4) and (5) give rise to

differential equations that have a discontinuous right-hand side. We restrict ourselves from

the outset to piecewise smooth motion, that is, trajectories that are absolutely continuous and

have a piecewise continuous derivative. Absolute continuity means that x(t) − x(0) can be

expressed as the Lebesgue integral over the velocity ẋ; that is, x(t) = x(0) +
∫ t
0 ẋ(τ)dτ for

all t ≥ 0. The assumption that ẋ is piecewise continuous means that on any finite interval,

ẋ is continuous except at a finite number of points, where left and right limits, denoted by

ẋ(t0)
− and ẋ(t0)

+, are well-defined. The value ẋ(t0) at the discontinuity t0 is of no interest

and may or may not exist.

• The assumptions on ẋ are used for establishing the equivalence between (3) and (4). Con-

vergence results for (4) and (5) similar to those of Proposition 2 can still be obtained when

the restrictions on ẋ are relaxed. We also note that by applying the theory of Filippov (1988),

(4) and (5) can be extended to a differential inclusion that is guaranteed to have an absolutely

continuous solution. We refer the reader who is interested in existence results to the work of

Filippov (1988) and Aubin and Cellina (1984). The equivalence between (3) and (4) under

weaker assumptions on ẋ is discussed in Brogliato et al. (2006), which also provides a short

existence proof (requiring, however, that C is convex).

• The variableR(t) in (3) can be regarded as a reaction force that imposes the constraint x(t) ∈
C for all t ∈ [0,∞) (by definition, the normal cone is empty if x(t) 6∈ C). We therefore say

that (3) includes the constraint on the position level. In contrast, the reaction force R(t) in (4)

enforces ẋ(t)+ ∈ Vα(x(t)) for all t ∈ [0,∞), which reduces to ẋ(t)+ ∈ TC(x(t)) for x(t) ∈
C. The condition ẋ(t)+ ∈ Vα(x(t)) can be viewed as an extension of ẋ(t)+ ∈ TC(x(t)) to

allow also for x(t) 6∈ C. Interpreting (4) as a stationarity condition for ẋ(t)+ yields (5). We

therefore say that (4) and (5) impose the constraints on the velocity level.

• The intuition behind the equivalence of (3), (4), and (5) can be summarized in the following

way. For an absolutely continuous trajectory x(t), the constraint x(t) ∈ C for all t ∈ [0,∞)
is equivalent to ẋ(t)+ ∈ Vα(x(t)) for all t ∈ [0,∞), x(0) ∈ C, (Moreau, 1988, Remark

2.5).1 If we think of x(t) as the position of a point mass, and ẋ(t)+ as its velocity, this can

1. Constraint qualification is needed for the equivalence to hold.
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be stated as follows: A constraint on the position of the point mass induces a constraint on

its velocity. Conversely, the constraint ẋ(t)+ ∈ Vα(x(t)) on the velocity ensures that the

position constraint is satisfied for all times t ≥ 0, provided that x(0) ∈ C.

• The reformulation (5) emphasizes that at each point in time, the velocity is chosen to match

unconstrained gradient flow as closely as possible, subject to the velocity constraint ẋ(t)+ ∈
Vα(x(t)) (which for feasible x(t) reduces to ẋ(t)+ ∈ TC(x(t))). This can be seen as an

analogue of the principle of least constraint in mechanics (Glocker, 2001, Ch. 9).

• The set Vα(x) can be viewed as an extension of TC(x) to all of Rn. This enables a general-

ization of constrained gradient flow, according to (4) and (5), which accounts for infeasible

initial conditions. Imposing ẋ(t)+ ∈ Vα(x(t)) for all t ∈ [0,∞), concludes, by definition of

the set Vα(x) and by applying Grönwall’s inequality,

gi(x(t)) ≥ gi(x(0))e−αt, i ∈ Ix(0), h(x(t)) = h(x(0))e−αt, (7)

for all t ∈ [0,∞). Consequently, the constant α controls how quickly the constraint violations

decay.

• By reformulating the constraint on the velocity level as in (4) and (5), the velocity ẋ(t)+

can by computed by relying on a local and linear approximation of the set C via ẋ(t)+ ∈
Vα(x(t)), which includes only the active constraints Ix(t). Hence, even for a nonconvex

optimization problem such as (1), the optimization given by the right-hand side of (5) is

convex.

By replacing x(t)+ with (xk+1 − xk)/T and x(t) with xk in (4) or (5), we obtain the following

discrete algorithm

xk+1 = xk − T∇f(xk) + TRk, −Rk ∈ ∂ψVα(xk)((xk+1 − xk)/T ), k = 0, 1, 2, . . . , (8)

which for any x0 ∈ R
n, leads to well-defined (unique) iterates, as long as the Mangasarian-

Fromovitz constraint qualification is satisfied for all x ∈ R
n. As in the continuous-time setting,

the discrete algorithm relies on a local approximation of the feasible set at each iteration, which

includes only the active constraints Ixk
. Projections or optimization over the entire feasible set C

(at each iteration) are therefore avoided. While this reduces computation, it also complicates the

analysis.

It is important to note that (8) can be reformulated in a number of equivalent ways. The choice

made in Algorithm 1 is particularly suitable for numerical implementation.

The following definitions will be useful for characterizing the behavior and the convergence rate

of (8). We start by introducing the function v : Rn → R
n, which assigns the velocity v(x) to each

x ∈ R
n:

v(x) := argmin
v∈Vα(x)

1

2
|v +∇f(x)|2. (9)

Clearly, in continuous time, (4) and (5) evolve as ẋ(t)+ = v(x(t)), whereas in discrete time, (8)

imposes (xk+1 − xk)/T = v(xk). As a result of the constraint qualification, strong duality holds

and we obtain the following dual

d(x) := max
λ∈Dx

l(x, λ)− 1

2α
|∇xl(x, λ)|2, (10)

9
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where∇x denotes the gradient with respect to x, and the Lagrangian l : Rn× (Rnh ×R
ng

≥0)→ R is

defined as

l(x, λ) := f(x)− λTḡ(x), (11)

with ḡ(x) := (h(x), g(x)). The set Dx in (10) is given by

Dx := {λ ∈ R
nh × R

ng

≥0 | λnh+i = 0, ∀i 6∈ Ix},

and includes only multipliers λi 6= 0 that correspond to equality constraints or active inequality

constraints, defined by i ∈ Ix. The multipliers λnh+i, which correspond to inactive inequality

constraints, i.e., i 6∈ Ix, are set to zero, and can therefore be eliminated from the outset when

solving (10) (as is done in Algorithm 1). In general, there might be multiple λ ∈ Dx that attain the

maximum in (10). We will denote any one of them by λ(x). As a consequence of Lagrange duality,

λ(x) is related to the minimizer of (9) by

v(x) = −∇xl(x, λ(x)) = −∇f(x) +W (x)λ(x), (12)

where W (x) := ∇ḡ(x). We also note that the variable R(t) in (4) or Rk in (8) can therefore be

expressed as R(t) =W (x(t))λ(x(t)) and Rk =W (xk)λ(xk), respectively.

The maximum curvature of f (the Lipschitz constant of ∇f ) limits the maximum admissible

step size of gradient descent in the unconstrained case. We will see that the maximum curvature of

l(·, λ) (for a fixed λ) will play a similar role for (8). We denote by µ̄l(λ) and L̄l(λ) the smoothness

and strong convexity constant of l(·, λ) : Rn → R
n (for a fixed λ). In case C is convex and f

is strongly convex, the strong convexity constant µ of f is a natural lower bound for µ̄(λ), λ ∈
R
nh × R

ng

≥0, which is attained for λ = 0.

We will also consider modifications of (1), where some inequality constraints are removed. The

resulting optimal costs are denoted by

f∗I := min
x∈Rn

f(x) s.t. h(x) = 0, gi(x) ≥ 0, i ∈ I, (13)

where I is any subset of {1, . . . , ng}. The minimum in (13) is guaranteed to be attained, due to the

assumptions on f and C. It is clear that f∗{} ≤ f∗I ≤ f∗ and we will denote any choice of multipliers

that satisfy the Karush-Kuhn-Tucker conditions of (13) by λ∗I .

With this notation in place, we are now ready to state the main results that characterize (8).

Proposition 3 (constrained gradient descent) Let C be convex and let f be strongly convex with

strong convexity constant µ. Then, for any x0 ∈ R
n, the iterates xk of (8) are well-defined (unique)

and guaranteed to converge to the minimizer of (1) for

T ≤ 2

Ll + µ
, α < µ,

where Ll is such that Ll ≥ L̄l(λ(x)) for all x ∈ R
n.1

The velocity (xk+1 − xk)/T converges with

min
j∈{0,1,...,k}

| − ∇f(xj) +Rj |2 ≤
f∗ − d(x0)
c1(k + 1)

, ∀k ≥ 0, ∀x0 ∈ R
n,

1. In case g is affine, Ll = L, where L is the smoothness constant of f .

10
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where c1 = T (µ/α− 1)(1− µT/2) > 0 is constant.

The sequence d(xk) is monotonically increasing in k and it holds that d(xk) ≤ f∗Ixk
≤ f∗.

Each level set {x ∈ R
n | d(x) ≥ f∗I }, where I is any subset of {1, 2, . . . , ng}, is closed, invariant

and attractive. Provided that Ll ≥ L̄l(λ
∗
Ixk

), the trajectories converge at a linear rate:

d(xk+1)− f∗Ixk ≥ (1− c2T )(d(xk)− f∗Ixk ),

where c2 = 2α(1− µT/2)(µ− α)/(Ll − α) > 0 is constant.

Algorithm 1 Implementation of the gradient descent scheme (8).

Require: x0 ∈ R
n, TOL, MAXITER, T > 0, αT ∈ (0, 1]

k = 0
while k < MAXITER do

Determine the set of closed constraints Ixk

Define Wk := (∇h(xk),∇gi(xk)i∈Ixk ) and Dk := R
nh × R

|Ixk |

≥0

Define ḡk := (h(xk), gi(xk)i∈Ixk )

Find λk ∈ Dk such that −λk ∈ ∂ψDk
(WT

k Wkλk −WT

k ∇f(xk) +αḡk) (see Section 6, (27))

Perform the update xk+1 = xk − T∇f(xk) + TWkλk
if |xk+1 − xk| ≤ T · TOL then

return xk+1

end if

k ← k + 1
end while

The following remarks are important:

• Algorithm (8) does not anticipate any constraints that could potentially be violated at future

iterations. Unlike in the continuous-time case, where constraint violations decrease exponen-

tially over time (see (7)), a constraint may therefore open up, and close again a few iterations

later. Nevertheless, the algorithm is guaranteed to converge at nearly a linear rate, which we

find remarkable.

• The convergence rate is dimension independent, which distinguishes the algorithm from

interior-point methods, for example, where O(√ng) Newton-iterations are required to de-

crease the value of the objective function by a constant factor.

• In the important special case where constraints are affine, all the above results hold for Ll =
L, where L is the smoothness constant of f . The constant Ll is related to the maximum

curvature of the Lagrangian, which seems a natural generalization from the unconstrained to

the constrained case.

• Another important special case is given for a single nonlinear inequality constraint (ng = 1,

nh = 0). We then obtain

λ(x) =

{
∇g(x)T∇f(x)−αg(x)

|∇g(x)|2
for g(x) ≤ 0, ∇g(x)T∇f(x)− αg(x) ≥ 0,

0 otherwise.

11
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In this case, the constant Ll is given by the largest eigenvalue of the Hessian d2l/dx2 =
d2f/dx2 − λ(x) d2g/dx2 over all x ∈ R

n.

• The restriction α < µ on the constant α is likely to be conservative. We observed in numerical

experiments that a choice αT close to unity yields faster convergence. The restriction αT ≤ 1
is, however, necessary for convergence.

• The convergence analysis will point to immediate extensions and variants of (8), which in-

clude line-search strategies, or alternations between gradient updates of the Lagrangian with

fixed multipliers (which are computationally inexpensive) and updates of the multipliers ac-

cording to (10). These extensions will be discussed in Section 5.1.

The remainder of the article is concerned with proving Proposition 2 and Proposition 3, pro-

viding context for both algorithms, discussing a particular implementation of Algorithm 1, and

illustrating the algorithms with numerical examples.

3. Motivation

The continuous-time formulation given in Proposition 2 can be motivated by drawing analogies

to non-smooth mechanics. We will start by viewing the stationarity conditions of (1) as the static

equilibrium of a mechanical system. We will then apply d’Alembert’s principle (see, e.g., Lanczos,

1952), which relates this variational characterization of equilibria to the variational characterization

of motion. In the context of optimization, this leads to the algorithm (3), and also enables gen-

eralizations to accelerated first-order methods or Newton-type methods. We further establish the

equivalence between (3) and (4), which, in the context of mechanics, can be related to the equiv-

alence between the principle of virtual work and the principle of virtual power. We then discuss

various interpretations of (4), which lie at the heart of the discretization in (8).

We consider a mechanical system that consists of a point mass located at x ∈ R
n on which the

external force F := −∇f(x) acts. The point mass is constrained to the set C.1 For a given x̄ ∈ C
we start by investigating whether the point mass is in static equilibrium; i.e., it does not move

under the influence of the external force and the constraint x ∈ C. In order to do so, we isolate the

point mass and replace the interaction with the constraint by a (constraint) force,−R ∈ NC(x̄). The

corresponding graphical procedure, often referred to as free-body diagram, is illustrated in Figure 2.

The principle of virtual work, which is the fundamental postulate of classical mechanics, can now

be stated.

Postulate 1 The point mass is in static equilibrium if and only if the virtual work vanishes for any

virtual displacement δx ∈ R
n. The virtual work is defined as (F +R)Tδx, where F is the external

force and R ∈ −NC(x) the constraint force.

Due to the fact that arbitrary virtual displacements are allowed, Postulate 1 concludes that the point

mass is in static equilibrium at x̄ ∈ C if the following conditions are fulfilled

−∇f(x̄) +R = 0, −R ∈ NC(x̄). (14)

1. From a physical perspective the constraint can be thought of as a second rigid body with infinite mass that consists

of all points Rn \ C. We seek to model the interaction between the point mass and the constraint.

12
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−∇f(x1) −∇f(x1)
−∇f(x2)

x1

x2

R1 ∈ −NC(x1)

R2 ∈ −NC(x2)x1

x2
g(x) = 0

−∇f(x2)

Figure 2: The figure illustrates the concept of a free-body diagram, where the geometric boundary

condition g(x) ≥ 0, as shown on the left, is replaced by the constraint forces, −R ∈
NC(x), as shown on the right. We note that x1 is in static equilibrium, since −∇f(x1)
and R1 cancel, whereas x2 is not.

By virtue of the constraint qualification, these are equivalent to the Karush-Kuhn-Tucker conditions

of (1). Thus, with our choice F := −∇f(x), we can relate the stationarity conditions of (1) to the

static equilibrium of a mechanical system, as characterized by the principle of virtual work.

The connections to optimization are even more explicit when restricting ourselves to admissible

virtual displacements; i.e., δx ∈ TC(x̄). By definition, constraint forces satisfy −RTδx ≤ 0
for all δx ∈ TC(x̄) or, in the language of classical mechanics, constraint forces are such that their

contribution to the virtual work is nonnegative.1 This leads to the principle of d’Alembert-Lagrange,

which represents the cornerstone of Lagrangian mechanics.

Corollary 4 If the point mass located at x̄ ∈ C is in static equilibrium, the virtual work of the

external forces satisfies FTδx ≤ 0 for all admissible variations δx ∈ TC(x̄).

Through the lens of optimization, this means that −δf = −∇f(x̄)Tδx ≤ 0 for all admissible

variations δx ∈ TC(x̄), or equivalently, f(x̄) ≤ f(x) for all x in an open neighborhood of x̄ with

x ∈ C. The relations are summarized in Figure 3 (left).

The important insight from classical mechanics (essentially due to d’Alembert) is that the prin-

ciple of virtual work, Postulate 1, and the principle of d’Alembert-Lagrange, Corollary 4, naturally

extend from the static equilibrium to the dynamic equilibrium that characterizes the motion of a

mechanical system. It suffices to add the “forces of inertia,” which for the point mass amounts to

adding −mẍ to the external forces F (Lanczos, 1952, Ch. 4). We will apply these ideas to gradient

flow, where the “forces of inertia” are given by −ẋ. This yields (3), which we restate as follows:

ẋ(t) = −∇f(x(t)) +R(t), −R(t) ∈ NC(x(t)), ∀t ∈ [0,∞) a.e.

We restrict ourselves to trajectories x : [0,∞) → R
n that are absolutely continuous and that have

a derivative (almost everywhere) which is piecewise continuous. The former requirement ensures

that a change in position, x(t) − x(0), can be expressed as the Lebesgue integral of the velocity:

1. In most classical textbooks only equality constraints are considered. In that case, constraint forces exert no virtual

work.
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optimization mechanics (static eq.)

stationarity p. of d’Alembert-Lagrange

−∇f(x̄) + R = 0
−R ∈ NC(x̄)

p. of virtual work

KKT

optimization mechanics (static eq.)

stationarity p. of d’Alembert-Lagrange

−∇f(x̄) + R = 0
−R ∈ lim sup

x→C x̄
NC(x)

p. of virtual work

KKT

Figure 3: The figure summarizes the analogies between constrained optimization and non-smooth

mechanics. On the left, constraint qualifications are assumed to hold ensuring that the set

C is regular in the sense of Clarke. On the right, the set C fails to be regular, for example

due to a reintrant (inward facing) corner. In that case, the notion of equilibrium needs to

be extended by an appropriate closure of NC(x); see, for example, Rockafellar and Wets

(1997, Ch. 6). The resulting equilibrium condition is no longer sufficient for stationarity

and its equivalence to the Karush-Kuhn-Tucker conditions breaks down, (Rockafellar and

Wets, 1997, Thm. 6.14). Moreover, the principle of d’Alembert-Lagrange is no longer a

consequence of the principle of virtual work and therefore fails to characterize static

equilibria when C is not regular (May and Panagiotopoulous, 1985). There are important

examples of mechanical systems where C fails to be regular; see, for example, Glocker

(2001, Ch. 11).

x(t) = x(0) +
∫ t
0 ẋ(τ)dτ . The latter requirement implies that the velocity is almost everywhere

continuous. On any finite interval, the velocity has a finite number of discontinuities, where left and

right limits exist.

The condition (3) can still be viewed as a force balance between ẋ(t) + ∇f(x(t)) and R(t),
whereby the reaction force R(t) ensures that x(t) remains feasible. Moreover, when the system is

at rest, ẋ vanishes and (3) reduces to the Karush-Kuhn-Tucker conditions (14). If x(t) happens to be

in the interior of C, the reaction force R(t) vanishes, and x(t) evolves according to unconstrained

gradient flow. The almost everywhere quantifier is clearly needed—if x(t) approaches the boundary

of the set C, an instantaneous velocity jump might be required for ensuring that x(t) remains in C
(at the time instant of the velocity jump, ẋ is no longer defined).

As mentioned in Section 2, the constraint x(t) ∈ C for all t ∈ [0,∞) can be reformulated as a

constraint on the velocity, i.e., ẋ(t)+ ∈ Vα(x(t)). This forms the basis for the equivalence between

(3) and (4):

Proposition 5 (Similar to Moreau (1988, Prop. 5.1), Glocker (2001, Ch. 7)) Let x : [0,∞)→ R
n,

x(0) ∈ C, be an absolutely continuous trajectory that has a piecewise continuous derivative. Then,

x(t) satisfies (3) if and only if it satisfies (4):

ẋ(t)+ = −∇f(x(t)) +R(t), −R(t) ∈ ∂ψVα(x(t))(ẋ(t)
+), ∀t ∈ [0,∞).

Proof The proof is adapted from Moreau (1988, Prop. 5.1). We start by assuming that x(t) satisfies

(4). The fact that the subdifferential of the indicator function is non-empty implies that ẋ(t)+ ∈

14
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Vα(x(t)) for all t ∈ [0,∞). Combined with x(0) ∈ C, we therefore have x(t) ∈ C for all t ∈
[0,∞), and Vα(x(t)) = TC(x(t)). In addition, it follows from the definition of the subdifferential

that −R(t)T(v − ẋ(t)+) ≤ 0 for all v ∈ TC(x(t)). Due to the fact that TC(x(t)) is a cone, this

implies −R(t)Tv ≤ 0 for all v ∈ TC(x(t)) (otherwise we could derive a contradiction by scaling

an appropriate v ∈ TC(x(t))), or in other words, −R(t) ∈ NC(x(t)). This shows that any x(t)
with x(0) ∈ C satisfying (4) also satisfies (3).

In order to show the converse we start by assuming that x(t) satisfies (3). We consider any inter-

val (t0, t1) where ẋ(t) is continuous. By definition of the tangent cone, we have limdt→0(x(t+dt)−
x(t))/dt = ẋ(t) ∈ TC(x(t)) and limdt→0(x(t−dt)−x(t)) = −ẋ(t) ∈ TC(x(t)) for all t ∈ (t0, t1).
Thus, from −R(t) ∈ NC(x(t)) it follows that −R(t)Tẋ(t) ≤ 0 and R(t)Tẋ(t) ≤ 0, which implies

that−R(t)Tẋ(t) = 0 for all t ∈ (t0, t1). In addition, by definition of the normal cone, it follows that

−R(t)Tv ≤ 0 for all v ∈ TC(x(t)). Combining these two facts results in −R(t)T(v − ẋ(t)) ≤ 0
for all v ∈ TC(x(t)) and all t ∈ (t0, t1). Hence, −R(t) ∈ ∂ψTC(x(t))(ẋ(t)) for all t ∈ (t0, t1),
which implies (4) for any time interval where ẋ(t) is continuous. By taking the right-limit t ↓ t0,

we conclude that −R(t0)+ ∈ ∂ψTC(x(t0))(ẋ(t0)
+), ẋ(t0)

+ = −∇f(x(t0)) +R(t0)
+, since x(t) is

continuous. Thus, (4) holds for t = t0, and therefore also at any other time instant where ẋ(t) is

discontinuous.

Three important points are worth mentioning:

• The piecewise continuity assumptions on ẋ are only used for showing that (3) implies (4);

absolute continuity of x is enough for the converse to hold (provided the constraint qualifica-

tions are satisfied).

• When the solution x(t) slides along the boundary of the constraint (ẋ(t) is continuous), the

reaction force is necessarily orthogonal to the velocity. From the point of view of classical

mechanics, this means that the constraint reaction forces are passive and do not exert any

power (at almost every time instant). This directly implies that the function f(x(t)) necessar-

ily decreases along the trajectories of (3) or (4).

• The condition (4) describes the forward evolution of x(t) by prescribing the right-hand deriva-

tive of ẋ at each point in time. An equivalent formulation for the backwards evolution also

exists. We will concentrate on the forward evolution, since we are interested in minimizing

f .

The above proposition proves the equivalence between (3) and (4) as stated in Proposition 2.

The equivalence between (4) and (5) follows by interpreting (4) as stationarity condition for ẋ(t)+.

The assumption that the Mangasarian-Fromovitz constraint qualification holds for all x ∈ C implies

that Slater’s condition holds for TC(x) for all x ∈ C. A similar statement applies to the set Vα(x),
as shown in the following proposition.

Proposition 6 Let the Mangasarian-Fromovitz constraint qualification be satisfied for all x ∈ R
n.

This implies that Slater’s condition holds for Vα(x); i.e., for any x ∈ R
n, there exists a v ∈ R

n such

that ∇h(x)Tv + αh(x) = 0 and ∇gi(x)Tv + αgi(x) > 0 for all i ∈ Ix.

Proof We pick a v̄ ∈ R
n such that∇h(x)Tv̄ = −αh(x). Due to the fact that the columns of∇h(x)

are linearly independent, such a v̄ exists. Thus, for a sufficiently large constant ξ > 0, we have that
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∇h(x)T(v̄ + ξw) = −αh(x),∇gi(x)T(v̄ + ξw) > −αgi(x) for all i ∈ Ix, where w ∈ R
n satisfies

∇h(x)Tw = 0 and∇gi(x)Tw > 0 for all i ∈ Ix. By assumption such a w exists. Thus, v = v̄+ξw
satisfies the required conditions.

Thus, (5) amounts to optimizing a strongly convex objective over a closed non-empty convex set,

which implies that there exists a unique solution ẋ(t)+ for all t ∈ [0,∞). The constraint qualifica-

tion further implies that strong duality holds for all t ∈ [0,∞). The corresponding dual problem is

stated in (10) and can be restated as

max
λ∈Dx

−1

2
|W (x)λ−∇f(x)|2 − αλTḡ(x). (15)

Solving the dual problem at time t for a given x(t) yields the corresponding constraint force R(t)
via R(t) = W (x(t))λ(t), where λ(t) is a maximizer of (15) (or (10)). The quadratic term in

the cost function in (15) leads to the following dual interpretation of (4) and (5): At each point

in time, the constraint force (or dual variable) is roughly chosen to minimize the Euclidean norm

of the forward velocity ẋ(t)+ subject to the constraint λ(t) ∈ Dx(t). The forward velocity can be

viewed as the residual of the Karush-Kuhn-Tucker conditions evaluated at x(t). The additional term

λTḡ(x) vanishes whenever x ∈ C. For x 6∈ C, λTḡ(x) can be interpreted as a potential function of

the constraint x ∈ C (see, for example, Lanczos, 1952).

For α > 0, maximizing (15) is equivalent to maximizing (10). When f is strongly convex with

constant µ, α ≤ µ, and C is convex, (10) maximizes a lower bound on f∗. More precisely, the

strong convexity of f and the convexity of C imply that l(·, λ) is strongly convex with constant µ
(for a fixed λ ∈ Dx), which means that

f∗ ≥ f∗Ix ≥ inf
z∈Rn

l(z, λ) ≥ l(x, λ)− 1

2µ
|∇xl(x, λ)|2, ∀λ ∈ Dx, (16)

≥ l(x, λ)− 1

2α
|∇xl(x, λ)|2, ∀λ ∈ Dx,

where the last inequality follows from α ≤ µ. The lower bound in (16) corresponds to the cost

function in (10), which shows that (10) (or (15)) indeed maximizes a lower bound on f∗. The

bound (16) will also be useful for deriving convergence rates, as it relates the velocity ẋ(t)+ =
−∇xl(x(t), λ(t)) to the difference of the Lagrangian, l(x(t), λ(t))− f∗.

The stationarity condition for (15) (or (10)) is given by

W (x(t))TW (x(t))λ(t)−W (x(t))T∇f(x(t)) + αḡ(x(t)) ∈ ∂ψDx(t)
(λ(t)). (17)

This turns out to be an ideal starting point for computing λ(t) via fixed-point iteration, as will be

discussed in detail in Section 6.

We close the section by proving the remaining statements of Proposition 2; i.e., showing that

the solutions of (3), (4), and (5) converge to stationary points of (1) and deriving convergence rates

in case C is convex and f is strongly convex.

We start by proving the following intermediate lemma, which will also be important for the

discrete-time analysis.

Lemma 7 Let the assumptions of Proposition 2 be satisfied. Then, for every t0 > 0, there exists

δ > 0 such that λ(t) ∈ Dx(t0) for all t ∈ (t0 − δ, t0).
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Proof We fix t0 > 0 and consider the set of inequality constraints that are inactive at t0; that is,

gi(x(t0)) > 0. Due to the continuity of x and g there exists an interval (t0 − δ, t0), where δ > 0
is small enough, such that gi(x(t)) > 0 for all t ∈ (t0 − δ, t0) and for all i 6∈ Ix(t0). As a result,

Ix(t) ⊂ Ix(t0) for all t ∈ (t0 − δ, t0) and the result follows.

Claim 1 Let the assumptions of Proposition 2 be satisfied. For any x(0) ∈ R
n, (4) and (5) are

equivalent and lead to a unique trajectory x(t), which is guaranteed to converge to the set of sta-

tionary points of (1) (for α > 0). Moreover, if the stationary points are isolated, the trajectory x(t)
converges to a single stationary point.

Proof The equivalence between (4) and (5) follows from the fact that (4) corresponds to the station-

arity condition of (5), which, by strong convexity and non-emptiness of Vα(x(t)), uniquely defines

ẋ(t)+ for each t ∈ (0,∞). This concludes that x(t) is unique.

We argue next that x(t) → C for t → ∞, and that, as a result, x(t) and λ(t) are bounded.

According to (7), the constraint violations at time t can be bounded by gi(x(t)) ≥ gi(x(0))e−αt for

all i ∈ Ix(0) and |h(x(t))| ≤ |h(x(0))|e−αt. We therefore conclude that x(t)→ C for t→∞. The

fact that C is bounded and x is continuous implies that x(t) is bounded for all t ≥ 0. As a result,

there exist bounded dual variables λ(t) satisfying (15).

The stationarity condition (17) implies that

λ(t)TW (x(t))T [W (x(t))λ(t)−∇f(x(t))] + αλ(t)Tḡ(x(t)) = 0,

due to complementary slackness. This can be restated as −R(t)Tẋ(t)+ = αλ(t)Tḡ(x(t)), which,

in view of (4), yields

d

dt
f(x(t))+ = −|ẋ(t)+|2 − αλ(t)Tḡ(x(t)). (18)

This means that f necessarily decreases for large t, since −λ(t)Tḡ(x(t)) decreases exponentially.

We further note that f(x(t)) is bounded below, which, by taking the integral of the right-hand side

of (18), implies
∫ ∞

0
−|ẋ(t)+|2 − αλ(t)Tḡ(x(t))dt > −∞. (19)

We note that the integrand is closely related to the objective function in (15), which we denote as

ξd(t):

ξd(t) := −
1

2
|ẋ(t)+|2 − αλ(t)Tḡ(x(t)).

From the fact that λ(t) is bounded and that −λ(t)Tḡ(x(t)) decays exponentially, we conclude that

lim supt→∞ ξd(t) ≤ 0. From (19) it also follows that the integral of ξd over R≥0 is bounded below.

We will now establish that limt→∞ ξd(t) = 0 by applying a variant of Barbalat’s lemma; see

Lemma 11 in Appendix A. We start by observing that λ inherits the continuity properties of ẋ+,

due to the fact that W (x(t))λ(t) = ∇f(x(t)) + ẋ(t)+. This means that λ is piecewise continuous,

and for each time t0 > 0, λ(t0) = limt↓t0 λ(t). The same applies for ξd. We now characterize the

discontinuities of ξd and provide a lower bound on its derivative, whenever it exists. We fix t0 > 0.
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By virtue of Lemma 7, we conclude that λ(t) is a feasible candidate for (15) at time t0 as long as

t ∈ (t0 − δ, t0) for a small enough δ > 0. This means

ξd(t0) ≥ −
1

2
|W (x(t0))λ(t)−∇f(x(t0))|2 − αḡ(x(t0))Tλ(t),

≥ ξd(t)− r1(t0)|x(t0)− x(t)| − r2(t0)|x(t0)− x(t)|2, (20)

for all t ∈ (t0 − δ, t0), where r1(t0) ≥ 0 and r2(t0) ≥ 0 are related to the remainder terms of a

first-order Taylor expansion of ∇xl(x, λ(t)) and λ(t)Tḡ(x) with respect to x at (x(t), λ(t)). The

fact that x(t) and λ(t) are bounded implies that r1(t0) and r2(t0) are likewise bounded (uniformly)

for all t0 > 0. Furthermore, ẋ(t)+ is bounded, which implies the existence of a constant r̄1 > 0
(independent of t0) such that

ξd(t0) ≥ ξd(t)− r̄1δ,
for a small enough δ and all t ∈ (t0 − δ, t0). We can now distinguish two cases, depending on

whether ξd is continuous at t0 or not. If ξd is discontinuous at t0, we obtain ξd(t0) ≥ ξd(t0)
−. The

other case yields ξd(t2) ≥ ξd(t1)− r̄1(t2−t1), for all t2 ≥ t1, as long as ξd is continuous on (t1, t2).
We are now ready to apply Lemma 11 (see Appendix A), which implies that limt→∞ ξd(t) = 0.

As a result of the exponential convergence of λ(t)Tḡ(x(t)), we obtain limt→∞ |ẋ(t)+| = 0, and

conclude that x(t) necessarily converges to the union of all stationary points.

It remains to show that x(t) converges to a single stationary point in case that the stationary

points are isolated. To that extent, we consider the sequence x(k), k > 0. Due to the fact that ẋ(t)+

converges, we can find, for every ǫ > 0, an integer N > 0 such that |x(k + 1) − x(k)| < ǫ for

all k > N . Choosing ǫ small enough implies that x(k) necessarily converges to a single stationary

point, which we denote by xs (this would otherwise contradict the fact that the stationary points are

isolated). Moreover, |x(t)−xs| ≤ |x(t)−x(kt)|+ |x(kt)−xs|, where kt is the largest integer such

that kt < t. We conclude limt→∞ x(t) = xs by observing that |x(t) − x(kt)| is bounded by the

supremum of |ẋ(τ)+| over τ ∈ (kt, t), which becomes arbitrarily small for large t.

Claim 2 Let the assumptions of Proposition 2 be satisfied and letC be convex and f strongly convex

with strong convexity constant µ and α ≤ 2µ. Then the following holds:

(h(x(0)),min{0, g(x(0))})Tλ∗e−αt ≤ f(x(t))− f∗ ≤ (f(x(0))− f∗)e−2µt,

for all x(0) ∈ R
n, where x(t) satisfies (4) and (5), f∗ is the optimal cost in (1) and λ∗ is a

corresponding multiplier that satisfies the Karush-Kuhn-Tucker conditions.

Proof We will use (18) as a starting point for deriving the upper bound. From (16) we conclude

that

−|ẋ(t)+|2 ≤ −2µ(f(x(t))− f∗) + 2µλ(t)Tḡ(t).

Thus, inserting the upper bound on −|ẋ(t)+|2 in (18), we obtain

d

dt
f(x(t))+ ≤ −2µ(f(x(t))− f(x∗)) + (2µ− α)λ(t)Tḡ(x(t)).

For α ≤ 2µ, the term (2µ− α)λ(t)Tḡ(x(t)) is certainly negative (or vanishes completely if x(0) ∈
C), which readily proves the upper bound.
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The lower bound follows from a perturbation analysis. For a given x(0) ∈ C, we define

f∗(t) := min
z∈Rn

f(z), s.t. h(z) = h(x(0))e−αt, g(z) ≥ min{0, g(x(0))}e−αt,

which is of the form (1), with the sole difference that the right-hand side of the constraints has been

replaced with the vector (h(x(0)),min{0, g(x(0))}) exp(−αt). The trajectory x(t) is guaranteed

to be feasible with respect to these modified constraints, which implies that f∗(t) ≤ f(x(t)). The

above minimum is attained for all t ∈ [0,∞), due to the fact that f is bounded below and the mod-

ified set of feasible points is closed. A multiplier λ∗ satisfying the Karush-Kuhn-Tucker conditions

of (1) captures the sensitivity of the cost function with respect to perturbations of the right-hand side

of the constraints. More precisely, −λ∗ is guaranteed to satisfy the following inequality (see, e.g.,

Rockafellar, 1970, p. 277):

f∗(t)− f∗ ≥ (h(x(0)),min{0, g(x(0))})Tλ∗ exp(−αt).

The lower bound of (6) in Proposition 2 then follows from the fact that f(x(t)) ≥ f∗(t) for all

t ∈ [0,∞).

4. A First Example

We start by discussing an example that illustrates the behavior of (4) and (8). We consider the

following problem:

min
x∈R

1

10
(x+ 1)2, s.t. x ∈ [0, 2], (21)

which has the unique minimum x∗ = 0. The function f is therefore given by (x+ 1)2/10, whereas

g1(x) = x and g2(x) = 2 − x. It will be instructive to plot the function ∇xl(x, λ(x)) = ∇f(x) −
R(x), where the multiplier λ(x) is obtained from (15). This yields a continuous-time gradient flow

that is given by ẋ(t)+ = −∇xl(x(t), λ(t)), whereas the discrete-time version is given by xk+1 −
xk = −T∇xl(xk, λk), where λ(t) and λk are implicitly dependent on x(t) and xk, respectively.

Furthermore, we can interpret ∇xl(x, λ(x)) as the gradient of a continuous function Fα : R → R,

with Fα(0) = f∗. We also plot the function d(x) as defined in (10).

The plots are shown in Figure 4 for two different α. The left column is prototypical for α ≤ 1/5,

the right column for α > 1/5, where 1/5 amounts to the Hessian of f . It is important to note

that ∇xl is discontinuous at the origin, but nonetheless unique. In the continuous-time case, the

discontinuity at the origin is less of an issue, since the solutions to ẋ(t)+ = −∇xl(x(t), λ(t))
approach the origin either from x(t) > 0 or from x(t) < 0 and never cross the origin. When

the solution approaches the origin from negative values, x(t) < 0, the velocity ẋ(t) continuously

reduces to zero for t→∞. If the solutions approach the origin from positive values, x(t) > 0, the

velocity continuously reduces to ẋ(t)− = −0.2 at which point it instantly drops to zero. Hence,

if x(t) approaches the origin from positive values, the convergence is in finite time. The origin is

therefore a stable and attractive equilibrium in the sense of Lyapunov.

In discrete time, the situation changes drastically. Starting from a generic initial condition, x0 >
0, the solution to xk+1 = xk − T∇xl(xk, λk) crosses the origin and eventually always approaches

the origin from xk < 0 (provided that α and T are small enough). For small α and T , the origin
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Figure 4: This figure shows the values of ∇xl, Fα, and d for α = 1/10 (left column) and α = 4/5
(right column). Top row: The solid thick black line represents ∇xl, which is discontinu-

ous at the origin, where it takes the value zero (the origin is the minimizer of (21)). For

values x ≤ 0, ∇xl is given by min{∇f(x), αx} and for values x ≥ 2, ∇xl is given

by max{∇f(x), α(x − 2)}, which is represented by the dashed lines in blue and in red.

Middle row: The solid thick black line represents Fα, which is continuous and has its

minimum at the origin (the origin is the minimizer of (21)). The objective function f
is indicated with dashed lines. Last row: The function d is discontinuous at the origin

for α 6= 1/5, unbounded below for α < 1/5, and unbounded above for α > 1/5. For

α < 1/5, d(x) is upper bounded by f∗Ix , that is, d(x) ≤ f∗ = f∗{1} = 0.1 for x ≤ 0 and

d(x) ≤ f∗{} = f∗{2} = 0 for x > 0, where g1(x) = x and g2(x) = 2 − x. As we will

show in Section 5, this holds more generally provided that f and C are convex.
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can therefore be viewed as a semi-permeable membrane; solutions cross from xk > 0 to xk+1 < 0,

but not vice versa. The origin is not a stable equilibrium, since trajectories starting arbitrarily close

to the origin will jump to a negative x1, such that |x1| ≥ |0.2T − (1 − 0.2T )x0| ≈ 0.2T . (Hence,

no matter how small we choose δ > 0, there exists an initial condition x0 with |x0| < δ such that

|xk| ≥ 0.1T for some k ≥ 0.) We therefore conclude that any attempt to find a continuous Lyapunov

function for proving convergence in discrete time is doomed to fail. Indeed, as we will show in the

following, proving convergence of (8) hinges on the analysis of the discontinuous function d(x),
which can be shown to be monotonically increasing along trajectories xk for small enough α and T .

The analysis can also be interpreted as choosing an appropriate sequence of nested invariant sets,

which generalizes the above discussion of the origin acting as a semi-permeable membrane. Each

of these invariant sets can then be shown to be attractive, whereby trajectories converge at a linear

rate.

We would like to emphasize that even though the origin is not stable in the sense of Lyapunov

(in discrete time), it is still attractive; that is, xk converges to origin for small enough α and T .

From Figure 4, it follows that αT ≤ 1 is necessary for ensuring that trajectories approach the origin

from xk < 0 for large k. If αT > 1, we observe oscillations about the origin. We further note

that already the analysis of a two-dimensional problem with multiple linear constraints appears to

be very challenging due to the discontinuity of ∇xl and the discrete nature of (8), which results

in a multitude of different constraints that may or may not become active over the course of the

optimization.

5. The Discrete-Time Case

This section analyzes the convergence of algorithm (8) to stationary points of (1). In contrast to the

continuous-time setting, where a trajectory starting from x(0) ∈ C is guaranteed to remain feasible,

a discrete trajectory xk may become infeasible in the course of the optimization, even if x0 ∈ C.

This is due to the finite length of each step of the discrete algorithm and the fact that only the active

constraints Ixk
are taken into account. While this potentially saves computation and distinguishes

our algorithm from other methods, it also complicates the analysis. As we discussed in the previous

section, while trajectories still converge to the minimizer of (1) (assuming convexity and appropri-

ately chosen parameters T and α), the minimizer may not correspond to a stable equilibrium in the

sense of Lyapunov.

In Section 4, we saw that for αT ≤ 1, the solutions xk of algorithm (8) cross the origin from

xk > 0 to xk+1 < 0, but not vice versa. The property is crucial for guaranteeing convergence, as

it excludes oscillations about the origin. We can therefore visualize the boundary of the feasible set

as a semi-permeable membrane; trajectories can pass from the feasible to the infeasible region, but

not the other way. The following lemma will be the first step in making this observation precise.

Lemma 8 Let C be convex. Provided that αT ≤ 1, the inequality constraints at time k for which

the corresponding λki is nonzero, will remain active at time k + 1. In other words, λki > 0 implies

gi(xk+1) ≤ 0.

Proof The stationarity condition (17), which applies in the same way to the discrete algorithm

(8) (it suffices to replace x(t) with xk, λ(t) by λk, and ẋ(t)+ = (xk+1 − xk)/T ), implies that

λkiWi(xk)
T(xk+1 − xk) = −αT ḡi(xk)λki for all i ∈ {1, 2, . . . , nh + ng} (complementary slack-

ness). Due to the fact that C is convex, which means that h is linear and g is concave, it follows
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that

h(xk+1) = h(xk) + T∇h(xk)T(xk+1 − xk),
g(xk+1) ≤ g(xk) + T∇g(xk)T(xk+1 − xk).

Combined with the fact that λk ∈ R
nh × R

ng

≥0, this implies

λkiḡi(xk+1) ≤ (1− αT )λkiḡi(xk),

for any i ∈ {1, 2, . . . , nh + ng}. The result follows by noting that λkiḡi(xk) ≤ 0 and 1− αT ≥ 0.

Lemma 8 implies that λk ∈ Dxk+1
, ensuring that λk is a feasible candidate for (10), or (15), at time

k+1. Lemma 8 also concludes that Dxx ⊆ Dxk+1
and can therefore be viewed as the discrete-time

version of Lemma 7. As in the continuous-time case, Lemma 8 will be of paramount importance

for proving convergence.

The convergence proof will also rely on the following bounds for d(x).

Lemma 9 Let C be convex. For 0 ≤ α ≤ µ and any x ∈ R
n the following upper and lower bounds

on d(x) hold

f∗Ix −
1

2α

Ll

α

(

1− α

Ll

)

|v(x)|2 ≤ d(x) ≤ f∗Ix −
1

2α

(

1− α

µ

)

|v(x)|2 ≤ f∗,

where Ll ≥ L̄l(λ
∗
Ix
).

Proof The upper bound follows directly from (16). In order to obtain the lower bound, we first note

that the smoothness of l(·, λ∗Ix) (where λ∗Ix is fixed) implies

f∗Ix = inf
z∈Rn

l(z, λ∗Ix) ≤ l(x, λ
∗
Ix)−

1

2Ll
|∇xl(x, λ

∗
Ix)|

2. (22)

We further consider the modified primal and dual problems (where α is replaced by Ll):

vm(x) = argmin
v∈VLl

(x)

1

2
|v +∇f(x)|2, λm(x) ∈ argmax

λ∈Dx

l(x, λ)− 1

2Ll
|∇xl(x, λ)|2,

and note that v(x)Ll/α ∈ VLl
(x), hence v(x)Ll/α is a feasible candidate for minimization over

VLl
(x). This means that

1

2
|vm(x)|2 + vm(x)T∇f(x) ≤ 1

2

L2
l

α2
|v(x)|2 + Ll

α
v(x)T∇f(x).

Complementary slackness implies that v(x)T∇f(x) = −|v(x)|2 − αḡ(x)Tλ(x) and similarly

vm(x)
T∇f(x) = −|vm(x)|2 − Llḡ(x)

Tλm(x), and yields therefore

−1

2
|vm(x)|2 − Llḡ(x)

Tλm(x) ≤
1

2

Ll

α

(
Ll

α
− 2

)

|v(x)|2 − Llḡ(x)
Tλ(x).
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Dividing by Ll and adding f(x) on both sides implies that

max
λ∈Dx

l(x, λ)− 1

2Ll
|∇xl(x, λ)|2 ≤ d(x) +

1

2α

(
Ll

α
− 1

)

|v(x)|2.

The left-hand side includes a maximum over λ, which means that for λ∗Ix ∈ Dx, we have:

l(x, λ∗Ix)−
1

2Ll
|∇xl(x, λ

∗
Ix)|

2 ≤ d(x) + 1

2α

(
Ll

α
− 1

)

|v(x)|2.

Combining the previous inequality with (22) yields the desired lower bound.

We are now ready to prove Proposition 3. We will divide the proof into several smaller claims:

Claim 3 Let the assumption of Proposition 3 be satisfied. Then, the sequence d(xk) is monotoni-

cally increasing and bounded above by f∗.

Proof The fact that d(xk) is bounded above by f∗ follows from Lemma 9. We note that due to

Lemma 8, the multiplier λk is a feasible candidate for the dual (15) (or (10)) at time k + 1; that is,

λk ∈ Dxk+1
. This means that

d(xk+1) ≥ l(xk+1, λk)−
1

2α
|∇xl(xk+1, λk)|2.

Due to the strong convexity of l(·, λk) (for a fixed λk) it follows that

l(xk+1, λk) ≥ l(xk, λk) + T∇xl(xk, λk)
Tvk +

µ

2
T 2|vk|2 = l(xk, λk)− T |vk|2 +

µ

2
T 2|vk|2.

Moreover, by using Taylor’s theorem, we can relate the gradient ∇xl(xk+1, λk) to the gradient

∇xl(xk, λk) in the following way:

∇xl(xk+1, λk) = ∇xl(xk, λk) + T∆xl(ξk, λk) vk,

where ∆xl denotes the second derivative of l with respect to x, and ξk lies between xk and xk+1.

Hence, we obtain the following lower bound for d(xk+1):

d(xk+1) ≥ d(xk) +
T

α
vTk∆xl vk −

T 2

2α
vTk (∆xl)

2 vk − T |vk|2 +
µ

2
T 2|vk|2,

where the arguments of the Hessian ∆xl(ξk, xk) have been omitted to simplify notation. We note

that the Hessian ∆xl is positive definite due to the convexity of l(·, λk) and has eigenvalues that

are lower bounded by µ and upper bounded by Ll. Moreover, the matrix (∆xl)
2 has the same

eigenvectors as ∆xl, which means that

vTk

(

∆xlT −
1

2
∆xl

2T 2

)

vk ≥ |vk|2 min
s∈[µT,LlT ]

s− s2/2.

It can be shown that this minimum is lower bounded by µT (1−µT/2) as long as T ≤ 2/(Ll+µ).
1

This yields

d(xk+1) ≥ d(xk) + T

(

1− µT

2

)(µ

α
− 1
)

︸ ︷︷ ︸
=c1

|vk|2. (23)

1. The choice T = 2/(Ll + µ) corresponds to the maximizer of maxT mins∈[µT,LlT ] s− s2/2.
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From T ≤ 2/(Ll + µ) and α < µ we conclude that c1 > 0, which proves the claim.

Claim 4 Let the assumptions of Proposition 3 be satisfied. The velocity (xk+1 − xk)/T is guaran-

teed to converge with

min
j∈{0,1,...,k}

| − ∇f(xj) +Rj |2 ≤
f∗ − d(x0)
c1(k + 1)

, ∀k ≥ 0, ∀x0 ∈ R
n,

where c1 = T (µ/α− 1)(1− µT/2) > 0 is constant.

Proof The result follows from Claim 3 by expanding d(xk+1) as a telescoping sum

f∗ ≥ d(xk+1) = d(x0) +

k∑

j=0

d(xj+1)− d(xj)

≥ d(x0) + c1(k + 1) min
j∈{0,1,...,k}

| − ∇f(xj) +Rj |2,

where (23) has been used for the last step.

Claim 5 Let the assumptions of Proposition 3 be satisfied. Each level set {x ∈ R
n | d(x) ≥ f∗I },

where I is any subset of {1, 2, . . . , ng}, is closed, invariant and attractive. Provided that Ll ≥
L̄l(λ

∗
Ixk

), trajectories converge at a linear rate, that is,

d(xk+1)− f∗Ixk ≥ (1− c2T )(d(xk)− f∗Ixk ),

where c2 = 2α(1− µT/2)(µ− α)/(Ll − α) > 0 is constant.

Proof We conclude from Rockafellar and Wets (1997, Theorem 1.17, p. 16) that d is upper semi-

continuous, which means that the level sets {x ∈ R
n | d(x) ≥ f∗I } are closed. The fact that these

are attractive and invariant follows directly from Claim 3. For obtaining the linear rate, we start

from (23) and apply the lower bound on d(xk) provided by Lemma 9. This yields

d(xk+1) ≥ d(xk) +
c1

Ll/(2α2)(1− α/Ll)
(f∗Ixk

− d(xk)).

Substracting f∗Ixk
on both sides yields the desired result (we note that d(xk) ≤ f∗Ixk ).

The last claim provides a geometrical picture of the convergence of (8). At any iteration j, the

algorithm converges to the level set {x ∈ R
n | d(x) ≥ f∗I1}, where I1 = Ixj . At each iteration,

d(xk) − f∗I1 decreases at least by a constant factor. Once this set is reached, the trajectory is guar-

anteed to remain inside, and will converge to the next smaller level set (where I1 is replaced with

Ixk
). The process continues until finally d(xk) approaches f∗ from below.

With this geometrical picture in mind, we will discuss two extensions of (8). The resulting

trajectories can be shown to converge to the minimizer of (1) with the same arguments as used for

Claim 3 - Claim 5.
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5.1 Extensions

The convergence proof hinges on the following two properties of (8): (i) the multiplier λk is fea-

sible for the dual (15) at time k + 1, and (ii) the function l(xk, λk) − |∇xl(xk, λk)|2/2α increases

sufficiently from xk to xk+1 (for a fixed λk). We can therefore extend (8) by including the following

line-search mechanism:

T := argmax
τ>0,ατ≤1

l(xk + τvk, λk)−
1

2α
|∇xl(xk + τvk, λk)|2, xk+1 = xk + Tvk,

where the velocity vk is determined by solving (9), as before. As an alternative, we can alternate

between updating λk via (15) and applying gradient steps (with λk fixed):

xj+1 = xj − T∇xl(xj , λk), j = k, k + 1, . . . ,

as long as gi(xj+1) ≤ 0 for all i ∈ Ixk
with corresponding multipliers λik > 0 (constraints that

were active and had a nonzero multiplier λk at time k are not allowed to open up). As is immediate

from the arguments of Claim 3, each of these gradient steps increases l(x, λk)−|∇xl(x, λk)|2/(2α)
by c1|∇lx(xj , λk)|2. Evaluating ∇xl for a fixed λk is computationally cheap and requires only the

evaluation of ∇f and W (x).

6. Computational Aspects

This section highlights two important aspects of the implementation of the discrete-time algorithm

(8): (i) the computation of the constraint force Rk =W (xk)λk, and (ii) how to deal with round-off

errors and inaccuracies.

6.1 Computing the constraint force Rk

The constraint forces are determined by the dual problem (15), which can be solved with various al-

gorithms. The simple nature of the set Dxk
makes (accelerated) projected gradient descent schemes

appealing. In the following, we present a procedure that is inspired by the method of successive

over-relaxation, and solves (15) very efficiently. The procedure is useful for solving large linear

complementary problems and is commonly used in the non-smooth mechanics community (see,

e.g., Studer, 2009). For completeness, we give a rough overview of the main points and refer the

reader to the work of Cottle et al. (2009) for further details. The stationarity conditions of (15) are

given by

WT

k Wkλk −WT

k ∇f(xk) + αḡ(xk) + ∂ψDxk
(λk) ∋ 0, (24)

where we used the notation introduced in Algorithm 1.1 The underlying idea relies on a suitable

splitting of the matrix WT

k Wk that enables fixed-point iteration. We introduce λj as the approxima-

tion of λk at iteration j, j = 0, 1, . . . and further suppress the subscript k for ease of notation. We

denote the strictly upper triangular part ofWTW by U and the diagonal byD. The matrixWTW is

therefore given by UT +D+U , where the diagonal elements are guaranteed to be strictly positive.

We can split the matrix WTW into UT + ω−1D and U + (1 − ω−1)D, where ω ∈ (0, 2) is fixed,

leading to

(UT + ω−1D)λj+1 + ∂ψDx(λ
j+1) + (U + (1− ω−1)D)λj −WT∇f(x) + αḡ(x) ∋ 0, (25)

1. Compared to the notation in (15), for example, we exclude all multipliers λi that correspond to inactive inequality

constraints; that is, i 6∈ Ixk
.
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where we have omitted the subscript k; hence, x = xk, W = Wk = W (xk), etc. The role of the

variable ω as a tuning parameter will become apparent below. We note that (25) reduces to (24) for

λj+1 = λj . As a result of the fact that UT is strictly lower triangular, (25) reduces to the following

inclusion for a single component: λj+1
i

ω−1Diiλ
j+1
i + ∂ψR(λ

j+1
i ) + ∗i ∋ 0, or ω−1Diiλ

j+1
i + ∂ψR≥0(λ

j+1
i ) + ∗i ∋ 0, (26)

depending whether i ≤ nh or i > nh, where ∗i is a placeholder for all remaining terms that are

constant or only depend on λj and λj+1
1 , . . . λj+1

i−1 . The inclusion in (26) can be seen as a stationarity

conditions for λj+1
i , which uniquely determines λj+1

i from λj and λj+1
1 , . . . , λj+1

i−1 . We can therefore

express (25) as

λj+1 = proxDx

(

λj − ωD−1(UTλj+1 + (D + U)λj −WT∇f(x) + αḡ(x))
)

, (27)

where proxDx
: Rnh × R

|Ix| → R
nh × R

|Ix|
≥0 is defined as

(proxDx
(ξ))i = ξi, i = 1, . . . , nh,

(proxDx
(ξ))i = max{ξi, 0}, i = nh + 1, . . . nh + |Ix|,

and where we have used the fact that ω−1Dii > 0. It is important to note that (27) provides an

explicit rule for computing λj+1 from λj , since UT is strictly lower triangular. In particular, by sub-

stituting the newly computed elements λj+1 directly in the right-hand side of (27), i.e., overwriting

λji with λj+1
i as soon as it becomes available, the expression on the right-hand side of (27) reduces

to

proxDx

(

λj − ωD−1(WTWλj −WT∇f(x) + αḡ(x))
)

,

which becomes very convenient for a computer implementation. The expression (27) can there-

fore be viewed as an extension of the method of successive over-relaxation that accounts for the

complementary slackness induced by the inequality constraints. The method reduces to a variant of

the Gauss-Seidel method for ω = 1. The following proposition due to Cottle et al. (2009, p. 400)

ensures convergence of the λj → λk as long as ω ∈ (0, 2). The proof follows Cottle et al. (2009,

p. 400) and is included in Appendix C for completeness.

Proposition 10 Cottle et al. (2009, p. 400) The sequence λj , defined according to (27), converges

for ω ∈ (0, 2). The resulting multiplier limj→∞ λj = λk satisfies (24) and therefore maximizes

(15).

In our numerical experiments, the choice ω = 1 (Gauss-Seidel variant) yielded good results.

6.2 Dealing with round-off errors and inaccuracies in the computation of Rk

In Section 4 and Section 5 we noted that the minimizer of (1) is typically not a stable equilibrium

in the sense of Lyapunov for (8). If we revisit the example of Section 4 we realize that a trajectory

initialized at x0 = ǫ > 0, where ǫ > 0 is arbitrarily small, will make a relatively large step to x1 < 0
before approaching the origin from xk < 0. Thus, if we set the constraint forceRk to be slightly too

large by mistake, when approaching the origin from xk < 0, this might push xk again to positive

values (xk > 0), at which point the cycle would start again. For a practical implementation of (8), it

is therefore important to address and discuss the effect of round-off errors and inexact computations

of Rk.

We can address the problem with a combination of the following two strategies:
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(i) Slightly extending the infeasible set: We extend the set Ix to {i ∈ Z | gi(x) ≤ ǫg}, where

ǫg > 0 is a user-specified tolerance for constraint satisfaction. Provided that x∗, the minimizer of

(1), lies on the boundary of the feasible set, this has the effect that in a neighborhood about x∗

inequality constraints are treated as equality constraints, which prevents xk from cycling even in the

presence of round-off errors and inexact computations of Rk. We illustrate the situation with the

example of Section 4, where Figure 5 shows the gradient ∇xl. The introduction of the parameter

ǫg slightly extends the infeasible region, and moves the discontinuity of ∇xl from x∗ to x∗ + ǫg.

This renders the origin stable in the sense of Lyapunov and therefore mitigates the effect of small

round-off errors and slight inaccuracies in the computation of Rk.

(ii) Adapting the stopping criteria of (27): In continuous time, the complementary slackness

states that λi > 0 implies dgi(x(t))/dt + αgi(x(t)) = 0 (constraint i remains active), whereas

dgi(x(t))/dt + αgi(x(t)) ≥ 0 for λi = 0 (constraint i might open up). Since we are solving the

complementary slackness conditions only approximately, it might happen that even for λi > 0,

dg(x(t))i/dt becomes too large such that the constraint incorrectly opens up in the next iteration

of our discrete approximation. This can be avoided by stopping the iteration (27) only if for each

inequality constraint i with λi > 0, we have

(WT

k Wkλ−WT

k ∇f(xk))i
︸ ︷︷ ︸

≈dgi(x(t))/dt

+αgi(xk) ≤ ǫgα/2. (28)

For convex constraints (g is concave) this inequality ensures that

gi(xk+1) ≤ (1− αT )gi(xk) + ǫgαT/2,

for all constraints where the corresponding multiplier λi is strictly positive. The fact that gi(xk) ≤
ǫg (see point (i) above) and 0 < αT ≤ 1 guarantees that gi(xk+1) < ǫg, which means that the

constraint remains active.

Algorithm 2 summarizes the discussions of the two previous sections. The next section will be

concerned with the empirical evaluation of Algorithm 2 on various examples. The exact implemen-

tation in Python and C++ will be made available as supplementary material.

7. Numerical Examples

The following section illustrates the application of Algorithm 2 to the following problems: (i) Ran-

domly generated quadratic programs, (ii) trust region optimization, (iii) ν-support vector machines,

and (iv) computing a catenary subject to nonlinear constraints. The examples (i)-(iii) lead to convex

quadratic programs or convex second-order cone programs, whereas the last example is a noncon-

vex problem. Algorithm 2 is implemented in C++ and we use pybind11 (Jakob et al., 2017), as a

Python interface. The experiments are conducted on a Dell Precision Tower 3620 that runs Ubuntu

20.04LTS and is equipped with an Intel Core i7-6700 processor (8x3.4GHz) and 64GB of random

access memory. All matrices are stored in compressed row storage for exploiting sparsity. The

parameters of Algorithm 2, which are used for the experiments are summarized in Table 1.

The section will also highlight that Algorithm 2 is competitive with the state-of-the-art interior

point solver CVXOPT (Andersen et al., 2011) for larger problem instances.
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Figure 5: This figure shows the values of ∇xl (solid thick line) for α = 1/10 (left) and α = 4/5
(right), where ǫg = 0.2. We note that the discontinuity of ∇xl is now at ǫg > 0, which

means that the origin is an asymptotically stable equilibrium in the sense of Lyapunov.

The parameter ǫg has no effect on the constraint x ≥ 2. The original gradient∇f is again

shown in blue (dashed) and the functions αx and α(x− 2) are shown in red (dashed).

Algorithm 2 Implementation of the gradient descent scheme (8).

Require: x0 ∈ R
n, T > 0, αT ∈ (0, 1], ǫg > 0, ω ∈ (0, 2),

TOL, MAXITER, MAXITER PROX, TOL PROX

k = 0
while k < MAXITER do

Determine the set of closed constraints Ik = {i ∈ Z | gi(xk) ≤ ǫg}
Define Wk := (∇h(xk),∇gi(xk)i∈Ik) and Dk := R

nh × R
|Ik|
≥0

Define ḡk := (h(xk), gi(xk)i∈Ik)

j = 0, λ0 = 0 ⊲ initialization with λk−1 is also possible

while j < MAXITER PROX do

λj+1 = proxDk

(
λj − ωD−1(UTλj+1 + λj −WT

k ∇f(xk) + αḡk)
)

if |λj+1 − λj | ≤ TOL PROX and ∀i > nh : λi > 0,
(WT

k Wkλ
j+1 −WT

k ∇f(xk))i + αḡki ≤ ǫgαT/2, then

break

end if

end while

λk = λj+1

Perform the update xk+1 = xk − T∇f(xk) + TWkλk
if |xk+1 − xk| ≤ T · TOL then

return xk+1

end if

k ← k + 1
end while
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Parameters 1) Rand.QP 2) Trust region 3) ν-SVM 4) Catenary

T 2/(L+ µ) 2/(L̄l + µ) 2/(L+ µ) 2/n

αT 0.4 0.4 0.4 0.8

ǫg 1e-6 1e-6 1e-6 1e-6

ω 1 1 1 1

TOL 1e-6 1e-6 1e-6 1e-6

MAXITER 1000 1000 1000 10000

MAXITER PROX 200 200 200 10000

TOL PROX 1e-6 1e-6 1e-6 1e-8

Table 1: Parameters of Algorithm 2 used for the experiments, whereL and µ refer to the smoothness

and strong convexity constants of f . The variable n denotes the number of chain links of

the catenary, as defined in Section 7.4.

7.1 Randomly generated quadratic programs

We generate quadratic programs of the following form:

min
x∈Rn

1

2
xTQx+ cTx,

s.t. Ax+ b ∈ R
n/2
≥0 × R

n/4,

where the entries of A and b are independent samples from a normal distribution with zero mean

and unit variance, the entries of c are independent samples of a uniform distribution supported on

[−1, 1], and Q is a diagonal matrix. The first two diagonal elements of Q are set to 1/20 and 1,

respectively, whereas the remaining elements are independent samples of a uniform distribution in

[1/20, 1]. The condition number of Q is therefore fixed to 20. The problem dimension n is chosen

such that n/4 (the number of equality constraints) and n/2 the number (of inequality constraints)

are integers. We initialize Algorithm 2 with x0 = 0, λ0 = 0.

The results for a randomly generated quadratic program of size n = 1000 are shown in Figure 6.

We observe very little difference between different randomly generated programs. We also observe

little change when increasing n; even though the computational complexity increases, the number

of iterations required for convergence remains at about 35, the maximum number of iterations that

are required for computing λk remains at about 70, and only about 50% of the inequality constraints

are active. Figure 7 compares the runtime of Algorithm 2 to the interior point solver CVXOPT.1

The execution time of Algorithm 2 scales favorably in the problem dimension n. For n = 20, 000
the execution time is roughly reduced by a factor of five; larger improvements seem possible when

increasing n further.

1. We ran CVXOPT by exploiting sparsity of the Hessian and standard tolerance settings.
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7.3 ν - support vector machine

We use the support vector machine formulation suggested by Schölkopf et al. (2000), which leads

to the following quadratic program:

min
x∈Rns

1

2

ns∑

i=1

ns∑

j=1

xixjliljk(ri, rj) +
ν1
2
|x|2

s.t. 0 ≤ xi ≤ 1/ns,

ns∑

n=1

xili = 0,

ns∑

i=0

xi ≥ ν2,

where ri ∈ R
2 are the training samples with labels li ∈ {−1, 1}, i = 1, . . . , ns, the integer ns > 0

denotes the number training samples, ν1 and ν2 are regularization parameters, and k : R2 → R
2

is the kernel function. The kernel is chosen to be a radial basis function kernel with unit standard

deviation. We set ν1 = 0.1µk and ν2 = 0.1, where µk denotes the smallest eigenvalue of the kernel

matrix k(ri, rj). The parameter ν1 therefore improves the conditioning of the Hessian, whereas the

parameter ν2 can be interpreted as an upper bound on the fraction of margin errors; i.e., the training

samples which lie on the “wrong” side of the boundary. It is clear that Algorithm 2, which is based

on gradient descent, has difficulties with ill-conditioned objective functions (its rate that scales with

1/κ). The purpose of the regularization with ν1 is to reduce these effects.

We generate the training samples in the following way: The points with label +1 are generated

in polar coordinates where the radius is sampled from a normal distribution with mean two and

standard deviation 0.5, and the angle is uniformly sampled in [0, 2π). The points with label -1 are

likewise generated in polar coordinates where the radius is sampled from a normal distribution with

mean zero and standard deviation 0.5, and the angle is uniformly sampled in [0, 2π). As an example,

the training data and the resulting classifier are shown in Figure 9 for ns = 1000. Due to the nature

of the problem, only very few inequality constraints tend to be active at the optimum (in this case

just one). The numerical results indicate that Algorithm 2 can indeed take advantage of this fact

and identifies the correct active inequality constraint after very few iterations (in this case just one).

The number of constraints that enter the computation of the reaction force Rk is therefore largely

reduced after the first iterations enabling a rapid convergence of the inner loop of Algorithm 2.

Figure 8 shows how the execution time scales with the problem dimension ns. Compared to

CVXOPT, we observe a speedup of a factor of five across all problem instances. The scaling with

ns seems similar.

7.4 Catenary

We consider an idealized chain of length two, which has n chain links and is suspended at the

points (0, 0) and (1, 0) (in a two-dimensional coordinate system). The aim is to solve the following

problem:

min
(x,y)∈Rn+1×Rn+1

9.81

n+ 1

n∑

i=2

yi

s.t. |xi − xi+1|2 + |yi − yi+1|2 = 4/n2,

|xi − 0.5|2 + |yi + 0.8|2 ≥ 0.52, i = 1, . . . , n

(x1, y1) = (0, 0), (xn+1, yn+1) = (1, 0).
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Figure 10: This figure shows the evolution of the solution of the catenary problem (left) as well

as the violation of the equality constraints and the evolution of the cost (right). We

can clearly see that the symmetric shape (roughly corresponding to the solution at time

k = 1000) is suboptimal, and unstable from a physics perspective. Thus, the chain slides

to the right and reaches a lower energy state. (We suspect that the random initialization

and the finite precision brakes the symmetry.)

formulation constraints on the position level and the velocity level are equivalent, this is no longer

true for the resulting discrete-time algorithms. We found that a formulation of constraints on the

velocity level leads to efficient first-order algorithms that avoid projection or optimization over the

entire feasible set at each iteration. This simplification does a more complex theoretical analysis,

but, as we have shown, that analysis can be carried out with a blend of ideas from dynamical systems

and mathematical optimization.

The purpose of the article was to highlight and explain our different point of view on constrained

optimization. Many aspects deserve a more thorough treatment. For example, we have not discussed

existence of solutions to the non-smooth differential equations or the differential inclusions that

were introduced. Similarly, the strong convexity assumptions on the objective function for proving

convergence of our discrete algorithm can most likely be relaxed, and the numerical experiments do

not include an extensive comparison to different state-of-the-art solvers. We also acknowledge that

there are software packages that are tailored to, for example, support vector machines, which would

most likely outperform our method by orders of magnitudes. However, we felt that a thorough

discussion of all these issues is outside of the scope of the present article and would distract the

reader from the main points.

There are many opportunities for further research in this vein. In particular, the analogies to

non-smooth mechanical systems that are made throughout the article enable extensions to Newton-

type methods or accelerated first-order methods. We hope that our perspective helps to trigger

further developments at the intersection between non-smooth dynamics, constrained optimization,

and machine learning.
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Appendix A. Barbalat’s Lemma

Lemma 11 (Variant of Barbalat’s lemma) Let ξ : R≥0 → R be piecewise continuous, such that

−∞ <

∫ ∞

0
ξ(τ)dτ, ξ(t)+ ≥ ξ(t)−, ξ(t2)− ξ(t1) ≥ −r̄(t2 − t1),

for any t2 ≥ t1 > 0 such that ξ is continuous on (t1, t2) and any t ≥ 0. If ξ̄ : R≥0 → R≥0, with

ξ̄(x) := max{ξ(x), 0}, is integrable and such that limt→∞ ξ̄(t) = 0, then limt→∞ ξ(t) = 0 holds.

Proof The proof follows a standard argument, which is also used for proving Barbalat’s lemma (see,

e.g., Sastry, 1999, p. 204). We start by assuming that limt→∞ ξ(t) 6= 0 (provided that limt→∞ ξ(t)
exists) and show that this leads to a contradiction. This means that there exists an ǫ > 0 and a

sequence tk ≥ 0, such that ξ(tk) < −ǫ for all k > 0 (taking into account that limt→∞ ξ̄(t) = 0).

However, since ξ(t)+ ≥ ξ(t)− at every t where ξ is discontinuous, we conclude that ξ(t) ≤ ξ(t1)+
r̄(t1− t) for all t ≤ t1, where t1 > 0 is arbitrary (looking backwards in time, the function increases

by a slope of at most r̄). For each tk, we thus conclude ξ(t) < −ǫ/2 as long as t ∈ (tk−ǫ/(2r̄), tk).
This means that for any subsequence tkj , j = 1, 2, . . . such that tk(j+1) > tkj + ǫ/(2r̄),

∫ ∞

0
ξ(τ)dτ =

∞∑

j=1

∫ tkj−ǫ/(2r̄)

tk(j−1)

ξ(τ)dτ +

∫ tkj

tkj−ǫ/(2r̄)
ξ(τ)dτ ≤

∫ ∞

0
ξ̄(τ)dτ −

∞∑

j=1

ǫ2/(4r̄),

where tk0 is defined as tk0 = 0 for notational convenience. The right-hand side is unbounded below

leading to the desired contradiction.

Appendix B. Nonlinear constraints

When estimating the constant Ll, a bound on λ is often useful. The following proposition, which

can be generalized to multiple constraints by a similar argument, establishes such a bound.

Proposition 12 Let g : Rn → R be a scalar Lg-smooth and µg-strongly concave function. Then,

in the absence of any other constraints, the corresponding multiplier λ > 0 is bounded by

λ ≤ 1

µg

(

α+ L(1 + |xf − xg|
√

Lg/(2g(xg)))

)

,

where xf is the (unconstrained) minimizer of f , xg the (unconstrained) maximizer of g,L the smooth-

ness constant of f , and κg := Lg/µg.
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Proof It follows from (5) that

1

2
|W (x)λ|2 = 1

2
|v(x) +∇f(x)|2 ≤ 1

2
|vf +∇f(x)|2,

for any vf ∈ Vα(x). In particular, we can set vf = α(xg − x), which satisfies vf ∈ Vα(x), due to the

concavity of g. Moreover, from W (x) = ∇g(x) and the strong concavity of g we conclude

µg|x− xg|λ ≤ |α(xg − x) +∇f(x)| ≤ α|x− xg|+ L|x− xf|,

where λ > 0 by definition of λ. This yields the following bound on the dual variable

λ ≤ sup
g(x)≤0

1

µg

(

α+
L|x− xf|
|x− xg|

)

,

which can be further simplified to

λ ≤ 1

µg

(

α+ L+ L|xg − xf| sup
g(x)≤0

1

|x− xg|

)

.

Due to the strong concavity of g, it follows that g(x) ≥ g(xg)−Lg|x−xg|2/2 for all x ∈ R
n. As a

consequence, Lg|x− xc|2/2 ≥ g(xc), for all x ∈ R
n such that g(x) ≤ 0, which means that the last

supremum is bounded by
√
Lg/(2g(xg)).

Appendix C. Proof of Proposition 10

Proof The proof follows the presentation of Cottle et al. (2009, p. 400). In order to simplify

the notation we define G := WT

k Wk, q := −WT

k ∇f(xk) + αḡ(xk), B := UT + ω−1D, C :=
U + (1− ω−1)D, and omit the subscript k. We can therefore express (24) concisely as

Gλ+ q + ∂ψDx(λ) ∋ 0.

Furthermore, by virtue of the conjugate subgradient theorem, (25) is equivalent to

λj+1 ∈ Dx, −Bλj+1 − Cλj − q ∈ D∗
x, λj+1T(−Bλj+1 − Cλj − q) = 0, (29)

where D∗
x := {0}nh ×R

|Ix|
≤0 is the polar cone of Dx. We further introduce the function d̃ : Dx → R,

d̃(λ) = λTGλ/2 + λTq. Due to the fact that G is positive semi-definite, d̃ is convex and can be

shown to be bounded below for λ ∈ Dx. We further have that

d̃(λj)− d̃(λj+1) = (λj − λj+1)T(q +Gλj+1) +
1

2
(λj − λj+1)TG(λj − λj+1).

As a consequence of (29) and some elementary manipulations, the decrease in d̃ can be expressed

as

d̃(λj)− d̃(λj+1) = λj
T
(q +Bλj+1 + Cλj) +

1

2
(λj − λj+1)T(B − C)(λj − λj+1)

≥ 1

2
(λj − λj+1)T(B − C)(λj − λj+1).
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For the last inequality we have used −Bλj+1 − Cλj − q ∈ D∗
x and λj ∈ Dx, which ensures that

(q + Bλj+1 + Cλj)Tλj ≥ 0. The symmetric part of B − C is given by (2ω−1 − 1)D, which is

guaranteed to be positive definite for ω ∈ (0, 2) (the elements of D are given by |∇gi(x)|2 > 0).

This concludes that d̃(λj) is a monotonically decreasing sequence, which therefore converges. Thus,

the above inequality implies, in the limit as j →∞,

0 = lim
j→∞

1

2
(λj − λj+1)T(B − C)(λj − λj+1),

which, due to the positive definiteness of the symmetric part of B − C, implies that λj converges.

Moreover, limj→∞ λj satisfies (24) by construction.
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