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Abstract

There has been much interest in recent years
in developing learning algorithms that can learn
accurate classifiers from data with noisy labels.
A widely-studied noise model is that of class-
conditional noise (CCN), wherein a label y is
flipped to a label ỹ with some associated noise
probability that depends on both y and ỹ. In
the multiclass setting, all previously proposed al-
gorithms under the CCN model involve chang-
ing the training process, by introducing a ‘noise-
correction’ to the surrogate loss to be minimized
over the noisy training examples. In this paper,
we show that this is really unnecessary: one can
simply perform class probability estimation (CPE)
on the noisy examples, e.g. using a standard (mul-
ticlass) logistic regression algorithm, and then
apply noise-correction only in the final prediction
step. This means that the training algorithm itself
does not need any change, and one can simply
use standard off-the-shelf implementations with
no modification to the code for training. Our
approach can handle general multiclass loss ma-
trices, including the usual 0-1 loss but also other
losses such as those used for ordinal regression
problems. We also provide a quantitative regret
transfer bound, which bounds the target regret on
the true distribution in terms of the CPE regret on
the noisy distribution; in doing so, we extend the
notion of strong properness introduced for binary
losses by Agarwal (2014) to the multiclass case.
Our bound suggests that the sample complexity of
learning under CCN increases as the noise matrix
approaches singularity. We also provide fixes and
potential improvements for noise estimation meth-
ods that involve computing anchor points. Our
experiments confirm our theoretical findings.
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1. Introduction
In many applications of machine learning, one receives
noisy labels during training. This can happen for a variety
of reasons, including human labeling errors, sensor measure-
ment errors, distributed label collection via crowdsourcing,
automatic label collection via internet crawling, and many
others. Consequently, there has been much interest in re-
cent years in developing learning algorithms that can learn
accurate classifiers from data with noisy labels (Frénay &
Verleysen, 2014; Song et al., 2020).

We focus here on the setting of label-dependent noise, where
the (random) noise in a label depends on the label but not on
the instance (the more general setting of label- and instance-
dependent noise is also of interest (Menon et al., 2018;
Cheng et al., 2020), but we do not focus on that here). An
early example of label-dependent noise for binary classi-
fication that has been widely studied in the PAC learning
literature is the random classification noise (RCN) model,
in which a binary label y is flipped to the opposite label with
a fixed probability γ ∈ [0, 12 ) (Angluin & Laird, 1987; By-
lander, 1994; Aslam & Decatur, 1996; Kearns, 1998; Blum
& Mitchell, 1998; Cesa-Bianchi et al., 1999). More recently,
Natarajan et al. (2013) generalized the RCN model and
proposed the class-conditional random label noise (CCN)
model for binary classification, in which flip probabilities
for positive and negative labels can be different. This was
then extended to the more general multiclass case, wherein
a label y is flipped to a label ỹ with some noise probability
that depends on y and ỹ (van Rooyen & Williamson, 2017;
Patrini et al., 2017; Ghosh et al., 2017; Wang et al., 2018).

The primary challenge in learning from noisy labels is to de-
sign algorithms which, despite being given data with noisy
labels as input, can learn accurate classifiers for the true,
clean distribution. In particular, it is desirable to design algo-
rithms which, when trained using a sufficiently rich function
class, are statistically consistent for the clean distribution
(i.e. that converge to a Bayes optimal classifier for the clean
distribution). For the general multiclass CCN model, two
such algorithms have been proposed: the unbiased estima-
tor method of van Rooyen & Williamson (2017) (which
builds on a method of Natarajan et al. (2013) for binary
labels), and the forward method of Patrini et al. (2017) (the
‘backward’ method of Patrini et al. (2017) is the same as
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the unbiased estimators method). Both algorithms make use
of the framework of surrogate loss minimization, and both
require modifying the surrogate loss to correct for the noise.
In practice, this means modifying the training algorithm.

In this paper, we take a first-principles approach, and show
that, for the general multiclass CCN model, one can design
statistically consistent learning algorithms without modify-
ing the training process. In particular, by examining the
form of the Bayes optimal classifier for any target (cost-
sensitive) multiclass loss, and the relation between the noisy
and clean distributions over labels, we show that it suffices
to simply implement a standard class probability estima-
tion (CPE) algorithm (such as multiclass logistic regression)
on the given noisy training data, and then apply a noise-
corrected plug-in step at prediction time. For practitioners
lacking expertise to modify the optimization process, or
when retraining is a bottleneck, the post-processing step at
prediction time can be easier to implement and use.

To establish consistency of our method (when trained with
a sufficiently rich function class), we derive a quantitative
regret transfer bound which shows that the target regret on
the true, clean distribution can be upper bounded by the CPE
regret on the noisy distribution. We also extend the notion
of strong properness, defined for binary losses by Agarwal
(2014), to multiclass surrogate losses; for CPE learners
that minimize such surrogate losses (including for example
the multiclass logistic/cross-entropy loss), we provide a
regret bound in terms of the surrogate regret on the noisy
distribution. Our bound suggests that as the noise matrix
becomes closer to being singular, the sample size needed to
achieve a given target performance level becomes larger.

In their basic forms, the methods of both van Rooyen &
Williamson (2017) and Patrini et al. (2017), as well as our
noise-corrected plug-in method, all assume that the noise
flip probabilities are known. In practice, one may need to
estimate the noise probabilities from the given noisy data.
In recent years, a number of approaches have been proposed
for estimating noise flip probabilities; these are generally
based on identifying a small number of anchor points (in-
stances that belong to a certain class with probability one).
In particular, Patrini et al. (2017) proposed a noise estima-
tion method based on anchor points, with the intent to pro-
vide an ‘end-to-end’ noise-estimation-and-learning method.
Later, Yao et al. (2020) exploited the divide-and-conquer
paradigm to propose another noise estimation method, also
based on anchor points. However, it turns out that both
methods do not always work correctly; we identify an error
in their methods (specifically, the error is in the method
for computing anchor points), and provide conditions on
the noise under which the methods work or fail. We also
propose an iterative noise estimation heuristic that aims to
partly correct the error; while the heuristic is not guaran-

teed to converge or recover the correct noise probabilities, it
works well in our experiments, sometimes outperforming
the methods of Patrini et al. (2017) and Yao et al. (2020).
Moreover, all three noise estimation methods require a CPE
model to be learned from the noisy data, which in our case
comes for free, with no further training required; thus our
method also provides a more efficient ‘end-to-end’ solution.

Our experiments confirm that our noise-corrected plug-in
method performs comparably to previous methods, while
requiring no change to the training process.

Relationship with previous work in the binary case. As
noted above, the works on learning from noisy labels in
multiclass classification that are most closely related to ours
are those of van Rooyen & Williamson (2017) and Patrini
et al. (2017). In the special case of binary classification, two
works are most directly relevant: those of Natarajan et al.
(2013) and Menon et al. (2015). Natarajan et al. (2013) stud-
ied the CCN model for binary classification, and expressed
the Bayes optimal classifier for the noisy distribution as
a plug-in rule involving the clean class probability func-
tion (Lemma 7), and then used this to reduce the CCN
learning problem to a cost-sensitive classification problem
on the noisy data using classification-calibrated surrogate
losses. In contrast, we express the Bayes optimal classifier
for the clean distribution as a plug-in rule involving the noisy
class probabilities, which can be estimated directly from
the noisy data (we use strongly proper composite surrogate
losses for this estimation). Menon et al. (2015) studied the
more general mutually contaminated distributions (MCD)
noise model for binary classification, and while they focused
mostly on the balanced error (BER) and area under the ROC
curve (AUC) metrics, they also used strongly proper com-
posite (binary) surrogate losses, and applied their analysis
to derive a regret transfer bound for the 0-1 error as well
(Proposition 7). When specialized to the CCN model, their
bound for binary classification with 0-1 loss can be viewed
as a special case of our bound in Theorem 4 (our bound
holds for multiclass classification with general losses).

Organization. After preliminaries in Section 2, we describe
our noise-corrected plug-in method in Section 3. Section 4
gives regret transfer bounds; Section 5 discusses noise esti-
mation. Section 6 summarizes our experiments. All proofs
can be found in the supplementary material.

Notation. For an integer n, we denote by [n] the set of
integers {1, . . . , n}, and by ∆n the probability simplex
{p ∈ Rn+ :

∑n
y=1 py = 1}. For a vector a, we denote

by ‖a‖2 the L2 norm of a. For a matrix A, we denote by
‖A‖F the Frobenius norm of A, by ‖A‖2 the induced 2-
norm of A (largest singular value of A), and by ay the y-th
column vector of A. We use ey to denote a standard basis
vector with y-th element 1.
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2. Preliminaries
The problem of (multiclass) learning from noisy labels can
be described as follows. There is an instance space X ,
and a set of n class labels Y , which we will take with-
out loss of generality to be Y = [n]. There is a (un-
known) joint probability distribution D on X × Y from
which labeled examples (X,Y ) are drawn. In the stan-
dard (non-noisy) supervised learning setting, the learner
would be given training examples drawn directly from D.
When learning from noisy labels, however, the learner does
not get clean labels Y ; instead, the learner sees noisy ex-
amples (X, Ỹ ), where Ỹ denotes a noisy version of Y .
In particular, the learner receives a noisy training sample
S̃ = ((x1, ỹ1), . . . , (xm, ỹm)) ∈ (X × Y)m, and the goal
is to learn a classifier h : X→Y that performs well with
respect to the clean distribution D.

We consider here the class-conditional random label noise
(CCN) model (Natarajan et al., 2013; van Rooyen &
Williamson, 2017), wherein a label y is randomly flipped
to a label ỹ with some probability γy,ỹ that depends on y
and ỹ. In particular, the CCN model is characterized by a
row-stochastic noise matrix C ∈ [0, 1]n×n with entries γy,ỹ ,
such that for each y, ỹ ∈ [n],

P(Ỹ = ỹ |Y = y) = γy,ỹ .

The noisy training examples seen by the learner can there-
fore be viewed as being drawn IID from a ‘noisy’ distri-
bution D̃ on X × Y , wherein an example (X,Y ) is first
drawn randomly according to D, and then noise is injected
according to the noise matrix C to generate (X, Ỹ ).

Thus, given a noisy training sample S̃ drawn according to
the noisy distribution D̃ as above, the goal of the learner is
to learn a classifier h : X→Y that performs well under the
clean distribution D. To measure performance, we consider
a general multiclass loss matrix L ∈ Rn×n+ , with entries
`y,ŷ indicating the loss incurred on predicting ŷ when the
true label is y (the 0-1 loss L0-1 with `0-1

y,ŷ = 1(ŷ 6= y) is a
special case). The performance of the classifier h is then
measured by the L-generalization error or L-risk under D:

erLD[h] = E(X,Y )∼D
[
`Y,h(X)

]
.

3. Noise-Corrected Plug-in Method
The approach we describe is conceptually very simple. We
will denote by η, η̃ : X→∆n the (vector) class probability
functions under the clean distribution D associated with
clean labeled examples and the noisy distribution D̃ asso-
ciated with noisy examples, respectively, with components
given by

ηy(x) = P(Y = y |X = x)

η̃y(x) = P(Ỹ = y |X = x)

for each y ∈ [n]. It is easy to see that

η̃y(x) =
∑
y′∈[n]

P(Ỹ = y |Y = y′) ·P(Y = y′ |X = x)

=
∑
y′∈[n]

γy′,y · ηy′(x)

= c>y η(x) ,

which gives
η̃(x) = C>η(x) .

Therefore, provided C is invertible, we have

η(x) = (C>)−1η̃(x) . (1)

This suggests that once we have an estimate of the noisy
class probability function η̃, we may be able to ‘de-noise’ it
to construct an estimate of the clean class probability func-
tion η. This idea in its basic form can be problematic, since
C−1 is not necessarily a stochastic matrix; in particular, C>

generally maps probability vectors η(x) in the probability
simplex ∆n to noisy probability vectors η̃(x) in a limited
subset of the simplex ∆n, and in general, an estimate of
η̃(x) could fall outside that subset, so that multiplying the
estimate by (C>)−1 could then lead to an invalid ‘estimate’
of η(x) that falls outside ∆n. Nevertheless, we get around
this issue by never really needing to construct a fully valid
estimate of η(x); instead, we simply use the above relation
to derive a noise-corrected plug-in classifier that operates
directly on estimates of the noisy class probabilities η̃(x).
Our regret transfer bounds in Section 4 will establish that
this indeed leads to a correct learning approach.

We start by explaining our approach in the context of the
multiclass 0-1 loss, and then describe the extension to gen-
eral multiclass losses.

Multiclass 0-1 loss. As is well known, the Bayes optimal
classifier for the multiclass 0-1 loss is given by

h0-1,∗
D (x) = argmax

y∈[n]
ηy(x) .

By Eq. (1), we can re-write this in terms of the noisy class
probability function η̃ as follows:

h0-1,∗
D (x) = argmax

y∈[n]

(
(C>)−1η̃(x)

)
y

=: plugin0-1
C

(
η̃(x)

)
.

Notably, this means that during training, we can simply
construct a multiclass CPE model ̂̃η : X→∆n for the noisy
class probability function η̃, by running any standard mul-
ticlass CPE method (such as standard multiclass logistic
regression) on the given noisy training examples, and then
construct a noise-corrected classifier ĥ : X→Y by applying
the above noise-corrected plug-in step during prediction:

ĥ(x) = plugin0-1
C

(̂̃η(x)
)
.

Multiclass cost-sensitive losses. More generally, consider
any multiclass loss matrix L ∈ Rn×n+ . The Bayes optimal
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Algorithm 1 Noise-Corrected Plug-in Algorithm
1: Inputs:

(1) Noisy training sample,
S̃ = ((x1, ỹ1), . . . , (xm, ỹm)) ∈ (X × Y)m

(2) Target loss matrix L ∈ Rn×n+

(3) (If known) Noise matrix C ∈ [0, 1]n×n

2: Run a standard CPE learner on S̃:̂̃η = CPE-Learner( S̃ )

3: If C unknown: Construct estimate Ĉ (see Section 5)
4: Output:

If C known: ĥ = pluginLC ◦ ̂̃η
If C unknown: ĥ = pluginL

Ĉ
◦ ̂̃η

classifier for L (which for any instance x, chooses a predic-
tion that minimizes the expected loss under L) is given by

hL,∗D (x) = argmin
y∈[n]

η(x)>`y .

As for the 0-1 loss, by Eq. (1), we can re-write this in terms
of the noisy class probability function η̃ as follows:

hL,∗D (x) = argmin
y∈[n]

η̃(x)>C−1`y

= argmin
y∈[n]

η̃(x)>
(
C−1L

)
y

=: pluginLC
(
η̃(x)

)
.

Again, this means that during training, we can use a standard
multiclass CPE learner on the noisy examples to construct
a CPE model ̂̃η : X→∆n for the noisy class probability
function η̃, and then construct a noise-corrected classifier
ĥ : X→Y by applying the above noise-corrected plug-in
step during prediction:

ĥ(x) = pluginLC
(̂̃η(x)

)
.

Note that one can pre-compute C−1L, and so at prediction
time, in order to implement pluginLC(̂̃η(x)), one needs to
compute n inner products (of the column vectors of C−1L
with ̂̃η(x)), for a total computational cost of O(n2).1,2

Our final algorithm is shown in Algorithm 1. An example of
a CPE learner that minimizes a (strongly) proper composite
multiclass surrogate loss is provided in Section 4.2. In
settings where the noise matrix C is not known, one may
need to estimate C from the noisy training sample itself;
this is discussed in Section 5.

1Also note that if one has an implementation of the standard
plug-in step pluginL(·) (without noise correction) for general (cost-
sensitive) loss matrices L, one can simply use that implementation
with loss L̃ = C−1L (since pluginL

C

(̂̃η(x)
)

= pluginL̃
(̂̃η(x)

)
).

2This also applies to the 0-1 loss: one can simply pre-compute
C−1L0-1, and then at prediction time, compute n inner products
(of the column vectors of C−1L0-1 with ̂̃η(x)) for a cost of O(n2)

(and predict according to argminy∈[n]
̂̃η(x)>(C−1L0-1)y).

4. Regret Transfer Bounds and Consistency
In this section, we provide quantitative regret transfer
bounds for our noise-corrected plug-in algorithm; these
bounds also establish that if the noisy CPE method used in
training is consistent (i.e., converges to the correct noisy
class probabilities), then our approach is consistent for the
target learning problem. We derive our results for the multi-
class case with a general loss matrix L; they can be special-
ized to the binary and/or 0-1 case as needed. In particular,
define the L-regret (or the excess L-risk) of a classifier
h : X→Y under the clean distribution D as follows:

regretLD[h] = erLD[h]− inf
h′:X→Y

erLD[h′] . (2)

Our goal is to upper bound this L-regret for our learned
classifier ĥ; if this regret converges (in probability, over the
random draw of the noisy training sample) to zero as the
training sample size increases, then the algorithm is (Bayes)
consistent for L under D.

In Section 4.1, we provide a general result upper bounding
the target L-regret of our learned classifier ĥ = pluginLC ◦ ̂̃η
(on the clean distribution D) in terms of the noisy CPE
regret of ̂̃η (on the noisy distribution D̃). In Section 4.2,
we specialize our result to CPE methods that learn ̂̃η by
minimizing a strongly proper composite surrogate loss (ex-
tending the notion of strong properness defined for binary
losses by Agarwal (2014) to the multiclass case), and apply
this result in particular to the multiclass logistic loss, which
we show to be 1-strongly proper composite.

4.1. Regret Transfer Bound for General CPE Methods

We have the following result for our noise-corrected plug-in
method using any CPE learner:

Theorem 1. For any noisy CPE model ̂̃η : X→∆n and
resulting noise-corrected plug-in classifier ĥ = pluginLC ◦ ̂̃η,
we have

regretLD[ ĥ ]

≤ 2 max
y

∥∥`y∥∥2 · ∥∥C−1∥∥2 ·EX[∥∥̂̃η(X)− η̃(X)
∥∥
2

]
.

In other words, if the learned noisy CPE model ̂̃η is close
to the correct noisy class probabilities η̃, in the sense that
EX
[∥∥̂̃η(X) − η̃(X)

∥∥
2

]
is small, then the target L-regret

of the noise-corrected plug-in classifier on the clean distri-
bution D, regretLD[ ĥ ], is also small. In particular, if the
CPE learner is consistent for the noisy distribution in the
sense that EX

[∥∥̂̃η(X)− η̃(X)
∥∥
2

] P−→0 (as the sample size
increases), then the overall noise-corrected plug-in method
is (Bayes) L-consistent for the clean distribution D, in the
sense that regretLD[ ĥ ]

P−→0.

Note that the above bound depends on the noise matrix
C through the term

∥∥C−1∥∥
2
. This is the largest singular
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value of C−1, or equivalently, the reciprocal of the smallest
singular value of C. Thus, as the noise matrix C approaches
singularity, the bound becomes larger. This suggests that
as C becomes closer to being singular, we may need a
higher quality class probability approximation on the noisy
distribution D̃ (i.e. larger sample size) to reach the same
level of L-regret on the clean distribution D. As we will see
in Section 6, our experiments also support this observation.

4.2. Regret Transfer Bound for CPE Methods
Minimizing a Strongly Proper Composite
Surrogate Loss

In practice, a popular approach for learning CPE models
is to minimize a suitable (convex) surrogate loss, such as
the multiclass logistic loss (this is also what we use in our
experiments). We show that for a suitable class of such sur-
rogate losses, the CPE regret can be further upper bounded
in terms of the surrogate loss based regret.

Specifically, let ψ : [n]× Rn−1→R+ be any surrogate loss
that acts on (n − 1)-dimensional ‘score vectors’ in Rn−1,
and let λ : ∆n→Rn−1 be an invertible ‘link’ function.3

Then ψ is said to be strictly proper composite with link
function λ if for all p ∈ ∆n and u ∈ Rn−1, u 6= λ(p):

EY∼p
[
ψ(Y,u)− ψ(Y,λ(p))

]
> 0 .

It is well known that minimizing such a strictly proper com-
posite surrogate loss over a suitably rich function class pro-
vides consistent class probability estimates (Williamson
et al., 2016). For binary surrogates, Agarwal (2014) defined
a stronger condition that allows the derivation of quantitative
bounds in terms of the surrogate regret. Here we extend this
notion to the multiclass case and apply it to obtain bounds
for our noisy labels problem.4

Definition 2 (Strongly proper composite multiclass losses).
Let s > 0. We say a multiclass surrogate loss ψ :
[n] × Rn−1 → R+ is s-strongly proper composite with
(invertible) link function λ : ∆n → Rn−1 if for all p ∈ ∆n

and u ∈ Rn−1:

EY∼p
[
ψ(Y,u)− ψ(Y,λ(p))

]
≥ s

2

∥∥λ−1(u)− p
∥∥2
2
.

As a concrete example, consider the widely used multiclass
logistic surrogate loss:

Example 1 (Multiclass logistic loss and link function). The
multiclass logistic loss ψmlog : [n]×Rn−1 → R+ is defined

3More generally, one can consider surrogate losses ψ : [n]×
C→R+ acting on score vectors in any convex set C that is in 1-to-1
correspondence with ∆n, such as C = {u ∈ Rn :

∑n
i=1 ui = 0}.

It is also common to consider ‘over-parameterized’ surrogate losses
acting on C = Rn; e.g. see the discussion on the multiclass logistic
surrogate loss toward the end of the section.

4Strong properness implies strict properness. Most commonly
used strictly proper composite losses are also strongly proper com-
posite, but the latter condition allows for stronger quantitative
guarantees.

as

ψmlog(y,u) =

− ln
(

exp(uy)

1+
∑n−1

i=1 exp(ui)

)
if y ∈ [n− 1]

ln
(
1 +

∑n−1
i=1 exp(ui)

)
if y = n .

The loss is often used with the invertible link function
λmlog : ∆n → Rn−1, which together with its inverse
λ−1mlog : Rn−1 → ∆n is given by

λmlog(p)=

 ln( p1pn )
...

ln(pn−1

pn
)

;λ−1mlog(u)=


exp(u1)

1+
∑n−1

i=1 exp(ui)

...
exp(un−1)

1+
∑n−1

i=1 exp(ui)

1
1+

∑n−1
i=1 exp(ui)

.

We note that the multiclass logistic loss above is often imple-
mented in an ‘over-parameterized’ form, with score vectors
in C = Rn and the softmax function used for ‘inverting’
such score vectors to class probabilities (indeed, softmax
is a many-to-one mapping).5 We have the following result
showing that ψmlog is strongly proper composite:
Lemma 3. The multiclass logistic loss ψmlog is 1-strongly
proper composite with link function λmlog.

A CPE learner minimizing a strongly proper composite
surrogate loss (over noisy training examples) is shown in
Algorithm 2. (Instantiating this with the multiclass logistic
loss ψmlog above and the class of linear scoring functions
leads to the multiclass linear logistic regression algorithm.)

In what follows, for a surrogate loss ψ : [n]× Rn−1→R+,
we will define the ψ-generalization error of a scoring func-
tion f : X→Rn−1 under D̃ as

erψ
D̃

[f ] = E(X,Y )∼D̃
[
ψ(Y, f(X))

]
,

and the ψ-regret of f under D̃ as
regretψ

D̃
[f ] = erψ

D̃
[f ]− inf

f ′:X→Rn−1
erψ
D̃

[f ′] .

Then we have the following regret transfer bound:
Theorem 4. Let s > 0. Let ψ : [n] × Rn−1 → R+ be a
s-strongly proper composite surrogate loss with (invertible)

link function λ : ∆n → Rn−1. For any scoring model ̂̃f :

X→Rn−1 being used as a (noisy) CPE model via ̂̃η(x) =

λ−1(
̂̃
f(x)), and resulting noise-corrected plug-in classifier

ĥ = pluginLC ◦
(
λ−1 ◦ ̂̃f), we have

regretLD[ ĥ ] ≤ 2 max
y

∥∥`y∥∥2 · ∥∥C−1∥∥2 ·
√

2

s
regretψ

D̃
[
̂̃
f ] .

Thus in particular, if the CPE learner in Algorithm 2
minimizes a strongly proper composite surrogate loss ψ
over a universal function class F (with suitable regulariza-

tion), thus ensuring that regretψ
D̃

[
̂̃
f ]

P−→0, then we have that

regretLD[ ĥ ]
P−→0 as desired.

5The over-parameterized multiclass logistic loss is also some-
times referred to as the cross-entropy loss.
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Algorithm 2 CPE Learner Minimizing a Strongly Proper
Composite Surrogate Loss (on Noisy Data)

1: Input: Noisy training sample,
S̃ = ((x1, ỹ1), . . . , (xm, ỹm)) ∈ (X × Y)m

2: Parameters:
(1) Strongly proper composite loss ψ : [n]×Rn−1→R+

with (invertible) link function λ : ∆n→Rn−1;
(2) Class F of functions f : X→Rn−1

3: Compute ̂̃f ∈ argminf∈F
∑m
i=1 ψ(ỹi, f(xi))

4: Output: ̂̃η = λ−1 ◦ ̂̃f
5. Estimating the Noise Matrix C

In settings where the noise matrix C is not known in ad-
vance, one may need to estimate C from the noisy training
examples themselves. Most previous work on estimating
the noise matrix assumes the existence of ‘anchor points’
(definition provided below), and relies on estimating these
points accurately.6 In particular, Menon et al. (2015) pro-
vided a method for estimating C using anchor points in the
case of binary labels; Patrini et al. (2017) extended it to the
multiclass setting, and later, Yao et al. (2020) proposed an-
other noise estimation method also based on anchor points.
Unfortunately, however, we show below that these methods
do not work correctly for all noise matrices C. In particular,
in Section 5.1, we point out an error in the approach used
to compute anchor points in the noise estimation methods
of Patrini et al. and Yao et al., and provide sufficient and
necessary conditions on C under which these methods do
work correctly. Of course, when C is unknown, we may
not know whether it satisfies these conditions, and so we
may not be able to verify whether the estimation is correct.
Building on the intuition developed from our analysis, in
Section 5.2 we propose an iterative noise estimation heuris-
tic that essentially tries to improve the estimation of anchor
points, and that can be applied for any unknown C; while it
is not guaranteed to converge or recover a correct estimate,
in our experiments, it generally performs as well as, or im-
proves upon, the methods of Patrini et al. and Yao et al. It
remains an open question whether general noise matrices C
can be estimated reliably using anchor points.

5.1. Conditions for Correctness of Noise Estimation
Methods Based on Anchor Points

The methods of Patrini et al. (2017) and Yao et al. (2020)
make the following assumption:

(A) (Anchor points) Under the clean distribution D =
(µ,η), for every y ∈ Y , there is a ‘perfect’ example x̄y ∈ X
of class y (called an anchor point of class y) with marginal
µ(x̄y) > 0 and η(x̄y) = ey .

6There is also some recent work that aims to estimate C without
identifying anchor points (Xia et al., 2019).

Under this assumption, Patrini et al. observe that, for all
y, ỹ ∈ Y ,

η̃ỹ(x̄y) =
(
C>η(x̄y)

)
ỹ

=
(
C>ey)ỹ = γy,ỹ .

Therefore, if one can identify such perfect examples/anchor
points x̄y, and if the class probability estimates ̂̃η(x) are
accurate, then one can estimate the noise rates via

γ̂y,ỹ = ̂̃ηỹ(x̄y) ∀y, ỹ ∈ [n] .

As discussed previously, provided one has a sufficiently
large training sample, accurate class probability estimates
can be formed by minimizing a strongly proper composite
surrogate over a suitably rich function class. The main
step that is needed, therefore, is to identify the ‘perfect’
examples/anchor points x̄y above.

Patrini et al. suggest identifying such anchor points by first
estimating a CPE model ̂̃η, and then taking a large collec-
tion of available instances Xtrain ⊂ X drawn IID from the
marginal µ (these could just be the training instances in
S̃ or could include other unlabeled instances as well), and
estimating anchor points according tô̄xy ∈ argmax

x∈Xtrain

̂̃ηy(x)

However, note that these anchor points should be chosen
to maximize the true class probability ηy(x), not the noisy
class probability η̃y(x)! Therefore, the above method (also
used by Yao et al., according to footnote 2 in their paper)
is in general incorrect. Of course, we do have a relation
between η and η̃ (Eq. (1)), but that relation involves C;
without knowledge of C, we cannot in general use a noisy
CPE model ̂̃η to find instances maximizing ηy(x).

Nevertheless, surprisingly, Patrini et al. and Yao et al. did
report some successful experiments with their methods.
On investigating further, we identified a sufficient condi-
tion on the noise matrix C under which argmaxx η̃y(x) =
argmaxx ηy(x), and therefore, under which the above ap-
proach for estimating anchor points does work correctly,
as well as a related necessary condition failing which the
approach fails:
Theorem 5. Suppose assumption (A) above holds.

1. If the noise matrix C = [γy,ỹ] satisfies the sufficient
condition

γỹ,ỹ > γy,ỹ ∀y 6= ỹ ,

then provided that Xtrain is a large enough sample
(drawn IID from µ) and the noisy class probabilities
η̃(x) are modeled accurately, the anchor point estima-
tion method of Patrini et al. (2017) described above
works correctly.

2. If C fails to satisfy the necessary condition

γỹ,ỹ ≥ γy,ỹ ∀y 6= ỹ ,

then the anchor point estimation method of Patrini et al.
(2017) described above fails.
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Algorithm 3 Iterative Noise Estimation Heuristic
1: Inputs:

(1) CPE model ̂̃η : X→∆n (for noisy distribution)
(2) Xtrain ⊂ X
(3) Maximum number of iterations T

2: Initialize: Ĉ(1) =
[
γ̂
(1)
y,ỹ

]
← I

3: For t = 1, . . . , T :
4: ∀y ∈ Y : ̂̄xy ← argmax

x∈Xtrain

((
(Ĉ(t))>

)−1 ̂̃η(x)
)
y

5: ∀y, ỹ ∈ Y : γ̂
(t+1)
y,ỹ ← ̂̃ηỹ(̂̄xy)

6: diff(t) ← ‖Ĉ(t+1) − Ĉ(t)‖F
7: Output: Ĉ(t∗), where t∗ = argmin

t∈[T ]

diff(t)

It is worth noting that the noise matrices in Patrini et al.’s
study that were estimated correctly by their method all sat-
isfy the sufficient condition above; for the one noise matrix
in their study which did not satisfy the necessary condi-
tion above, their estimation method failed (see Section 6.2
for details). Similarly, all the noise matrices considered in
Yao et al.’s study satisfy the sufficient condition above; in
our experiments, for noise matrices that fail to satisfy the
necessary condition above, Yao et al.’s method also fails.

We also note that, in Patrini et al.’s study, after learning a
noisy CPE model ̂̃η and estimating C, a different learning
algorithm that minimizes a noise-corrected loss was then
used to learn a classifier ĥ. In our case, after learning ̂̃η and
estimating C, we can simply output the plug-in classifier
ĥ = pluginL

Ĉ
◦ ̂̃η, with no additional training required.

5.2. An Iterative Noise Estimation Heuristic
Based on the discussion above, we propose an alternative,
iterative noise estimation heuristic that aims to improve an-
chor point estimation, wherein we start with an estimate of
Ĉ = I (no noise), and iteratively feed in the current esti-
mate into a corrected version of Patrini et al.’s method to
obtain an updated estimate. The approach is shown in Algo-
rithm 3. The first iteration simply corresponds to Patrini et
al.’s original method; therefore, if C satisfies the condition
of Theorem 5, then the first iteration produces an accurate
estimate. Unfortunately, the method is not guaranteed to
converge or to produce an accurate estimate in general; nev-
ertheless, in our experiments, we find this method performs
as well as, or better than, the methods of Patrini et al. and
Yao et al. It remains an open question whether general noise
matrices C can be estimated reliably using anchor points.

6. Experiments
We conducted two sets of experiments to evaluate our noise-
corrected plug-in algorithm. In the first set of experiments,
we generated synthetic data, and tested the sample complex-
ity behavior of our algorithm, using linear models, for a va-

riety of different noise matrices C with increasing values of
‖C−1‖2. In the second set of experiments, we compared the
performance of our noise correction method with those of
van Rooyen & Williamson (2017) and Patrini et al. (2017)),
all using neural network models, on two real benchmark
data sets; in this set of experiments, we used noise matrices
C constructed for these data sets by Patrini et al. (2017),
closely following their experimental settings. We also com-
pared the performance of our noise estimation method with
those of Patrini et al. (2017) and Yao et al. (2020). In all
cases, we used the multiclass logistic loss (unmodified in
our case, and modified as needed by each of the other algo-
rithms). We summarize both sets of experiments below. In
all cases, training labels were flipped randomly according
to the prescribed (invertible) noise matrix C; performance
of the learned models was then measured on a clean test set.

6.1. Synthetic Data: Sample Complexity Behavior

In order to test the sample complexity behavior of our al-
gorithm, we generated synthetic data from a known dis-
tribution (from which we could draw increasingly large
training samples as needed). Specifically, we constructed
a 5-class problem over a 10-dimensional instance space
X = [−1, 1]10 as follows. Instances x were generated
uniformly at random from X . The class probability func-

tion η : X→∆5 was set to ηy(x) =
exp(w>y x)∑5

y′=1
exp(w>

y′x)
for

some fixed weight vectors w1, . . . ,w5 ∈ R10 (the entries
of the weight vectors were drawn IID from N (0, 1) and
then scaled so that ‖wy‖2 = 1). Given an instance x, a
clean label y was drawn randomly according to η(x). For
any prescribed (row-stochastic) noise matrix C, training
labels y were then stochastically flipped to a noisy label ỹ
according to the probabilities in the y-th row of C.

We tested the sample complexity behavior of our algorithm,
implemented to minimize the multiclass logistic loss over
linear models, for a variety of noise matrices C with increas-
ing values of ‖C−1‖2.7 We ran the algorithm on increas-
ingly large (noisy) training samples (up to 40,000 examples)
and measured the performance on a large test set of 10,000
(clean) examples. The results are shown in Figure 1: The
left plot in the figure shows results for the 0-1 loss (shown as
accuracy); the right plot shows results for a different target
loss, specifically, the ordinal regression loss Lord defined as
`ord
y,ŷ = |ŷ − y|.8 We see that, as suggested by our regret

transfer bound, as ‖C−1‖2 increases (i.e. as the matrix C

7The implementation was in PyTorch (Paszke et al., 2019), and
used the AdamW optimizer. The optimizer was run for 50 epochs
over the training sample; the learning rate parameter was initially
set to 0.01 and was halved at the end of every 5 epochs.

8Following Natarajan et al. (2013), for each noise matrix, we
repeated each experiment 3 times with independent random cor-
ruptions of the training set using the same noise matrix; our results
give the mean performance over the 3 runs.
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Figure 1. Sample complexity behavior of our algorithm on syn-
thetic 5-class data for a variety of noise matrices C with increasing
values of ‖C−1‖2. Left: 0-1 loss (shown as accuracy). Right:
Ordinal regression loss Lord. As suggested by our regret bounds,
as ‖C−1‖2 increases, the sample size needed to reach a given level
of performance generally increases. See Section 6.1 for details.

becomes closer to being singular), the sample size required
to achieve a given level of performance generally increases.9

6.2. Real Data: Comparison with Other Algorithms

We conducted experiments on several real data sets. Here we
describe experiments on two benchmark data sets, MNIST
(Lecun et al., 1998) and CIFAR10 (Krizhevsky & Hinton,
2009), where we compared our algorithm with the unbiased
estimator method of van Rooyen & Williamson (2017) and
the forward method of Patrini et al. (2017), all using neural
network models, and also tested the incorporation of noise
estimation methods. These experiments were designed to
closely mimic experiments of Patrini et al. (2017); we used
code provided by the authors10 and kept the neural network
architectures and all parameters as given.11

Both MNIST and CIFAR10 are 10-class data sets (see the
supplementary material for details of the data sets). The
experiments used 0-1 loss (measured as accuracy). In both
cases, experiments were conducted with clean data (no
noise) and with 6 noise matrices C. One of these, Csym(0.2),
was a symmetric noise matrix with the following structure:
all diagonal entries γyy were set to 1 − γ, where γ = 0.2;
all off-diagonal entries were set to γ

n−1 (here n = 10). For

9We note that for the synthetic data distribution described
above, although the clean class probabilities η(x) take the form
of a softmax-of-linear model, the noisy class probabilities η̃(x)
are not of this form. Therefore, even though the plots in Figure 1
seem to suggest our algorithm converges to the Bayes optimal
performance, strictly speaking, this is not the case: The algorithm
does appear to have learned a fairly accurate model for the noisy
class probabilities η̃(x), but it cannot express them exactly; in
order to truly model them exactly, we would need to implement
the algorithm using a richer function class. (We do not do this here
since the difference in performance would be unnoticeable. We
use richer function classes in the experiments with real data, where
we employ neural network models.)

10https://github.com/giorgiop/loss-correction
11We note that for some parameters (e.g. batch size), there is

a discrepancy between the settings used in the code and those
mentioned in the paper; we used the settings in the code.

such symmetric noise matrices (with γ < n−1
n ) and 0-1

loss, it is known that no noise correction is needed, and that
standard algorithms designed to learn a good classifier for
0-1 loss (on the noisy data) work correctly (van Rooyen &
Williamson, 2017; Ghosh et al., 2017). The other 5 noise
matrices were asymmetric, and were artificially designed by
Patrini et al. (2017) to simulate some of the possible struc-
tures of real label noise, where a label might be replaced
with some probability γ by some other similar label, for
example, Cat→ Dog. For each of MNIST and CIFAR10,
Patrini et al. specified a set of such ‘label noise’ transitions
to create specific parametric noise matrices CMNIST(γ) and
CCIFAR10(γ), and instantiated these with γ = 0.2, 0.6; we
additionally included γ = 0.45, 0.55, 0.65. The noise ma-
trices Csym(0.2) and CMNIST(γ), CCIFAR10(γ) for γ < 0.5 all
satisfy the sufficient condition of Theorem 5; the matrices
CMNIST(γ), CCIFAR10(γ) for γ > 0.5 fail to satisfy the neces-
sary condition. Details of these noise matrices, as well as
the neural network models used and associated parameter
settings, can be found in the supplementary material.

The results are summarized in Tables 1 and 2, respectively.
For each algorithm, we implemented four versions: one
with the noise matrix C known, and the other three with
the noise matrix estimated using either the method of Pa-
trini et al. (2017) (denoted ĈPatrini), the Dual T method of
Yao et al. (2020) (ĈDT), or our iterative noise estimation
heuristic (Ĉiter).12 Several observations are in order. First,
for the symmetric noise matrix Csym(0.2), standard logistic
regression with no noise correction does well as expected;
for heavy asymmetric noise (CMNIST(γ) and CCIFAR10(γ) for
γ > 0.5), standard logistic regression without noise correc-
tion does not do well. Second, our noise-corrected plug-in
method is comparable to the other noise-corrected methods,
even though it requires no change to the training process.
Third, our iterative noise estimation heuristic either per-
forms similarly to the noise estimation methods of Patrini et
al. and Yao et al., or in some cases (particularly CMNIST(γ)

for γ > 0.5) significantly outperforms their methods. Fi-
nally, for the noise matrices that satisfy the sufficient con-
dition of Theorem 5, all three noise estimation methods
perform well; for the noise matrices that fail to satisfy the
necessary condition, no method achieves perfect estimation.

It is worth pointing out again that all three noise estima-
tion methods (the methods of Patrini et al. (2017) and Yao
et al. (2020), and our iterative method) make use of a noisy
CPE model ̂̃η(x) learned from the noisy training data. Our
noise-corrected plug-in algorithm makes use of this noisy
CPE model directly, simply applying a noise-corrected plug-
in step at prediction time, and does not need any further
re-training; on the other hand, the other two noise correc-

12Our iterative noise estimation heuristic was implemented with
maximum number of iterations T set to 1000.
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Table 1. Test accuracy (percentage) on MNIST data, shown as the mean (with standard error of the mean in parentheses) over 5 random
trials. In each column, the best algorithm(s) using the known noise matrix C and the best algorithm(s) using each of the 3 noise estimation
methods (Patrini et al., Dual T, and our iterative heuristic) are shown in bold font; among the latter, the best algorithm + noise estimation
combination overall is further enclosed in asterisks. See Section 6.2 for details.

Algorithm No noise Csym(0.2) CMNIST(0.2) CMNIST(0.45) CMNIST(0.55) CMNIST(0.6) CMNIST(0.65)

Logistic 92.84 (0.14) 92.00 (0.07) 91.58 (0.08) 80.80 (0.30) 58.27 (0.27) 52.08 (0.23) 49.86 (0.05)
Unbiased, C 92.76 (0.02) 91.98 (0.11) 92.24 (0.08) 89.75 (0.30) 89.54 (0.11) 90.72 (0.06) 90.68 (0.08)
Forward, C 92.84 (0.06) 91.69 (0.08) 92.00 (0.09) 84.52 (1.48) 82.14 (2.48) 87.47 (1.43) 89.57 (0.92)
Plug-in, C 92.84 (0.14) 92.00 (0.08) 92.05 (0.10) 87.57 (0.46) 87.70 (0.18) 89.31 (0.19) 89.23 (0.06)

Unbiased, ĈPatrini 92.63 (0.05) 91.45 (0.05) 91.94 (0.02) 88.50 (0.28) 68.50 (3.41) 66.91 (2.11) 69.45 (0.94)
Forward, ĈPatrini 92.68 (0.10) 91.75 (0.05) ∗92.20∗ (0.09) 83.44 (1.90) 71.57 (2.18) 68.14 (3.01) 61.58 (2.22)
Plug-in, ĈPatrini 92.84 (0.13) 92.01 (0.01) 91.97 (0.09) 87.01 (0.54) 73.17 (1.37) 70.37 (1.09) 69.64 (0.97)
Unbiased, ĈDT 92.16 (0.04) 91.29 (0.07) 91.50 (0.09) 85.79 (0.59) 60.30 (1.70) 53.72 (1.10) 52.21 (4.55)
Forward, ĈDT 92.37 (0.07) 91.46 (0.06) 91.80 (0.07) 80.77 (2.37) 62.84 (3.77) 60.79 (2.94) 58.15 (2.28)
Plug-in, ĈDT 92.84 (0.13) 91.92 (0.04) 92.04 (0.08) 86.51 (0.60) 66.07 (2.62) 58.19 (0.43) 57.99 (3.13)
Unbiased, Ĉiter 92.73 (0.07) 91.76 (0.08) 92.00 (0.07) ∗89.51∗ (0.19) 74.95 (0.22) 71.24 (3.52) 70.98 (3.44)
Forward, Ĉiter 92.70 (0.07) 91.60 (0.17) 92.16 (0.04) 85.22 (2.64) ∗81.36∗ (1.26) ∗73.52∗ (4.57) ∗74.42∗ (4.35)
Plug-in, Ĉiter 92.85 (0.13) ∗92.03∗ (0.04) 91.96 (0.09) 87.55 (0.46) 76.96 (0.13) 71.65 (3.26) 70.68 (3.19)

Table 2. Test accuracy (percentage) on CIFAR10 data, shown as the mean (with standard error of the mean in parentheses) over 5 random
trials. In each column, the best algorithm(s) using the known noise matrix C and the best algorithm(s) using each of the 3 noise estimation
methods (Patrini et al., Dual T, and our iterative heuristic) are shown in bold font; among the latter, the best algorithm + noise estimation
combination overall is further enclosed in asterisks. See Section 6.2 for details.

Algorithm No noise Csym(0.2) CCIFAR10(0.2) CCIFAR10(0.45) CCIFAR10(0.55) CCIFAR10(0.6) CCIFAR10(0.65)

Logistic 89.76 (0.07) 85.26 (0.16) 86.95 (0.12) 76.56 (0.31) 63.78 (0.58) 58.1 (0.39) 54.79 (0.31)
Unbiased, C 89.6 (0.08) 81.82 (0.27) 84.1 (0.14) 61.91 (2.32) 57.43 (3.81) 70.12 (2.43) 74.91 (1.99)
Forward, C 89.6 (0.14) 86.62 (0.13) 88.7 (0.16) 85.71 (0.2) 85.12 (0.11) 86.99 (0.03) 87.12 (0.14)
Plug-in, C 89.76 (0.07) 85.26 (0.16) 87.46 (0.09) 82.71 (0.26) 81.8 (0.24) 83.5 (0.12) 84.01 (0.16)

Unbiased, ĈPatrini 89.54 (0.16) 82.27 (0.14) 86.08 (0.42) 69.45 (1.75) 67.15 (1.97) 69.77 (0.58) 69.94 (0.45)
Forward, ĈPatrini 89.66 (0.05) 86.05 (0.23) 88.11 (0.06) 84.67 (0.48) ∗78.78∗ (1.14) 75.47 (0.36) ∗74.48∗ (0.48)
Plug-in, ĈPatrini 89.76 (0.07) 85.29 (0.19) 87.39 (0.08) 82.46 (0.24) 78.02 (0.24) 75.48 (0.19) 74.26 (0.3)
Unbiased, ĈDT 89.3 (0.16) 82.7 (0.12) 83.43 (0.23) 67.67 (2.05) 63.38 (0.54) 63.4 (1.05) 62.64 (1.16)
Forward, ĈDT 89.75 (0.21) ∗86.93∗ (0.08) ∗88.32∗ (0.1) ∗84.72∗ (0.42) 75.98 (0.48) 69.85 (1.68) 61.89 (0.6)
Plug-in, ĈDT 89.77 (0.07) 85.14 (0.19) 87.39 (0.1) 81.91 (0.32) 75.6 (0.29) 71.21 (0.34) 68.04 (0.7)
Unbiased, Ĉiter 89.67 (0.06) 82.09 (0.14) 86.0 (0.19) 68.75 (2.68) 65.85 (1.23) 68.77 (1.1) 67.83 (1.65)
Forward, Ĉiter 89.5 (0.07) 85.92 (0.2) 88.17 (0.03) 84.09 (0.71) 77.64 (0.73) ∗75.71∗ (0.32) 74.46 (0.59)
Plug-in, Ĉiter 89.76 (0.07) 85.27 (0.2) 87.4 (0.08) 82.41 (0.22) 77.94 (0.19) 75.49 (0.17) 74.27 (0.29)

tion methods above both need to further minimize a noise-
corrected loss on the noisy data in order to learn a classifier.

7. Conclusion
We have provided a simple noise-corrected plug-in method
for general multiclass class-conditional label noise (CCN)
that requires no change to the training process. Noise cor-
rection takes place at prediction time, and after a one-time
matrix inversion and multiplication step, requires O(n2)
time per prediction, where n is the number of classes. For
general loss matrices L, this is the same computational cost
that is needed for standard plug-in methods; for the 0-1 loss,
it is a factor of n larger than the standard cost (for small
to moderate n, this may still be a smaller cost overall as
compared to the cost of modifying the training process). We
have also provided quantitative regret transfer bounds for
our method that quantify the effect of learning from noisy
labels, as well as an iterative noise estimation heuristic.

One possible issue to be careful about is that accurate esti-
mation of noisy class probabilities can potentially be chal-
lenging due to their typically higher variance (particularly
with neural networks, which often exhibit high calibration
errors (Guo et al., 2017; Rahimi et al., 2020)) – while we did
not find this to be a significant concern in our experiments,
it could possibly be an issue for certain types of data sets or
noise. It remains an open question whether general noise
matrices C can be estimated reliably using anchor points.
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Supplementary Material

A. Proof of Theorem 1
Proof. We use 〈·, ·〉 to denote the standard inner product.

regretLD[ ĥ ]

= EX
[
〈η(X), `ĥ(X)〉 − min

y∈[n]
〈η(X), `y〉

]
= EX

[
max
y∈[n]
〈η(X), `ĥ(X) − `y〉

]
= EX

[
max
y∈[n]
〈(C>)−1η̃(X), `ĥ(X) − `y〉

]
= EX

[
max
y∈[n]
〈η̃(X),C−1(`ĥ(X) − `y)〉

]
(by property of adjoint)

≤ EX
[

max
y∈[n]
〈η̃(X)− ̂̃η(X),C−1(`ĥ(X) − `y)〉

]
(since by the definition of ĥ(X), 〈̂̃η(X),C−1(`ĥ(X) − `y)〉 ≤ 0 ∀y ∈ [n])

≤ EX

[∥∥̂̃η(X)− η̃(X)
∥∥
2
·
∥∥C−1∥∥

2
· max
y∈[n]

∥∥`ĥ(X) − `y
∥∥
2

]
(by Cauchy-Schwarz inequality)

≤ 2 max
y∈[n]

∥∥`y∥∥2 · ∥∥C−1∥∥2 ·EX[∥∥̂̃η(X)− η̃(X)
∥∥
2

]

B. Proof of Theorem 4
Proof. By Theorem 1, we have

regretLD[ ĥ ] ≤ 2 max
y

∥∥`y∥∥2 · ∥∥C−1∥∥2 ·EX[∥∥̂̃η(X)− η̃(X)
∥∥
2

]
. (3)

Then, since ψ is s-strongly proper composite with link function λ, we have

regretψ
D̃

[
̂̃
f ]

= EX

[
EY |X∼η̃(X)

[
ψ(Y,

̂̃
f(X))

]
− inf

u∈Rn−1
EY |X∼η̃(X)

[
ψ(Y,u)

]]
= EX

[
EY |X∼η̃(X)

[
ψ(Y,

̂̃
f(X))− ψ(Y,λ(η̃(X)))

]]
(by definition of strongly proper composite multiclass loss)

≥ EX

[s
2

∥∥λ−1(
̂̃
f(X))− η̃(X)

∥∥2
2

]
=
s

2
EX

[∥∥̂̃η(X)− η̃(X)
∥∥2
2

]
(4)

Combining Eqs. (3, 4), and applying Jensen’s inequality (to the convex function x 7→ x2) establishes the result.
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C. Proof of Lemma 3
Proof. We will show for all p ∈ ∆n and u ∈ Rn−1,

EY∼p

[
ψmlog(Y,u)− ψmlog(Y,λmlog(p))

]
≥ 1

2

∥∥λ−1mlog(u)− p
∥∥2
2
.

Fix p ∈ ∆n and u ∈ Rn−1. Then

EY∼p

[
ψmlog(Y,u)− ψmlog(Y,λmlog(p))

]
= −

∑
i∈[n]

pi ln
(
(λ−1mlog(u))i

)
+
∑
i∈[n]

pi ln(pi)

=
∑
i∈[n]

pi ln
( pi

(λ−1mlog(u))i

)
= DKL(p||λ−1mlog(u)) by the definition of Kullback-Leibler divergence

≥ 1

2

∥∥p− λ−1mlog(u)
∥∥2
1

using Pinsker’s inequality and properties of total variation distance

≥ 1

2

∥∥p− λ−1mlog(u)
∥∥2
2
.

D. Proof of Theorem 5
Proof. Part 1 (Sufficiency).

Suppose C satisfies the given sufficient condition, i.e. that

γỹ,ỹ > γy,ỹ ∀y 6= ỹ .

We will show that
argmax

x
ηy(x) = argmax

x
η̃y(x) ∀y ∈ [n] ;

the claim will then follow.

Fix any class y ∈ [n].

First, suppose x′ ∈ argmaxx ηy(x). Then by assumption (A), it must be the case that ηy(x′) = 1, i.e. that η(x′) = ey . This
gives

η̃y(x′) = (C>η(x′))y = (C>ey)y = γy,y .

Now for any x ∈ X , we have

η̃y(x) = (C>η(x))y =

n∑
y′=1

γy′,yηy′(x) ≤
n∑

y′=1

γy,yηy′(x) = γy,y = η̃y(x′) .

Thus x′ ∈ argmaxx η̃y(x). This establishes argmaxx ηy(x) ⊆ argmaxx η̃y(x).

Conversely, suppose x′ ∈ argmaxx η̃y(x) = argmaxx(C>η(x))y . This means

n∑
y′=1

γy′,yηy′(x
′) ≥

n∑
y′=1

γy′,yηy′(x) ∀x ∈ X .

By assumption (A), there exists x̄y ∈ X such that η(x̄y) = ey . Applying the above inequality to x = x̄y , we have

n∑
y′=1

γy′,yηy′(x
′) ≥

n∑
y′=1

γy′,yηy′(x̄
y) = γy,y .
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Moreover, we have
n∑

y′=1

γy′,yηy′(x
′) ≤ γy,y .

Combining the above two inequalities, we get

n∑
y′=1

γy′,yηy′(x
′) = γy,y .

Since γy′,y < γy,y for all y′ 6= y, this means we must have η(x′) = ey. Thus, x′ ∈ argmaxx ηy(x). This establishes
argmaxx η̃y(x) ⊆ argmaxx ηy(x).

Part 2 (Necessity).

Suppose that C fails to satisfy the given necessary condition, i.e. that there exist y 6= ỹ such that

γỹ,ỹ < γy,ỹ .

We will show that argmaxx ηỹ(x) 6= argmaxx η̃ỹ(x).

We give a proof by contradiction. In particular, let if possible argmaxx ηỹ(x) = argmaxx η̃ỹ(x) = argmaxx(C>η(x))ỹ .

By assumption (A), there exists x̄ỹ ∈ X such that η(x̄ỹ) = eỹ, so this means x̄ỹ ∈ argmaxx ηỹ(x) = argmaxx η̃ỹ(x) =
argmaxx(C>η(x))ỹ . This means

γỹ,ỹ =
n∑

y′=1

γy′,ỹηy′(x̄
ỹ) ≥

n∑
y′=1

γy′,ỹηy′(x) ∀x ∈ X .

But by assumption (A), we can also find x̄y ∈ X such that η(x̄y) = ey . Applying the above inequality to x = x̄y then gives

γỹ,ỹ ≥
n∑

y′=1

γy′,ỹηy′(x̄
y) = γy,ỹ ,

contradicting our assumption. Therefore, we must have argmaxx ηỹ(x) 6= argmaxx η̃ỹ(x).

E. Additional Experimental Details

Table 3. Details of MNIST and CIFAR10 data sets.
Data set # train # test # classes # features

(n) (d)
MNIST 60,000 10,000 10 784
CIFAR10 50,000 10,000 10 3072

For MNIST, the asymmetric noise matrix CMNIST(γ) includes the following label noise transitions: 2→ 7, 3→ 8, 5↔ 6,
7→ 1. Following Patrini et al. (2017), features were normalized to [0, 1], and two fully connected hidden layers of size 128
were trained, with ReLU activation and dropout rate 0.2.13

For CIFAR10, the asymmetric noise matrix CCIFAR10(γ) includes the following label noise transitions: Truck →
Automobile, Bird → Airplane, Deer → Horse, Cat ↔ Dog. Again following Patrini et al. (2017), per-pixel
mean subtraction and data augmentation were performed, and a 14-layer residual network (ResNet) (He et al., 2016) was
trained.14

13Batch size was 32. AdaGrad (Duchi et al., 2010) was run for 40 epochs with default parameters.
14Batch size was 32. SGD was run for 120 epochs with momentum 0.9 and learning rate set to 0.1 initially and divided by 10 after 40

and 80 epochs; weight decay was 10−4.


