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Abstract

There has been much interest in recent years in the problem of dueling bandits,
where on each round the learner plays a pair of arms and receives as feedback
the outcome of a relative pairwise comparison between them. Here we study a
natural generalization, that we term choice bandits, where the learner plays a set
of up to k ≥ 2 arms, and receives limited relative feedback in the form of a single
multiway choice among the pulled arms, drawn from an underlying multiway
choice model. We study choice bandits under a very general class of choice
models that is characterized by the existence of a unique ‘best’ arm (which we
term generalized Condorcet winner), and includes as special cases the well-studied
multinomial logit (MNL) and multinomial probit (MNP) choice models, and more
generally, the class of random utility models with i.i.d. noise (IID-RUMs). We
propose an algorithm for choice bandits, termed Winner Beats All (WBA), with a
distribution dependent O(log T ) regret bound under all these choice models. The
challenge in our setting is that the decision space is Θ(nk), which is large for
even moderate k. Our algorithm addresses this challenge by extracting just O(n2)
statistics from multiway choices and exploiting the existence of a unique ‘best’ arm
to find arms that are competitive to this arm in order to construct sets with low regret.
Since these statistics are extracted from the same choice observations, one needs a
careful martingale analysis in order to show that these statistics are concentrated.
We complement our upper bound result with a lower bound result, which shows
that our upper bound is order-wise optimal. Our experiments demonstrate that
for the special case of k = 2, our algorithm is competitive with previous dueling
bandit algorithms, and for the more general case k > 2, outperforms the recently
proposed MaxMinUCB algorithm designed for the MNL model.

1 Introduction

The dueling bandit problem has received a lot of interest in recent years [1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
11, 12, 13, 14]. Here there are n arms {1, . . . , n}; on each trial t, the learner pulls a pair of arms
(it, jt), and receives relative feedback indicating which of the two arms has a better quality/reward.
In the regret minimization setting, the goal is to identify the ‘best’ arm(s) while also minimizing the
regret due to playing sub-optimal arms in the learning (exploration) phase.
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In many applications, however, it can be natural for the learner to pull more than two arms at a
time, and seek relative feedback among them. For example, in recommender systems, it is natural
to display several items or products to a user, and seek feedback on the most preferred item among
those shown. In online advertising, it is natural to display several ads at a time, and observe which
of them is clicked (preferred). In online ranker evaluation for information retrieval, one can easily
imagine a generalization of the setting studied by Yue & Joachims [15], where one may want to
"multi-leave" several rankers at a time to help identify the best ranking system while also presenting
good/acceptable results to users using the system during the exploration phase. In general, there is
also support in the marketing literature for showing customers more than two items at a time [16].

Motivated by such applications, we consider a framework that generalizes the dueling bandit problem
to allow the learner to pull more than two arms at a time. Here, on each trial t, the learner pulls a
set St of up to k arms (for fixed k ∈ {2, . . . , n}), and receives relative feedback in the form of a
multiway choice yt ∈ St indicating which arm in the set has the highest quality/reward. The goal
of the learner is again to identify a ‘best’ arm (to be formalized below) while minimizing a suitable
notion of regret that penalizes the learner for playing sub-optimal arms during the exploration phase.
We term the resulting framework choice bandits.

In the (stochastic) dueling bandits framework, the underlying probabilistic model from which feedback
is observed is a pairwise comparison model, which for each pair of arms (i, j), defines a probability
Pij that arm i has higher reward/quality than arm j. In our choice bandits framework, the underlying
probabilistic model is a multiway choice model, which for each set of arms S ⊆ [n] with |S| ≤ k and
each arm i ∈ S, defines a probability Pi|S that arm i has the highest reward/quality in the set S.

We study choice bandits under a new class of choice models, that are characterized by the existence
of a unique generalized Condorcet winner (GCW), which we define to be an arm that has larger
probability of being chosen than any other arm in any choice set. This class includes as special cases
the well-studied multinomial logit (MNL) [17, 18, 19] and multinomial probit (MNP) [20] choice
models, and more generally, the class of random utility models with i.i.d. noise (IID-RUMs) [21, 22].

Our main contribution is a computationally efficient algorithm, termed Winner Beats All (WBA), that
achieves a distribution dependent O(n2 log n+ n log T ) regret bound under any choice model that
exhibits a unique GCW, where T is the time-horizon. We complement our upper bound result with
an order-wise lower bound of Ω(n log T ) for any no-regret algorithm, showing that our algorithm
has asymptotically order optimal regret under our general class of choice models. If the underlying
model is MNL, then WBA achieves an instance-wise asymptotically optimal regret bound, which is
better than the regret bound for the recent MaxMinUCB algorithm under MNL [23].

The main challenge in designing an algorithm under our framework is that the space of exploration
(number of possible sets the learner can play) is Θ(nk) which is large even for moderate k. Therefore,
it can be challenging to simultaneously explore/learn the choice sets with low regret out of the possible
Θ(nk) sets and exploit these low regret sets. We overcome these challenges by extracting just O(n2)
pairwise statistics from the observed multiway choices under different sets, and using these statistics
to find choice sets with low regret. Since these pairwise statistics are extracted from multiway choices
under different sets, a technical challenge is to show that these statistics are concentrated. We resolve
this challenge by using a novel coupling argument that couples the stochastic process generating
choices with another stochastic process, and showing that pairwise estimates according to this other
process are concentrated. We believe that our results for efficient learning under this large class of
choice models that is considerably more general than the MNL class are of independent interest.

We also run experiments on several synthetic and real-world datasets. Our experiments on these
datasets show that our algorithm for the special case of k = 2 is competitive as compared to previous
dueling bandit algorithms, even though it is designed for a more general setting. For the case of k > 2,
we compare our algorithm with the MaxMinUCB algorithm of [23] which was designed for the MNL
model. We observe that our algorithm performs better in terms of regret than MaxMinUCB under
all datasets (even under synthetic MNL datasets). We further observe that under several datasets the
regret achieved by our algorithm for k > 2 is better than the regret for k = 2.

Related Work. There has been some recent interest in bandit settings where more than two arms
are pulled at a time, although no work that we are aware of considers the types of general choice
models that we do. (1) A related setting to ours is that of multi-dueling bandits [24, 25, 26], where
the learner also pulls a set St of k items; however, the feedback received by the learner is assumed
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to be drawn from a pairwise comparison model (in particular, the learner observes some subset
of the

(
k
2

)
possible pairwise comparisons among items in St). In contrast, in our choice bandits

setting, the learner receives the outcome of a direct multiway choice among the items in St, generated
from a multiway choice model. (2) In combinatorial bandit with relative feedback [23], the learner
pulls a set St of up to k arms, and observes top-m ordered feedback drawn according to the MNL
model, for some m ≤ k. In contrast, we only observe the (top-1) choice feedback from the set St
that is played, but, we study a much more general class of choice models than the MNL model.
(3) Another related setting is that of battling bandits [27], where the learner pulls a multiset of k
arms and receives feedback indicating which arm was chosen. However, their setting considers a
specific pairwise-subset (PS) choice model that is defined in terms of a pairwise comparison model,
whereas we consider more general choice models. (4) In stochastic click bandits [28], the learner
pulls an ordered set of k arms/documents, and observes clicks on a subset of these documents, drawn
according to an underlying click model which is a probabilistic model for click generation over an
ordered set. However, click models in their setting are different than choice models in our setting, and
neither can be cast as a special case of the other. (5) Another related setting is that of best-of-k bandits
[29], where again the learner pulls a set St of k arms. Of the various types of feedback considered
in [29], the marked bandit feedback corresponds to the type of feedback that we study, however,
the choice models studied in [29] correspond only to a subclass of random utility choice models,
and moreover, the analysis in [29] is in the PAC/pure exploration setting, while ours is in the regret
minimization setting. (6) Other recent work has specifically considered active learning problems,
either in the context of dynamic assortment optimization under MNL where the goal is to maximize
expected revenue [30, 31, 32, 33, 34]; or in the context of best arm(s) identification under MNL or
IID-RUMs [35, 36] in a PAC/pure exploration setting. (7) Finally, we also mention combinatorial
bandits, which have a different goal but also involve pulling subsets of arms [37, 38, 39, 40]. See the
supplementary material for more detailed discussion.

Organization. We set up the choice bandits problem in Section 2. We give our lower bound result
in Section 3. We present our algorithm in Section 4, and its regret analysis in Section 5. We give
experimental results in Section 6. We finally conclude with a brief discussion in Section 7. All the
proofs can be found in the supplementary material.

2 Problem Setup and Preliminaries

In the choice bandits problem, there are n arms [n] := {1, . . . , n}, and a set size parameter 2 ≤ k ≤ n.
On each trial t, the learner pulls (selects/plays) a choice set St ⊆ [n] of up to k arms, i.e. with |St| ≤ k,
and receives as feedback yt ∈ St, indicating the arm that is most preferred in St. We assume the
feedback yt is generated probabilistically from an underlying multiway choice model, which defines
for each S ⊆ [n] such that |S| ≤ k, and arm i ∈ S, a choice probability Pi|S which corresponds to
the probability that arm i is the most preferred arm in S.2 Before defining appropriate notions of
‘best’ arm and regret for the learner we will give some examples of multiway choice models.

Random utility models with i.i.d. noise (IID-RUMs). IID-RUMs are a well-known class of choice
models that have origins in the econometrics and marketing literature [21, 41]. Under an IID-RUM,
the (random) utility associated with arm i ∈ [n] is given by Ui = vi + εi where vi ∈ R is a
deterministic utility and εi ∈ R is the noise drawn i.i.d. from a distribution D over reals. For a set S,
the probability of choosing i ∈ S is given by Pi|S = Pr

(
Ui > Uj , ∀j ∈ S \{i}). We will sometimes

also refer to vi as the weight of item i. Under any IID-RUM if vi > vj for some i, j ∈ [n] then arm i
will be more likely to be chosen than arm j in any set. The IID-RUM class contains some popular
models, such as the multinomial logit (MNL) [17, 18, 19], and multinomial probit (MNP) [20].
Example 1 (MNL). Under MNL, the noise distribution D is a Gumbel(0, 1) and the probability Pi|S
of choosing an item i from a set S has the following closed form expression: Pi|S := evi/(

∑
j∈S e

vj ).
It is clear from this expression that arms with higher weights are more likely to be chosen.
Example 2 (MNP). Under the MNP model, the noise distribution D is the standard Normal distribu-
tion N (0, 1), however, unlike the MNL there is no closed form expression for the choice probabilities.
Under IID-RUMs there is a clear notion of ‘best’ arm: an arm that has the highest weight maxi∈[n] vi.
We now define a strictly more general class of models where there is a clear notion of ‘best’ arm.

2Note that for the special case of k = 2, our framework reduces to dueling bandits; the pairwise comparison
probabilities Pij := Pr (i � j) in dueling bandits can be viewed as pairwise choice probabilities Pi|{i,j}.
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A New Class of Choice Models. We introduce a new class of multiway choice models that are
characterized by the following condition that requires the existence of a unique ‘best’ arm.
Definition 1 (Generalized Condorcet Condition (GCC)). A choice model is said to satisfy the GCC
condition if there exists a unique arm i∗ ∈ [n] such that for every choice set S ⊆ [n] that contains i∗,
we have Pi∗|S > Pj|S for all j ∈ S \ {i∗}.
Intuitively, the above condition requires the existence of a unique arm that is always (stochastically)
preferred to all other arms, no matter what other arms are shown with it. This condition is a
generalization of the Condorcet condition studied for pairwise comparison models [6, 11]. Just as the
Condorcet condition need not be satisfied for all pairwise comparison models, similarly, GCC need
not be satisfied by all multiway choice models. Below we show that the GCC condition is satisfied
for all IID-RUMs subject to a minor technical condition.
Lemma 1 (IID-RUMs satisfy GCC). For any IID-RUM choice model with utility for arm i ∈ [n]
given by Ui = vi + εi, the GCC condition is satisfied if | argmaxi∈[n] vi| = 1.

In this paper, we study the class of all choice models where the GCC is satisfied. Under GCC, we
will refer to this unique ‘best’ arm as the generalized Condorcet winner (GCW) and denote it by i∗.
Note that for any set S containing the GCW i∗, we must have Pi∗|S ≥ 1

|S| .

Regret Notion. Similar to dueling bandits, the goal of the learner in our setting is to identify the
best arm while also playing good/competitive sets with respect to this arm during the exploration
phase.3 Hence, our notion of regret measures the sub-optimality of a choice set S relative to i∗, and
is a generalization of the regret defined by [23] for the special case of MNL choice model. Moreover,
under our notion of regret it is optimal to play S∗ = {i∗}, i.e. regret of playing S∗ is 0. The regret of
a set is defined to be the sum of regret due to individual arms in the set, and the regret for an arm
corresponds to the ‘margin’ by which the best arm i∗ beats this arm. In other words, the regret of an
arm corresponds to the shortfall in preference probability due to pulling this arm over the ‘best’ arm.
Definition 2. The regret r(S) for S ⊆ [n] is defined as: r(S) :=

∑
i∈S
(
Pi∗|S∪{i∗} − Pi|S∪{i∗}

)
.

This notion of regret can be interpreted as: r(S) is the sum over all arms i ∈ S, the fraction of
consumers that will choose i∗ minus the fraction of consumers that will choose i when i∗ is played
together with S. It is easy to see that r({i∗}) = 0, and 0 ≤ r(S) ≤ |S| for any set S ⊆ [n].
Example 3. Consider a choice model where arm 1 is the GCW, and for each set S containing arm 1,
we have P1|S = 0.51 and Pi|S = 0.49

|S|−1 ∀i ∈ S \{1}. Then r({1, . . . ,m}) = 0.51× (m−1)−0.49.

In the above example, the regret increases linearly as we increase m. The following gives an example
where the arms are much more ‘competitive’ and regret is smaller.
Example 4. Consider the MNL choice model with weights v1 = log(1 + ε), for ε > 0, and
v2 = · · · = vn = 0. Then r({1, · · · ,m}) =

∑
i∈S

ev1−evi∑
j∈S e

vj = ε(m−1)
m+ε .

The regret here increases much more slowly in terms of m. Note that our regret is not necessarily
well-defined in the dueling bandits setting, due to the need to consider choice probabilities for sets of
size 3 even when one plays only sets of size 2. In the supplementary material, we give results for an
additional notion of regret that is a direct generalization of the dueling bandit regret, and allows for a
more direct comparison between our framework and the dueling bandits framework.

Under the above notion of regret, the goal of an algorithm A is to minimize its cumulative regret over
T trials defined as: R(T ) =

∑T
t=1 r(St).

3 A Fundamental Lower Bound
In this section we present a regret lower bound for our choice bandits problem. We say that an
algorithm is strongly consistent under GCC if its expected regret over T trials is o(T a) for any
a > 0 under any model in this class. Before presenting the lower bound let us define the following
distribution dependent quantities.

∆i∗i|S =
Pi∗|S − Pi|S
Pi∗|S + Pi|S

, ∆GCC
max := max

S:|S|≤k
max
i∈S

∆i∗i|S , ∆GCC
min := min

S:|S|≤k
min
i∈S

∆i∗i|S . (3.1)

3Note that we are not working in the pure exploration setting, where all sets incur equal cost during
exploration.
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The following theorem presents a lower bound for any strongly consistent algorithm.
Theorem 1. Given a set of arms [n], choice set size bound k ≤ n, parameter ∆ ∈ (0, 1), and any
strongly consistent algorithm A under GCC, there exists a GCC choice model with ∆GCC

min = ∆ such
that when choice outcomes are drawn from this model we have

lim inf
T→∞

E [R(T )]

log T
= Ω

(
n− 1

∆

)
,

where T is the time-horizon. If the underlying model is MNL with parameters v1, v2, · · · vn ∈ R,
then: lim infT→∞

E[R(T )]
log T = Ω

(∑
i∈[n]\{i∗}

1
∆MNL

i∗i

)
where ∆MNL

i∗i = evi∗−evi
evi∗+evi , for i ∈ [n] \ {i∗}.

Discussion. The above bound shows that any algorithm for the choice bandits problem needs to incur
Ω(n log T ) regret in the worst case. Note that the above lower bound does not depend on the choice
set size parameter k. If the choices are generated from an underlying MNL model, then the above
theorem gives an instance-dependent lower bound for the regret of any algorithm. Note that [23] also
provided a lower bound under MNL for our notion of regret, however, their bound depends on the
worst-case gap between i∗ and any other arm i 6= i∗, while we provide a more fine-grained bound
under MNL which depends on gaps between i∗ and each individual arm i ∈ [n].
In order to prove the above bound we construct a pair of instances that have different GCW arms,
and use the information divergence lemma of [42] in order to characterize the minimum number of
samples needed in order to collect the ‘information’ needed to separate these two instances.
Remark 1. In order to prove a lower bound for our choice bandits problem one may also be able to
use the lower bound given in [43], by casting our problem as a structured bandit problem. However,
the lower bound of [43] is in terms of the solution of a linear program, and one will then need to
design a distribution over hard instances in order to quantify the solution of this linear program in
terms of the gap parameter ∆GCC

min . One of the main novelty of our bound is this construction of hard
instances that allows us to quantify the lower bound in terms of ∆GCC

min .

4 Algorithm
In this section we will present our algorithm for the choice bandits problem, termed Winner Beats
All (WBA). WBA divides its execution into rounds and each round can contain multiple trials. We
will use r as an global index for a round, and t as an global index for a trial. For each round r, WBA
maintains a set Ar of active arms, which are a set of arms for which the algorithm is still not confident
enough that these are ‘bad’ arms. Note that an arm that is inactive in a particular round, can become
active in a later round. We also maintain a set Q that is initialized to being empty at the beginning of
each round and keeps track of the arms in Ar that have been played so far in the round.

Given a trial t belonging to round r, WBA selects a special arm termed the ‘anchor’ arm, and a set
S ⊆ Ar \Q (arbitrarily) of up to k − 1 arms in Ar that have not been played so far in round r. The
set S and at are selected such that at empirically performs better than each arm in S. The set S is
then played together with arm at (if |S| < k − 1, then other arbitrary arms from Ar are added to
the played set). The anchor arm is updated in every trial and is chosen so that one can quickly find
evidence that arms in S are not good.

Let yt be the feedback received in trial t when St was played including anchor at. For all i, j ∈ [n],
let Nij(t) denote the number of times (up to round t) that either arm i or j was chosen when arm j is
the anchor, i.e. Nij(t) :=

∑t
t′=1 1(at′ = j, {i, j} ⊆ St′ , yt′ ∈ {i, j}).

For each i, j ∈ [n] and trial t, such that Nij(t) > 0, the algorithm maintains an estimate of the
marginal probability of arm i beating the arm j as

P̂ij(t) :=
1

Nij(t)

t∑
t′=1

1(at′ = j, {i, j} ⊆ St′ , yt′ = i) , (4.1)

which is the fraction of times i was selected (compared to j) when both i and j were played together
and j was the anchor. (When Nij(t) = 0, we can simply take P̂ia(t) to be 1/2.) Similar to [44], let
us define an empirical divergence Ii(t, S) which provides a certificate that an arm i is worse than
(some) arms in S, as Ii(t, S) =

∑
j∈S 1[P̂ij(t) ≤ 1

2 ] ·Nij(t) · d(P̂ij(t),
1
2 ), where d(P̂ij ,

1
2 ) is the

KL-divergence defined as d(P,Q) = P log(PQ ) + (1− P ) log( 1−P
1−Q ), for P,Q ∈ [0, 1]. If Ii(t, S) is
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0, it means that arm i is empirically at least as good as all other arms in S, and a higher Ii(t, S) would
suggest that arm i is most likely ‘bad’. For a constant C, we define the condition Ji(t, C) for arm
i ∈ [n] and round t as Ji(t, C) = 1

{
∃S ⊆ [n] : Ii(t, S) ≥ |S| log(nC) + log(t)

}
. If Ji(t, C) = 1

for some i, it means that there exists a certificate S to show that i is not likely the best arm as it loses
to some arms in S by a large ‘margin’.4 The larger the set S the larger the margin needs to be. This
condition can be evaluated in polynomial time by computing argmaxS⊆[n] Ii(t, S)− |S| · log(nC)

and checking if it is greater than log(t) (details in supplementary material).

Finally, let t be the final round in a round r. In order to decide which arms should be included in the
next set of active arms Ar+1 we simply check the condition Ji(t, C) for each i ∈ [n] and include all
arms for which Ji(t, C) = 0 holds. Note that the set of active arms Ar+1 can be empty, in which
case we will simply play the anchor arm until it becomes non-empty in the future. The anchor arm in
each trial is the arm which empirically beats the maximum number of unplayed arms in the current
round. Detailed pseudo-code for WBA is given in Algorithm 1.

5 Regret Analysis

In this section we will prove a regret upper bound for our WBA algorithm. The following theorem
gives the upper bound.
Theorem 2. Let n be the number of arms, k ≤ n be the choice set size parameter, and i∗ be the
GCW arm . If the multiway choices are drawn according to a GCC choice model with ∆GCC

min and
∆GCC

max defined in Equation 3.1, then for any C ≥ 1/(∆GCC
min )4, the expected regret incurred by WBA

is upper bounded by

E [R(T )] ≤O
(
n2 log n

(∆GCC
min )2

)
+O

(
n log(TC) · ∆GCC

max

(∆GCC
min )2

)
,

where T is the (unknown) time-horizon. If the underlying model is MNL with weights v1, · · · , vn ∈ R,
then for any C ≥ 1/(∆MNL

min )4, we have

E [R(T )] ≤O
(
n2 log n

(∆MNL
min )2

)
+O

 ∑
i∈[n]\i∗

log(TC)

∆MNL
i∗i

 ,

where ∆MNL
i∗i = evi∗−evi

evi∗+evi and ∆MNL
min := mini6=i∗ ∆MNL

i∗i .

Remark 2 (Selecting C). A value of T 4 for the parameter C suffices for Theorem 2 to hold, giving a
regret upper bound of O(log(TC)) = O(log(T 5)) = O(log(T )). (If T is not known, one can use the
doubling trick.) To see this note that in order to obtain any non-trivial upper bound for our algorithm,
∆min has to be larger than 1/T . Hence, either ∆min is upper bounded by 1/T , or the instance is too
hard to allow any non-trivial upper bound. Therefore, C ≥ T 4 would suffice whenever the instance
is not already too hard. We actually believe setting C = T 4 may be somewhat pessimistic (it arises
from taking a union bound over all possible states of the algorithm in our regret analysis – indeed, in
our experiments, we set C = 1 for all datasets, and our algorithm still demonstrates sublinear regret
with this choice – but it certainly suffices, and the regret bound with C = T 4 is at most a constant
factor 5 times what one might get with C = 1 if the regret bound holds in that case.

Discussion. The above theorem yields a O(n2 log n+ n log T ) upper bound on regret. Comparing
this bound with the lower bound given in Section 3, one can observe this upper bound is asymptotically
order-optimal. This upper bound is similar (in order-wise sense) to the upper bounds obtained for
some popular dueling bandit algorithms such as RUCB [6], RMED [44], DTS [45] etc. It is also
important to note that our regret bound does not depend directly on the choice set size k. However, the
behavior of this bound is more subtle and depends on the specific multiway choice model through the
gap parameters ∆GCC

max and ∆GCC
min . We also note that while in general the regret can behave differently

for different models, in our experiments, we find that there are choice models (including some in real
data) where our algorithm empirically achieves smaller regret when allowed to play sets of size k > 2
as compared to k = 2. If the underlying model is MNL, then our algorithm achieves asymptotically

4Note that the above condition is similar to condition used in [44], except that they only use the set [n] as a
certificate instead of all possible subsets S ⊆ [n]. In our analysis and experiments will show that this condition
is an improvement over the condition used in [44] for the case of dueling bandits.
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Algorithm 1 Winner Beats All (WBA)

1: Input: set of arms [n], size of choice set k, parameter C
2: t← 1, r ← 1, Ar ← [n], at ← Unif([n]), Q← ∅
3: P̂ij ← 1

2
, ∀i, j ∈ [n]

4: while t ≤ T do
5: Select largest S ⊆ Ar \ {Q ∪ at} with |S| ≤ k − 1 and

P̂iat ≤ 1
2

, ∀i ∈ S
6: Let St ← S ∪ {at}; while |St| < k and Ar \ St 6= ∅: add

an (arbitrary) arm from Ar \ St to St

7: Play set St and receive yt ∈ St as feedback; Q← Q ∪ S
8: For all i ∈ St, calculate P̂iat(t) and Ji(t, C)

9: if 6 ∃ i ∈ Ar \ {Q ∪ at} such that P̂iat(t) ≤ 1
2

then
10: at+1 ← argmaxi∈[n]

∑
j∈[n]\Q 1[P̂ji(t) ≤ 1

2
]

11: else
12: at+1 ← at
13: if Q = Ar or S = ∅ then
14: Ar+1 ← ∅, r ← r + 1
15: for i ∈ [n] do
16: if Ji(t, C) = 0, then Ar ← Ar ∪ {i}
17: at+1 ← argmaxi∈[n]

∑
j∈[n] 1[P̂ji(t) ≤ 1

2
], Q← ∅

18: t← t+ 1

Figure 1: Datasets used in our experi-
ments
1. MNL-Exp: MNL weights drawn i.i.d.

from Exp(λ = 3.5);

2. MNL-Geom: Geometrically decreasing
MNL weights: 1, 1

2
, . . . , 1

2n−1 ;

3. GCC-One: GCC model defined in Exam-
ple 3;

4. GCC-Two: GCC model similar to Exam-
ple 3, but with different choice probabili-
ties;

5. GCC-Three: GCC model similar to Ex-
ample 3, but with different choice proba-
bilities;

6. Sushi: Choice model extracted from the
Sushi dataset [47];

7. Irish-Dublin: Choice model extracted
from Irish-Dublin election dataset;

8. Irish-Meath: Choice model extracted
from Irish-Meath election dataset.

optimal instance-wise regret that does not depend on k. This instance-wise bound under MNL is an
improvement over the upper bound for the MaxMinUCB algorithm under MNL for (top-1) choice
feedback which depends on worst-case gap parameters [23]. An important point to note is that we do
not need a specialized algorithm for MNL in order to achieve an instance-wise bound under MNL.

Proof Ideas. Our algorithm is based on the idea of isolating a ‘good’ anchor arm and playing
arms that are competitive against this anchor. Hence, in order to prove a regret upper bound we
need to show that the GCW i∗ would eventually beat every other arm i, i.e. P̂i∗i(t) (Equation 4.1)
would eventually become larger than 1/2. In this case i∗ would become the anchor arm. However,
an important technical challenge here is to bound the deviation in these pairwise estimates P̂i∗i(t)
obtained from multiway choices. In the past, [46] have shown that if one uses rank breaking to
extract pairwise estimates under the MNL model, then these pairwise estimates will be concentrated.
However, this concentration result relies crucially on the independence from irrelevant attributes (IIA)
property of MNL which states that for any two arms, the odds of choosing one over the other in any
set remains the same regardless of which set is shown. This concentration result does not apply to our
setting as the IIA property does not hold for general GCC models beyond the MNL.

Below we outline a novel coupling argument that allows us to prove concentration for the extracted
pairwise estimates between the GCW arm i∗ and any other arm i ∈ [n]

Lemma 2 (Concentration). Consider a GCC choice model with GCW i∗. Fix i ∈ [n]. Let S1, · · · , ST
be a sequence of subsets of [n] and y1, · · · , yT be a sequence of choices according to this model, let
Ft = {S1, y1, · · · , St, yt} be a filtration such that St+1 is a measurable function of Ft. We have

Pr(P̂i∗i(t) ≤ PGCC
i∗i − ε and Ni∗i(t) ≥ m) ≤ e−d(PGCC

i∗i −ε,P
GCC
i∗i )·m (5.1)

where PGCC
i∗i = minS:|S|≤k,{i∗,i}⊆S

Pi∗|S
Pi∗|S+Pi|S

, and d(·, ·) is the KL-divergence.

Proof Sketch. Let us consider an alternate process for generating multiway choices y′t from sets
St. In this process, given any t and a set St such that i∗, i ∈ St with at = i, we first generate a
Bernoulli random variableXt with probability Pi∗|S +Pi|S . IfXt = 0 we set y′t = j with probability

Pj|S
1−Pi∗|S−Pi|S

, for j ∈ S \ {i, i∗}. If Xt = 1 then we sample another Bernoulli random variable

Zt with probability PGCC
i∗i . If Zt = 1 then we let y′t = i∗, otherwise if Zt = 0 we set y′t = i. Let

Pi∗i|St
= Pi∗|St

/(Pi∗|St
+ Pi|St

). Now, we couple y′t and yt as follows: if y′t ∈ St \ {i} then we
let yt = y′t, otherwise if y′t = i then we let yt = i∗ with probability (Pi∗i|St

− PGCC
i∗i )/(1− PGCC

i∗i )

and let yt = i with probability (1 − Pi∗i|St
)/(1 − PGCC

i∗i ). One can verify that yt is distributed
according to the correct underlying choice distribution. It is now easy to observe that the estimates
P̂i∗i(t) under yt will always be larger than the estimates P̂ ′i∗i(t) under y′t, hence, we will have that
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Figure 2: Regret v/s trials for our algorithm WBA (for k = 2) against dueling bandit algorithms (DTS, BTM,
RUCB and RMED1) (the shaded region corresponds to std. deviation). As can be observed, our algorithm is
competitive against these algorithms.
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Figure 3: Regret v/s trials for our algorithm WBA against the MaxMinUCB (MMU) algorithm for k = 2
and k = 5 (the shaded region corresponds to std. deviation). We observe that our algorithm is better than
MaxMinUCB on all datasets for both values of k. We further observe that under several datasets the regret
achieved by our algorithm for k > 2 is better than the regret of our algorithm for k = 2.

Pr(P̂i∗i(t) ≤ x) ≤ Pr(P̂ ′i∗i(t) ≤ x) for any x > 0. One can then show concentration for the coupled
estimates P̂ ′i∗i(t), and use it to bound the deviation in P̂i∗i(t).

Note that the above lemma only shows concentration for the pairwise estimates P̂i∗i(t) between
i∗ and any other arm i ∈ [n], but not for estimates P̂ij(t) between two arbitrary arms i ∈ [n] and
j ∈ [n]. However, in order to prove our result we only need concentration of estimates between i∗
and any other arm i ∈ [n]. We believe that the above concentration lemma is of independent interest,
and might be useful in other learning from multiway choice settings beyond MNL.

Once we have bounded the deviation for the pairwise estimates, we bound the number of rounds r in
which i∗ is not a part of the active set Ar. We then bound the expected number of times that there
exists an arm i such that P̂i∗i(t) < 1

2 , thus bounding the number of trials until i∗ becomes the anchor.
Finally, once i∗ is the anchor arm, we bound the regret incurred due to sub-optimal arms.

6 Experiments

We compared the performance of our WBA algorithm and other existing algorithms on our choice
bandit problem under different choice models. The first two choice models were MNL models, the
next three were from the GCC class, and the last three we extracted from real-world datasets. Details
of these models are in Figure 1 (additional details can be found in the supplementary material).

Below we describe the different sets of experiments that were performed. Each experiment was
repeated 10 times. The value of n was 100 for all synthetic datasets, 16 for Sushi, 8 for Irish-Dublin,
and 12 for Irish-Meath. The parameter C in our algorithm was set to 1.
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Comparison with Dueling Bandit Algorithms (k = 2). For the special case of k = 2, we compared
our algorithms with a representative set of dueling bandit algorithms (RMED1 [11], DTS [45], RUCB
[6], BTM [2]). Note that the purpose of these experiments is merely to perform a sanity check
and ensure that our algorithm performs reasonably well compared with dueling bandit baselines
when k = 2; the goal is not to argue that our choice bandit algorithm beats the state-of-the-art
for the specialized dueling bandit (k = 2) setting. We set α = 0.51 for RUCB and DTS, and
f(K) = 0.3K1.01 for RMED, and γ = 1.3 for BTM. Figure 2 contain plots for these comparisons.
Our algorithm either performs better or similar to RMED1, RUCB, and BTM on all datasets; and is
competitive with DTS on most of the datasets.

Comparison with MaxMinUCB Algorithm [23] (k > 2). We compared the performance of our
algorithm with the recent MaxMinUCB algorithm [23] that was designed and analyzed primarily for
MNL choice models under the same notion of regret as ours. 5 We set the parameter α to be 0.51 for
MaxMinUCB. Figure 3 contain plots for these experiments for k = 2 and k = 5. We observe that
our algorithm is much better in terms of regret than MaxMinUCB under all datasets for both values
of k. One should note that WBA performs better than MaxMinUCB even under the MNL datasets,
even though MaxMinUCB is specialized to MNL while our algorithm works under more general
models. We further observe that under several datasets (GCC-One, GCC-Two, Sushi, Irish-Dublin)
the regret achieved by our algorithm for k > 2 is better than for k = 2. Note that even though our
study of more general choice feedback is motivated by applications where it might be desirable to
pull sets of size larger than 2 due to reasons other than improving regret, these experimental results
show that there exist settings of choice models (including some in real data) where our algorithm
empirically achieves a smaller regret when allowed to play sets of size k > 2 as compared to k = 2.

7 Conclusion
We have introduced a new framework for bandit learning from choice feedback that generalizes
the dueling bandit framework. Our main result is to show that computationally efficient learning is
possible in this more general framework under a wide class of choice models that is considerably
more general than the previously studied class of MNL models. Our algorithm for this general setting,
termed Winner Beats All (WBA), achieves order-wise optimal regret for the general class of GCC
models. For the special case k = 2, WBA is competitive with previous dueling bandit algorithms;
for k > 2, WBA outperforms the recently proposed MaxMinUCB (MMU) algorithm even on MNL
models for which MMU was designed.
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Broader Impact

The purpose of this paper is to understand whether efficient learning is possible in a bandit setting
where one does not receive quantitative feedback for an individual arm but rather relative feedback
in the form of a multiway choice. It is well-known that quantitative judgments of humans can have
biases; our algorithm, which learns from relative multiway choices, can help alleviate these biases.
Moreover, by receiving larger choice sets from our algorithm, humans can have a better sense of the
quality distribution of arms, and can make more informed choices.

5 We also considered the SelfSparring algorithm of [26] and the battling bandit algorithms of [27], which
are applicable to choice models defined in terms of an underlying pairwise comparison model P . However,
these algorithms all return multisets St, and any simple reduction of such multisets to strict sets as considered
in our setting (as well as the setting of [23]) can end up throwing away important information learned by the
algorithms, resulting in a comparison that could be unfair to those algorithms. We did explore such reductions
and our algorithm easily outperformed them, but we chose not to include the results here due to this issue of
fairness. (Moreover, under the MNL model, [23] already established that MaxMinUCB outperforms those
algorithms – presumably under similar reductions – so in the end, we decided such a comparison would provide
little additional value here.)
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Another advantage of our setting is that we do not rely on historic data as our data collection is
online. Hence, one does not need to worry about past biases being reflected in the choice datasets.
However, one has to be cautious about the use of our algorithm in applications where arms represent
individuals/entities such as job applicants, property renters etc. In these applications, the choices
of people can be biased against certain individuals/groups, thereby hurting the chances of these
individuals/groups to be selected by our algorithm. Here, depending on the application, one might
need to consider imposing some form of fairness constraints on the choice sets output by our algorithm
in order to prevent any discrimination against such individuals/groups.
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Choice Bandits
Supplementary Material

A Organization

We provide additional discussion about the related work in Appendix B. We provide the proof of our regret lower
bound (Theorem 1) in Appendix C. We prove a concentration inequality for pairwise estimates in Appendix D. We
then provide the proof of our regret upper bound (Theorem 2) in Appendix E. In Appendix F we provide additional
details about our experimental setup. In Appendix G we provide experimental results for an alternate notion of regret.
Appendix H contains some technical lemmas used in the proof of the upper bound result in Theorem 2.

B Related Work

There has been some recent interest in bandit settings where more than two arms are played at once (although no
previous work considers choice models at the level of generality we do). We review related work here and provide a
summary in Table 1.
Multi-dueling bandits: In multi-dueling bandits [1, 2, 3], the learner pulls a set St of k items; however, the feedback
received by the learner is assumed to be drawn from a pairwise comparison model (in particular, the learner observes
some subset of the

(
k
2

)
possible pairwise comparisons among items in St). In contrast, in our choice bandits setting,

the learner receives the outcome of a direct multiway choice among the items in St, generated from a multiway choice
model.
Combinatorial bandits: In combinatorial (semi) bandits [4, 5, 6, 7], each arm i is associated with an unknown
random variable (stochastic reward) Yi; the learner pulls a set St of up to k arms, and observes the realized rewards
yt(i) for all arms i in St. In contrast, we only observe the arm that is chosen from the set St that is played.
Combinatorial bandits with relative feedback: In this very recent framework [8], the learner pulls a set St of up
to k arms, and observes top-m ordered feedback drawn according to the MNL model, for some m ≤ k. In contrast,
we only observe the (top-1) choice feedback from the set St that is played. Moreover, we study a much more general
class of choice models than the MNL model studied by them.
Stochastic Click Bandits: In stochastic click bandits [9], the learner pulls an ordered set of k arms/documents, and
observes clicks on a subset of these documents, drawn according to an underlying click model which is a probabilistic
model for click generation over an ordered set. However, click models in their setting are different than choice models
in our setting, and neither can be cast as a special case of the other.
Battling Bandits: Another related setting is that of battling bandits [10], where the learner pulls a set St of exactly k
arms and receives a feedback indicating which arm was chosen. However, their setting considers a specific pairwise-
subset (PS) choice model that is defined in terms of a pairwise comparison model, whereas we consider much more
general choice models.
Preselection Bandits: There has been a recent framework called preselection bandits [11] where two settings are
considered: (1) where the learner pulls a set St of size exactly k, (2) where the learner pulls a set St of any size less
than n. In both settings the learner receives feedback drawn from the MNL model. Firstly, the two settings considered
by this paper are different than our setting where the learner plays a set of size up to k. Secondly, we study a much
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Rep. Arms Pulled Feedback in
Problem Paper in Round t Round t Goal

Dueling Bandits [19] (it, jt) ∈ [n]2 yt ∈ {it, jt} Min. regret w.r.t. best arm
Multi-dueling Bandits [3] St ∈ [n]k Yt={0, 1, ∅}k×k Min. regret w.r.t. best arm
Combinatorial Bandits [6] St ∈ S ⊆ 2[n]:|St| ≤ k yt(i) ∈ R ∀i ∈ St Min. regret w.r.t. top-k arms

Com. Ban. Relative Feed. [8] St ⊆ [n]:|St| ≤ k Ot ⊆ St, |Ot| ≤ m Min. reg. w.r.t. best arm (MNL)
Battling Bandits [10] St ∈ [n]k yt ∈ St Min. reg. w.r.t. best arm (PS)

Stochastic Click Bandits [9] Ot ⊆ [n]:|Ot| = k, yt ⊆ Ot Max. expected clicks
Dynamic Assortment [13] {0} ∪ St ⊆ [n]:|St| ≤ k yt ∈ St Max. expected revenue

Choice Bandits This paper St ⊆ [n]:|St| ≤ k yt ∈ St Min. regret w.r.t. best arm

Table 1: Overview of related work in regret minimization settings. There are several definitions of ‘best’ arm; the
reader is encouraged to refer to the relevant papers and to our problem setting for details. (Note: in multi-dueling
bandits, ∅ denotes no feedback; in stochastic click bandits, Ot denotes an ordered set; in combinatorial bandits, S
denotes a set of allowed subsets; in dynamic assortment optimization, 0 denotes the “no-purchase” option.)

more general class of choice models than the MNL model studied by them.
Dynamic assortment optimization: In dynamic assortment optimization [12, 13, 14, 15, 16], there are n products
and each product is associated with a revenue. The learner plays an assortment St of up to k products, and observes a
feedback indicating which (if any) of the products was purchased; the goal of the learner is to maximize the expected
revenue.
Best-of-k bandits (PAC setting). [17] consider a best-of-k bandits setting, where again the learner pulls a set St of k
arms; however here each arm i is associated with an unknown random variable (stochastic reward) Yi. Of the various
types of feedback that are considered, the marked bandit feedback corresponds to a setting that is similar to our choice
bandits framework, however, the analysis in [17] is in the PAC/pure exploration setting, while ours is in the regret
minimization setting.
Top-k identification under MNL model (PAC setting). Recently, there has also been work on identifying the top-k
items under an MNL model from actively selected sets St in the PAC/pure exploration setting [18].

C Proof of Lower Bound (Theorem 1)

We say that an algorithm is strongly consistent under GCC if its expected regret over T trials is o(T a) for a constant
a < 1 under any model in this class.

Theorem 1. Given a set of arms [n], choice set size bound k ≤ n, parameter ∆ ∈ (0, 1), and any strongly consistent
algorithmA under GCC, there exists a GCC choice model with ∆GCC

min = ∆ such that when choice outcomes are drawn
from this model we have

lim inf
T→∞

E [R(T )]

log T
= Ω

(
n− 1

∆

)
,

where T is the time-horizon. If the underlying model is MNL with parameters v1, v2, · · · vn ∈ R, then:

lim inf
T→∞

E [R(T )]

log T
= Ω

 ∑
i∈[n]\{i∗}

1

∆MNL
i∗i

 ,

where ∆MNL
i∗i = evi∗−evi

evi∗+evi , for i ∈ [n] \ {i∗}.

The above theorem states that there exists a model in the GCC class where any strongly consistent algorithm needs to
incur Ω(n log T ) regret. If the underlying model is MNL, then such an algorithm will again incur Ω(n log T ) regret,
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however, we provide a more refined instance-wise bound in this case. Also note the difference in quantifiers ‘there
exists’ for GCC and ‘for any’ for MNL.
We will prove this theorem using the following change of measure lemma of [20].

Lemma 3 ([20]). Consider two multi-armed bandit instances where A is the set of arms, and the two different collec-
tions of reward distributions are µ = {µi : ∀i ∈ A} and µ′ = {µ′i : ∀i ∈ A}, let it be the arm played at trial t by
an algorithm and Xt be the reward at time t, and let Ft = σ(i1, X1, · · · , it, Xt) be the sigma algebra upto time t.
Consider a FT measurable random variable Z ∈ [0, 1], then∑

i∈A
Eµ[Ni(T )]KL(µi, µ

′
i) ≥ d(Eµ[Z],Eµ′ [Z]) ,

where Ni(T ) denotes the number of pulls of arm i in T trials and KL is the Kullback-Leibler divergence between two
distributions, and d(p; q) is the Kullback-Leibler divergence between Bernoulli distributions with parameters p and q.

In the proof of the lower bound we first bound the number of times an arm is played using the above lemma, and then
bound the total regret due to this arm. Let us first define the regret per arm i ∈ [n] as

R(T, i) =
T∑
t=1

1[i ∈ St] · (Pi∗|St∪i∗ − Pi|St∪i∗) .

We will now provide the proof of the lower bound.

Proof of Theorem 1. Given a ∆ ∈ (0, 1), we will construct instance P of the choice bandits problem with n arms such
that the GCW arm i∗ is arm 1. Under this instance, given any set S such that i∗ ∈ S, we have Pi∗|S = 1+∆

|S|(1−∆)+2∆

and for any i ∈ S \ {i∗}, Pi|S = 1−∆
|S|(1−∆)+2∆ . Given any set S such that i∗ /∈ S, we will let an arbitrary chosen arm

i∗S ∈ S be the arm with the highest choice probability in S. We have Pi∗S |S = 1+∆
|S|(1−∆)+2∆ , and for any i ∈ S \ {i∗S},

Pi|S = 1−∆
|S|(1−∆)+2∆ . Note that i∗S will be equal to i∗ when i∗ ∈ S. For any set S with |S| ≥ 2 and i ∈ S, the instance

P also satisfies that 3
2

(
Pi∗|S∪i∗ − Pi|S∪i∗

)
≥ Pi∗S |S − Pi|S .

For i ∈ [n] \ {1}, we will now modify this instance to create a new instance P′ where the GCW arm is i. Now, in the
new instance, for any set S, we will have that P ′i∗S |S := Pi|S and P ′i|S := Pi∗S |S and for all j ∈ S \ {i∗S , i} we will
have P ′j|S := Pj|S . Clearly, the best arm in this new instance is the arm i as it has the highest choice probability in
any choice set. It is also easy to verify that both instances belong to the GCC class.
Now, given any set S, the probability distributions PS and P ′S associated with this set are categorical distributions
where the feedback is j with probability Pj|S and Pj′|S , respectively. Now, let A := {S ⊆ [n] : |S| ≤ k} be the set of
choice sets of size at most k. We can then use Lemma 3 with arms corresponding to sets in A and the reward for set S
being drawn from categorical distributions PS and P ′S . We then have the following bound–∑

S∈A
EP[NS(T )]KL(PS , P

′
S) ≥ d(EP[Z],EP′ [Z]) .

where NS(T ) is the number of times set S is played in T rounds, and Z is any FT measurable random variable. Also,
let Ai = {S ∈ A \ {i} : i ∈ S} be all sets that contain i except the singleton set {i}. Since, we have that for any
S ∈ A \Ai the KL divergence KL(PS , P

′
S) = 0, then the above bound becomes:∑

S∈Ai

EP[NS(T )]KL(PS , P
′
S) ≥ d(EP[Z],EP′ [Z]) .

Given any set S ∈ Ai we can now calculate the KL divergence between the two categorical distributions using the
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inequality KL(p, q) ≤
∑
x∈X

(p(x)−q(x))2

q(x) , where X is the support of the two distributions.

KL(PS , P
′
S) ≤

∑
j∈S

(Pj|S − P ′j|S)2

P ′j|S

=
(Pi|S − P ′i|S)2

P ′i|S
+

(Pi∗S |S − P
′
i∗S |S

)2

P ′i∗S |S

=
(Pi|S − Pi∗S |S)2

Pi∗S |S
+

(Pi|S − Pi∗S |S)2

Pi|S

Now, similar to [8], let Z be the fraction of times out of T the singleton set {i} is played, i.e. Z = Ni(T )/T where
Ni(T ) counts the number of times set {i} is played. We will then have

d(EP[Z],EP′ [Z]) ≥
(

1− EP[Ni(T )]

T

)
ln

T

T −EP′ [Ni(T )]
− ln 2 .

Since, the algorithm is strongly consistent it can only play a suboptimal arm {i} only a sublinear number of times, i.e.
EP[Ni(T )] = o(Tα) and T −EP′ [Ni(T )] = o(Tα) for some α < 1. Hence, we have that

lim
T→∞

1

lnT
d(EP[Z],EP′ [Z]) ≥ lim

T→∞

1

lnT

(
1− o(Tα)

T

)
ln

T

o(Tα)
− ln 2 ≥ (1− α) . (C.1)

Combining this with the previous inequality, we have that

lim
T→∞

1

lnT

∑
S∈Ai

EP[NS(T )]

(
(Pi|S − Pi∗S |S)2

Pi∗S |S
+

(Pi|S − Pi∗S |S)2

Pi|S

)
≥ (1− α)

=⇒ lim
T→∞

1

lnT

∑
S∈Ai

EP[NS(T )] · (Pi|S − Pi∗S |S)

(
(Pi|S − Pi∗S |S)

Pi∗S |S
+

(Pi|S − Pi∗S |S)

Pi|S

)
≥ (1− α)

=⇒ lim
T→∞

1

lnT

∑
S∈Ai

EP[NS(T )] · 3

2
· (Pi∗|S∪i∗ − Pi|S∪i∗)

(
(Pi∗S |S − Pi|S)

Pi∗S |S
+

(Pi∗S |S − Pi|S)

Pi|S

)
≥ (1− α)

lim
T→∞

1

lnT
E[R(T, i)] · 3

2

(
(Pi∗S |S − Pi|S)

Pi∗S |S
+

(Pi∗S |S − Pi|S)

Pi|S

)
≥ (1− α) ,

where the second last equation follows from the properties of the underlying instance, and the last equation follows
from the definition of regret per arm. We will now argue that(

(Pi∗S |S − Pi|S)

Pi∗S |S
+

(Pi∗S |S − Pi|S)

Pi|S

)
=

2∆

1 + ∆
+

2∆

1−∆
=

4∆

(1 + ∆)(1−∆)
.

Using this we will have that

lim
T→∞

1

lnT
E[R(T, i)] · 3

2

(
(Pi∗S |S − Pi|S)

Pi∗S |S
+

(Pi∗S |S − Pi|S)

Pi|S

)
≥ (1− α)

=⇒ lim
T→∞

1

lnT
E[R(T, i)] · 4∆

(1 + ∆)(1−∆)
≥ (1− α) · 2

3

=⇒ lim
T→∞

1

lnT
E[R(T, i)] ≥ (1− α) · (1 + ∆)(1−∆)

4∆
· 2

3
.
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We also have that (1+∆)(1−∆)
4∆ = Ω( 1

∆ ) for any ∆ bounded away from 1. Since, we have that R(T ) =
∑
i∈[n]R(T, i)

we get that

lim
T→∞

1

lnT
E[R(T )] = Ω

(
n− 1

∆

)
,

which concludes the proof of the lower bound for the general GCC class.
Now, given any MNL instance, we also derive a regret lower bound which gives the minimum instance-wise regret
any strongly-consistent algorithm for the GCC class needs to incur under this MNL instance.
Consider an instance P with an underlying MNL model with weights v1, · · · , vn. We will assume that all these
weights are distinct for simplicity, otherwise we can add a small perturbation to these weights to break ties. We will
re-parameterize this instance, and let wi := log vi for any i ∈ [n]. Given any set S, let wS =

∑
j∈[n] wj . We

have that Pi|S = wi/wS for any i ∈ S. Given S, we will again let i∗S to be the arm that has the highest choice
probability in S, i.e. i∗S = argmaxi∈S wi. We will denote by κ the ratio of the maximum weight to minimum weight,
i.e. κ = maxi wi/minj wj .
For i ∈ [n] \ {1}, we will now modify this instance to create a new instance P′ where the GCW arm is i. In the new
instance, for any set S, we will have that P ′i∗S |S := Pi|S and P ′i|S := Pi∗S |S and for all j ∈ S \ {i∗S , i} we will have
P ′j|S := Pj|S . Clearly, the best arm in this new instance is the arm i as it has the highest choice probability in any
choice set. It is also easy to verify that this new instance P′ belongs to the GCC class. Note that P′ might not belong
to the MNL class. Under the instance P we have that (1 + κ)(Pi∗|S∪i∗ − Pi|S∪i∗) ≥ (Pi∗S |S − Pi|S).
Given these two instances, we can follow steps analogous to the proof of the GCC case, to derive the following bound

lim
T→∞

1

lnT
E[R(T, i)] · (1 + κ)

(
(Pi∗S |S − Pi|S)

Pi∗S |S
+

(Pi∗S |S − Pi|S)

Pi|S

)
≥ (1− α) .

We now have that(
(Pi∗S |S − Pi|S)

Pi∗S |S
+

(Pi∗S |S − Pi|S)

Pi|S

)
=
wi∗S − wi

wi
+
wi∗S − wi
wi∗S

=
wi∗S − wi
wi∗S + wi

(
wi∗S + wi

wi
+
wi∗S + wi

wi∗S

)
≤ wi∗ − wi
wi∗ + wi

(3 + κ) = ∆MNL
i∗i (3 + κ)

Using the same steps as above we have that

lim
T→∞

1

lnT
E[R(T, i)] ≥ (1− α) · 1

∆MNL
i∗i

· 1

(3 + κ)(1 + κ)
.

Since, we have that R(T ) =
∑
i∈[n]R(T, i) we get that

lim
T→∞

1

lnT
E[R(T )] = Ω

 ∑
i∈[n]\{i∗}

1

∆MNL
i∗i

 ,

which concludes the proof of the lower bound for the MNL case.

Note that the lower bound for the MNL model also implies a lower bound for the general GCC class. However,
we chose to construct an instance outside MNL for the GCC lower bound in order to show that such a lower bound
also holds beyond the MNL. Also, note that the lower bound in [8] for MNL under MNL consistent algorithms is
worst-case while our lower bound for MNL under GCC consistent algorithms applies to all MNL instances.
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D A Concentration Inequality for Pairwise Estimates

In this section we will prove our concentration inequality that would be needed to bound the deviation in the pairwise
preference estimates extracted from multiway comparisons.

Lemma 2. Consider a GCC choice model with GCW i∗. Fix i ∈ [n]. Let S1, · · · , ST be a sequence of subsets of
[n] and y1, · · · , yT be a sequence of choices according to this model, let Ft = {S1, y1, · · · , St, yt} be a filtration
containing the history of execution of the algorithm such that St+1 is a measurable function of Ft. Let P̂i∗i(t) be the
empirical probability estimate of i∗ beating i calculated according to Equation 4.1, then for any given t ∈ [T ] we have
that

Pr
(
P̂i∗i(t) ≤ PGCC

i∗i − ε and Ni∗i(t) ≥ m
)
≤ e−d(PGCC

i∗i −ε,P
GCC
i∗i )·m (D.1)

where

PGCC
i∗i = min

S:|S|≤k,{i∗,i}⊆S

Pi∗|S

Pi∗|S + Pi|S
, (D.2)

and d(·, ·) is the KL-divergence between two Bernoulli distributions, and Ni∗i(t) :=
∑t
t′=1 1(at′ = i, {i∗, i} ⊆

St′ , yt′ ∈ {i∗, i}). The above bound implies the following bound

Pr

(
P̂i∗i(t) ≤

1

2
;Ni∗i(t) ≥ m

)
≤ e−d( 1

2 ,P
GCC
i∗i )m (D.3)

We also have the following bound–

Pr
(
P̂ii∗(t) ≥ PGCC

ii∗ + ε;Ni∗i(t) ≥ m
)
≤ e−d(PGCC

i∗i −ε,P
GCC
i∗i )·m (D.4)

where PGCC
ii∗ = 1− PGCC

i∗i .

Proof. We will first prove inequality D.1. Let Z1, Z2, · · · be a sequence of i.i.d. Bernoulli random variables with
probability of success PGCC

i∗i . We will initialize a counter C to 0. Let us consider an alternate process for generating
multiway choices y′t from sets St. In this process, given any t and a set St such that i∗, i ∈ St with at = i, we first
generate a Bernoulli random variable Xt with probability Pi∗|S + Pi|S . If Xt = 0 we sample a multinomial random
variable Yt such that Yt = j with probability Pj|S

1−Pi∗|S−Pi|S
, for j ∈ S \ {i, i∗}, and let y′t = Yt. If Xt = 1, then

we increase the counter C by 1, and sample the Bernoulli random variable ZC with probability PGCC
i∗i . If ZC = 1 we

declare i∗ as the choice, i.e. y′t = i∗, otherwise if ZC = 0 we declare i to be the choice. Let Pi∗i|S = Pi∗|S/(Pi∗|S +
Pi|S). Now, we couple the process generating y′t and the process generating yt as follows: if y′t ∈ St \ {i} then we let
yt = y′t, otherwise if y′t = i then we let yt = i∗ with probability (Pi∗i|St

− PGCC
i∗i )/(1 − PGCC

i∗i ) and let yt = i with
probability (1− Pi∗i|St

)/(1− PGCC
i∗i ). The first thing to check is that yt is drawn from the correct probabilities Pyt|St

according to the underlying choice model. We have, for any j ∈ St \ {i∗, i}

Pr{yt = j|St} = Pr{Xt = 0, Yt = j|St}
= Pr{Xt = 0|St}Pr{Yt = j|Xt = 0, St}

=
(
1− Pi∗|St

− Pi|St

)
·

Pj|St

1− Pi∗|St
− Pi|St

= Pj|St

6



We also have that

Pr{yt = i∗|St} = Pr{Xt = 1, Yt = i∗|St}+
Pi∗i|St

− PGCC
i∗i

1− PGCC
i∗i

· Pr{Xt = 1, Yt = i|St}

=
(
Pi∗|St

+ Pi|St

)
·

(
PGCC
i∗i + (1− PGCC

∗i ) ·
Pi∗i|St

− PGCC
i∗i

1− PGCC
i∗i

)
=
(
Pi∗|St

+ Pi|St

)
·
(
Pi∗i|St

)
= Pi∗|St

where the last inequality follows from definition of Pi∗i|S . The fact that Pr{yt = i|St} = Pi|S follows from the fact
that the choice probabilities sum to 1.
Let Wi∗i(t) =

∑t
t′=1 1(at′ = i, {i∗, i} ⊆ St′ , yt′ = i∗) and W ′i∗i(t) =

∑t
t′=1 1(at′ = i, {i∗, i} ⊆ St′ , y

′
t′ = i∗).

Due to the above coupling, we immediately have that Pr(Wi∗i(t)) ≥ Pr(W ′i∗i(t)) for any t ∈ [T ]. Then

Pr(Wi∗i(t) ≤ r) ≤ Pr(W ′i∗i(t) ≤ r)

for any r ≥ 0, and any t ∈ [T ]. Using this, we have that

Pr
(
P̂i∗i(t) ≤ PGCC

i∗i − ε;Ni∗i(t) ≥ m
)

= Pr
(
Wi∗i(t) ≤ Ni∗i(t) · (PGCC

i∗i − ε);Ni∗i(t) ≥ m
)

≤ Pr
(
W ′i∗i(t) ≤ Ni∗i(t) · (PGCC

i∗i − ε);Ni∗i(t) ≥ m
)

Now, using techniques similar to [21], we have the following bound

Pr

(
W ′i∗i(t)

Ni∗i(t)
≤ PGCC

i∗i − ε;Ni∗i(t) ≥ m
)

= Pr

(∑Ni∗i(t)
s=1 Zs
Ni∗i(t)

≤ PGCC
i∗i − ε;Ni∗i(t) ≥ m

)

=

t∑
r=m

Pr

(∑r
s=1 Zs
r

≤ PGCC
i∗i − ε;Ni∗i(t) = r

)

=
t∑

r=m

Pr

(∑r
s=1 Zs
r

≤ PGCC
i∗i − ε

)
Pr(Ni∗i(t) = r)

where the last equality holds because of the fact that Z1, Z2, · · · is an independent sequence of random variables that
do not lie in the sigma algebra of S1, · · · , St, X1, · · · , Xt. Using the KL-divergence based concentration inequality
from [22] we have that

Pr

(∑r
s=1 Zs
r

≤ PGCC
i∗i − ε

)
≤ e−d(PGCC

i∗i −ε,P
GCC
i∗i )r .

We then have that

t∑
r=m

Pr

(∑r
s=1 Zs
r

≤ PGCC
i∗i − ε

)
Pr(Ni∗i(t) = r) ≤

t∑
r=m

ed(PGCC
i∗i −ε,P

GCC
i∗i )r Pr(Ni∗i(t) = r) ≤ e−d(PGCC

i∗i −ε,P
GCC
i∗i )m

The proof of reverse direction follows from a similar coupling argument followed by the above concentration inequal-
ity.

Note that the above coupling technique has similarity to the coupling used in [21] in order to show concentration of
pairwise estimates under the MNL model. However, this argument relies on the IIA property of MNL, which does not
hold under general GCC models.
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E Proof of Regret Bound for WBA

In this section we will prove the regret bound for our WBA algorithm. The following theorem presents the bound.

Theorem 2. Let n be the number of arms, k ≤ n be the choice set size parameter, and i∗ be the GCW arm . If the
multiway choices are drawn according to a GCC choice model with ∆GCC

min and ∆GCC
max defined in Equation 3.1, then for

any C ≥ 1/(∆GCC
min )4, the expected regret incurred by WBA is upper bounded by

E [R(T )] ≤O
(
n2 log n

(∆GCC
min )2

)
+O

(
n log(TC) · ∆GCC

max

(∆GCC
min )2

)
,

where T is the (unknown) time-horizon. If the underlying model is MNL with weights v1, · · · , vn ∈ R, then for any
C ≥ 1/(∆MNL

min )4, we have

E [R(T )] ≤O
(
n2 log n

(∆MNL
min )2

)
+O

 ∑
i∈[n]\i∗

log(TC)

∆MNL
i∗i

 ,

where ∆MNL
i∗i = evi∗−evi

evi∗+evi and ∆MNL
min := mini6=i∗ ∆MNL

i∗i .

The proof of the above theorem hinges on three main lemmas given below. Before stating these lemmas, we would
like to remind the reader that the execution of our algorithm is divided in rounds and each round contain up to n trials.
The first lemma bounds the number of rounds arm i∗ is not in the active set.

Lemma 4 (Number of rounds where i∗ is not active). Fix an anchor arm a ∈ [n] \ {i∗}. The expected number of
rounds arm i∗ will not be a part of the active set is bounded as

E

[
T∑
r=1

1[i∗ 6∈ Ar]

]
≤ 2 .

We will define ar to be the arm that empirically beats all other arms at the end of round r − 1 if such an arm exists,
i.e.
∑
j∈[n] 1[P̂jar (t) ≤ 1

2 ] = n− 1, where t is the last trial in round r− 1. If there is no arm that empirically beats all
other arms then we will let ar = 0. If there are multiple such arms, then we will choose one arbitrarily. The following
lemma will now bound the number of rounds arm i∗ does not empirically beat every other arm.

Lemma 5 (Time when i∗ is not the empirically best arm). The total number of rounds when the best arm i∗ will not
be the empirically best arm, even when it is in the active set, is upper bounded as

E

[
T∑
r=1

1[ar 6= i∗, i∗ ∈ Ar]

]
≤

∑
i∈[n]\{i∗}

1

exp
{
d(1/2, PGCC

i∗i )
}
− 1

,

where PGCC
i∗i is defined in Equation D.2.

Note that if ar = i∗ then the anchor arm in all the trials in that round becomes i∗. Let us define the regret per arm
i ∈ [n] for a set S as

r(S, i) = 1[i ∈ S] · (Pi∗|S∪i∗ − Pi|S∪i∗) .
The following lemma now bounds the regret incurred due to each suboptimal arm when played against the anchor i∗.

Lemma 6 (Regret due to a bad arm). Given an arm i ∈ [n] \ {i∗} the expected regret incurred due to arm i when arm
i∗ is the anchor is upper bounded as

E

[
T∑
t=1

r(St, i) · 1[at = i∗, i ∈ St]

]
≤ ∆GCC

i∗i ·
2e

e− 1
·
(

(1 + δ) log(TnC)

d(PGCC
i∗i ,

1
2 )

+
1

Ω(δ2)

)
,

where δ > 0 is some constant, and ∆GCC
i∗i = maxS:|S|≤k ∆i∗i|S .
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We will now prove the above theorem using the three lemmas above.

Proof of Theorem 2. The execution of the algorithm can roughly be divided into three intermittent phases– (1) when
the GCW arm i∗ is not in the active set, (2) when i∗ is in the active set but does not beat all other arms empirically, i.e.
ar 6= i∗, (3) when i∗ is in the active set and also beats all other arms empirically. The three lemmas above bound the
number of rounds spent in these three phases.
However, in order to prove a regret upper bound we will also have to bound the total regret incurred due to a single
round. The first thing to observe is that each arm is played at most once in each round except a few arms that might
be played multiple times due to step 6 of the algorithm. Hence, the regret for all steps except step 6 is upper bounded
by n as the regret for each arm is at most 1. Now, in order to bound the regret for step 6, we need to observe that the
number of times the anchor arm is changed in a single round can be at most log n. This is due to the fact that Ar \Q
reduces by a factor of at least 2 each time a new anchor arm is selected by the algorithm. Now, we can bound the
regret incurred due to step 6 of the algorithm by k log n ≤ n log n as the regret for each arm is upper bounded by 1
and there can be at most k arms added in step 6 per anchor arm.
Hence, we now have that

E[R(T )] ≤ n log n ·

(
E

[
T∑
r=1

1[i∗ 6∈ Ar]

]
+ E

[
T∑
r=1

1[ar 6= i∗, i∗ ∈ Ar]

])
+

∑
i∈[n]\{i∗}

E

[
T∑
t=1

r(St, i) · 1[at = i∗, i ∈ St]

]

≤ n log n ·

2 +
∑

i∈[n]\{i∗}

1

exp
{
d(1/2, PGCC

i∗i )
}
− 1

+
∑

i∈[n]\{i∗}

∆GCC
i∗i ·

2e

e− 1
·
(

(1 + δ) log(TnC)

d(PGCC
i∗i ,

1
2 )

+
1

Ω(δ2)

)

≤ O
(
n2 log n

(∆GCC
min )2

)
+ n ·∆GCC

max ·
2e

e− 1
· 1

Ω(δ2)
+

∑
i∈[n]\{i∗}

∆GCC
i∗i ·

2e

e− 1
· (1 + δ) log(TnC)

d(PGCC
i∗i ,

1
2 )

= O

(
n2 log n

(∆GCC
min )2

)
+

∑
i∈[n]\{i∗}

∆GCC
i∗i ·

2e

e− 1
· (1 + δ) log(TC)

d(PGCC
i∗i ,

1
2 )

where the third inequality follows from the well-known Pinsker’s inequality d(P,Q) ≥ 2(P − Q)2 and the last
inequality holds for any constant δ. Now again using the Pinsker’s inequality we have that d(PGCC

i∗i ,
1
2 ) ≥ (∆GCC

min )2/2.
For a general GCC model, we then have that

E[R(T )] ≤ O
(
n2 log n

(∆GCC
min )2

)
+

∑
i∈[n]\{i∗}

∆GCC
i∗i ·

4e

e− 1
· (1 + δ) log(TC)

∆GCC
min

≤ O
(
n2 log n

(∆GCC
min )2

)
+ n ·∆GCC

max ·
4e

e− 1
· (1 + δ) log(TC)

(∆GCC
min )2

which gives the desired bound under any GCC model.
Now, if the underlying GCC model is MNL, then we have d(PGCC

i∗i ,
1
2 ) ≥ (∆MNL

i∗i )2/2 and ∆GCC
i∗i = ∆MNL

i∗i . We then
have that

E[R(T )] ≤ O
(
n2 log n

(∆MNL
min )2

)
+

∑
i∈[n]\{i∗}

∆MNL
i∗i ·

4e

e− 1
· (1 + δ) log(TC)

(∆MNL
i∗i )2

= O

(
n2 log n

(∆MNL
min )2

)
+

∑
i∈[n]\{i∗}

4e

e− 1
· (1 + δ) log(TC)

∆MNL
i∗i

.
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E.1 Proof of Lemma 4

The following lemma calculates the expected number of rounds arm i∗ will not be played.

Lemma 4 (Number of rounds where i∗ is not active). Fix an anchor arm a ∈ [n] \ {i∗}. The expected number of
rounds arm i∗ will not be a part of the active set is bounded as

E

[
T∑
r=1

1[i∗ 6∈ Ar]

]
≤ 2 .

Proof. We have that

E

[
T∑
r=1

1[i∗ /∈ Ar]

]
= E

[
T∑
r=2

1[i∗ /∈ Ar]

]
≤ E

[
T∑
t=2

1[¬Ji∗(t, C)]

]
.

The first equality above follows due to the fact that A1 will always include i∗. Using the union bound we have the
following inequality-

1[¬Ji∗(t, C)] ≤
∑

S⊆[n]\{i∗}

∑∑
· · ·
∑

{na}∈[T ]S

1[
⋂
a∈S
{Ni∗a(t) = na, P̂i∗a(t) <

1

2
} ∩

⋂
a/∈S

{P̂i∗a(t) ≥ 1

2
} ∩ {¬Ji∗(t, C)}] .

Fix some set S ⊆ [n]\{i∗}. Also, let s := |S|. Fix some na ∈ [T ] for all a ∈ S. Let P̂na
i∗a be the empirical probability

of i∗ beating a after being pulled together na times. We will analyze the number of rounds that i∗ is excluded from
the active set due to the above configuration of S, {na}. The conditions Ji∗(t, C) will hold when

∑
a∈S

nad(P̂na
i∗a,

1

2
) ≤ log(t) + s log(nC) =⇒ t ≥ exp

(∑
a∈S

nad(P̂na
i∗a,

1

2
)− s log(nC)

)
.

Hence, we have that

∞∑
t=2

1[
⋂
a∈S
{Ni∗a(t) = na, P̂i∗a(t) <

1

2
} ∩

⋂
a/∈S

{P̂i∗a(t) ≥ 1

2
} ∩ {¬Ji∗(t, C)}]

≤ exp

(∑
a∈S

nad(P̂na
i∗a,

1

2
)− s log(nC)

)
.

Now, we will use the method similar to the one used in Lemma 5 of [23], to bound the expectation of the above
quantity. Fix xa ∈ [0, log 2] for all a ∈ S. Let Pa(xa) = Pr

(
P̂na
i∗a ≤ 1

2 , d
+(P̂na

i∗a,
1
2 ) ≥ xa

)
, where d+(P,Q) =

10



1[P ≤ Q] · d(P,Q). We then have

E

[
T∑
t=2

1[
⋂
a∈S
{Ni∗a(t) = na, P̂i∗a(t) <

1

2
} ∩

⋂
a/∈S

{P̂i∗a(t) ≥ 1

2
} ∩ {¬Ji∗(t, C)}]

]

≤
∫
{xa}∈[0,log(2)]|S|

exp

(∑
a∈S

naxa − s log(nC)

)∏
a∈S

d(−Pa(xa))

= exp (−s log(nC)) ·
∏
a∈S

∫
xa∈[0,log(2)]

exp (naxa) d(−Pa(xa))

(due to the independence of comparisons with respect to different anchors)

= exp (−s log(nC)) ·
∏
a∈S

(
[− exp(naxa)Pa(xa)]

log(2)
0 +

∫
xa∈[0,log(2)]

na exp (naxa)Pa(xa)dxa

)
(integration by parts)

≤ exp (−s log(nC)) ·
∏
a∈S

(
Pa(0) +

∫
xa∈[0,log(2)]

na exp (naxa) exp

{
−na(xa + C1(PGCC

i∗a ,
1

2
))

}
dxa

)
(Using concentration inequality (Lemma 2) and Fact 10 in [23], with C1(p, q) = (p− q)2/2p(1− q))

= exp (−s log(nC)) ·
∏
a∈S

(
exp

{
−nad(

1

2
, PGCC

i∗a )

}
+

∫
xa∈[0,log(2)]

na exp

{
−naC1(PGCC

i∗a ,
1

2
)

}
dxa

)

= exp (−s log(nC)) ·
∏
a∈S

(
exp

{
−nad(

1

2
, PGCC

i∗a )

}
+ log(2)na exp

{
−naC1(PGCC

i∗a ,
1

2
)

})
.

We will now take a union bound over {na}. We have that∑∑
· · ·
∑

{na}∈[T ]S

exp (−s log(nC)) ·
∏
a∈S

(
exp

{
−nad(

1

2
, PGCC

i∗a )

}
+ log(2)na exp

{
−naC1(PGCC

i∗a ,
1

2
)

})

= exp (−s log(nC)) ·
∏
a∈S

∑
na

(
exp

{
−nad(

1

2
, PGCC

i∗a )

}
+ log(2)na exp

{
−naC1(PGCC

i∗a ,
1

2
)

})

≤ exp{−s log(nC)} ·
∏
a∈S

(
1

exp
{
d( 1

2 , P
GCC
i∗a )

}
− 1

+
exp{C1(PGCC

i∗a ,
1
2 )}

(exp{C1(PGCC
i∗a ,

1
2 )} − 1)2

)
≤ exp{−s log(nC) + s log(C ′)} ,

where the constant C ′ is defined as

C ′ := max
a∈[n]\i∗

(
1

exp
{
d( 1

2 , P
GCC
i∗a )

}
− 1

+
exp{C1(PGCC

i∗a ,
1
2 )}

(exp{C1(PGCC
i∗a ,

1
2 )} − 1)2

)
≤ 1

(∆GCC
min )4

.

We will now apply the union bound over all subsets S ⊆ [n] \ i∗. Now, if the parameter C is larger than C ′, then we

11



have

∑
S⊆[n]\{i∗}

exp{−|S| log(nC) + |S| log(C ′)} =
n−1∑
s=1

∑
S⊆[n]\{i∗},|S|=s

exp{−s log(nC) + s log(C ′)}

≤
n−1∑
s=1

(en
s

)s
exp{−s log(nC) + s log(C ′)}

=
n−1∑
s=1

exp{−s log(nC) + s log(C ′) + s log(n) + s− s log(s)}

≤
n−1∑
s=1

exp{s− s log(s)} ≤ 2 .

E.2 Proof of Lemma 5

The following lemma will now bound the number of times arm i∗ will not be the empirically best arm.

Lemma 5 (Time when i∗ is not the anchor). The total number of rounds when the best arm i∗ will not be the empirically
best arm, even when it is in the active set, is upper bounded as

E

[
T∑
r=1

1[ar 6= i∗, i∗ ∈ Ar]

]
≤

∑
i∈[n]\{i∗}

1

exp
{
d(1/2, PGCC

i∗i )
}
− 1

,

where PGCC
i∗i is defined in Equation D.2.

Proof. In the following we overload notation slightly and for a round r define Nii∗(r) and P̂ii∗(r) to be the equal to

12



Nii∗(t) and P̂ii∗(t), where t is the last trial in round r. We have the following set of inequalities:

E

[
T∑
r=1

1[ar 6= i∗, i∗ ∈ Ar]

]
= E

[
T∑
r=1

1[∃i 6= i∗, i∗ ∈ Ar, Nii∗(r) > Nii∗(r − 1), P̂i∗i(r − 1) ≤ 1

2
]

]

≤ E

 T∑
r=1

∑
i∈[n]\{i∗}

1[i∗ ∈ Ar, Nii∗(r) > Nii∗(r − 1), P̂i∗i(r − 1) ≤ 1

2
]


≤ E

 T∑
r=1

∑
i∈[n]\{i∗}

T∑
ni=0

1[Nii∗(r − 1) = ni, Nii∗(r) > ni, P̂
ni
i∗i ≤

1

2
]


= E

 ∑
i∈[n]\{i∗}

T∑
r=1

T∑
ni=0

1[Nii∗(r − 1) = ni, Nii∗(r) > ni, P̂
ni
i∗i ≤

1

2
]


≤ E

 ∑
i∈[n]\{i∗}

T∑
ni=0

1[P̂ni
i∗i ≤

1

2
]


=

∑
i∈[n]\{i∗}

T∑
ni=0

E

[
1[P̂ni

i∗i ≤
1

2
]

]

=
∑

i∈[n]\{i∗}

T∑
ni=0

exp
{
−nid(1/2, PGCC

i∗i )
}

(using concentration Lemma 2)

=
∑

i∈[n]\{i∗}

1

exp
{
d(1/2, PGCC

i∗i )
}
− 1

E.3 Proof of Lemma 6

In the next lemma we will bound the regret for the number of times an arm other than the best arm will be played.

Lemma 6 (Regre due to a bad arm). Given an arm i ∈ [n] \ {i∗} the expected regret incurred due to arm i when arm
i∗ is the anchor is upper bounded as

E

[
T∑
t=1

r(St, i) · 1[at = i∗, i ∈ St]

]
≤ ∆GCC

i∗i ·
2e

e− 1
·
(

(1 + δ) log(TnC)

d(PGCC
i∗i ,

1
2 )

+
1

Ω(δ2)

)
,

where δ > 0 is some constant, and ∆GCC
i∗i = maxS:|S|≤k ∆i∗i|S .

Proof. Fix a value ni ∈ {0, · · · , T}. We will first upper bound the following quantity

E

[
T∑
t′=1

r(St′ , i) · 1[at′ = i∗, i ∈ St′ , Nii∗(t′ − 1) = ni]

]
. (E.1)

This quantity bounds the total regret until the time Nii∗ remains equal to ni. Now, Nii∗ is incremented in trial t′ if
either i∗ or i. Hence, Nii∗ is incremented in trial t′ with probability Pi|St′

+ Pi∗|St′
. The total regret incurred due to

the playing i in trial t′ is given by Pi∗|St′
− Pi|St′

. Let us define ct′ := Pi|St′
+ Pi∗|St′

, and pt′ := Pi∗|St′
− Pi|St′

.
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The quantity in Equation E.1 is upper bounded by the cost of an experiment described in Fact 1 where the probability
of success of coin t′ is given by pt′ and its cost is given by ct′ . Using Fact 1 we have that

E

[
T∑
t′=1

r(St′ , i) · 1[at′ = i∗, i ∈ St′ , Nii∗(t′ − 1) = ni]

]
≤ ∆GCC

i∗i ·
2e

e− 1
.

Also, let nsuf
i = (1+δ) log(TnC)

d(PGCC
i∗i ,

1
2 )

. We can now upper bound the regret due to arm i as

E

[
T∑
t=1

r(St, i) · 1[at = i∗, i ∈ St]

]
= E

[
T∑

ni=0

T∑
t=1

r(St, i) · 1[at = i∗, i ∈ St, Nii∗(t− 1) = ni]

]

≤
nsuf
i∑

ni=0

E

[
T∑
t=1

r(St, i) · 1[at = i∗, i ∈ St, Nii∗(t− 1) = ni]

]

+
T∑

ni=nsuf
i +1

E

[
T∑
t=1

r(St, i) · 1[at = i∗, i ∈ St, Nii∗(t− 1) = ni]

]

≤ nsuf
i ·∆GCC

i∗i ·
2e

e− 1

+
T∑

ni=nsuf
i +1

E

[
T∑
t=1

r(St, i) · 1[at = i∗, i ∈ St, Nii∗(t− 1) = ni]

]

We will now bound the second quantity in the above equation. Fix ni ∈ {0, 1, · · · , T}. Let t′ ∈ [T ] be such that the
event 1[at′ = i∗, i ∈ St′ , Nii∗(t′ − 1) = ni − 1, Nii∗(t

′) = ni] holds if such a t′ exists, otherwise let t′ = T + 1. We
have

E

[
T∑
t=1

r(St, i) · 1[at = i∗, i ∈ St, Nii∗(t− 1) = ni]

]

= E

[
T∑
t=1

r(St, i) · 1[at = i∗, i ∈ St, Nii∗(t− 1) = ni, ni · d(P̂ii∗(t− 1),
1

2
) ≤ log(t− 1) + log(nC)]

]

= E

[
T∑
t=1

r(St, i) · 1[at = i∗, i ∈ St, Nii∗(t− 1) = ni, ni · d(P̂ii∗(t− 1),
1

2
) ≤ log(t− 1) + log(nC)]

]

= E

[
1[∃t′ ∈ [T ] : Nii∗(t

′) = ni, ni · d(P̂ni
ii∗ ,

1

2
) ≤ log(t′nC)] ·

T∑
t=1

r(St, i) · 1[at = i∗, i ∈ St, Nii∗(t− 1) = ni]

]

= Pr

[
∃t′ ∈ [T ] : Nii∗(t

′) = ni, ni · d(P̂ni
ii∗ ,

1

2
) ≤ log(t′nC)

]
·E

[
T∑

t=t′+1

r(St, i) · 1[at = i∗, i ∈ St, Nii∗(t− 1) = ni]
∣∣∣∃t′ ∈ [T ] : Nii∗(t

′) = ni, ni · d(P̂ni
ii∗ ,

1

2
) ≤ log(t′nC)

]

We will bound the quantities in the above equation one by one. Using a similar argument as above and Fact 1 we have
that

E

[
T∑

t=t′+1

r(St, i) · 1[at = i∗, i ∈ St, Nii∗(t− 1) = ni]
∣∣∣∃t′ ∈ [T ] : Nii∗(t

′) = ni, ni · d(P̂ni
ii∗ ,

1

2
) ≤ log(t′nC)

]
≤ ∆GCC

i∗i ·
2e

e− 1
.
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This holds because of the fact that conditioning does not effect that events that happen after trial t′ + 1. We finally
have

Pr

(
∃t ∈ [T ] : Nii∗(t) = ni, nid(P̂ii∗(t),

1

2
) ≤ log(tnC)

)
≤ Pr

(
∃t ∈ [T ] : Nii∗(t) = ni, nid(P̂ii∗(t),

1

2
) ≤ log(TnC)

)
(ni ≥ (1+δ) log(TnC)

d(PGCC
i∗i ,

1
2 )

)

≤ Pr

(
∃t ∈ [T ] : Nii∗(t) = ni, d(P̂ii∗(t),

1

2
) ≤

d(PGCC
i∗i ,

1
2 )

1 + δ

)
.

We will let P ∈ ( 1
2 , P

GCC
i∗i ) to be a real number such that d(P, 1

2 ) =
d(PGCC

i∗i ,
1
2 )

1+δ , and use the concentration bound proved
in Lemma 2, so that the above inequality can be written

Pr

(
∃t ∈ [T ] : Nii∗(t) = ni, d(P̂ii∗(t),

1

2
) ≤ d(P,

1

2
)

)
= Pr

(
∃t ∈ [T ] : Nii∗(t) = ni, P̂ii∗(t) ≥ 1− P

)
≤ exp

(
−d(P, PGCC

i∗,i ) · ni
)
.

Hence, we will have that

T∑
ni=nsuf

i +1

E

[
T∑
t=1

r(St, i)1[at = i,Nii∗(t− 1) = ni, i
∗ ∈ St]

]
≤

∑
ni=nsuf

i +1

∆GCC
i∗i ·

2e

e− 1
· exp

(
−d(P, PGCC

i∗,i ) · ni
)

≤ ∆GCC
i∗i ·

2e

e− 1
· 1

exp
(
d(P, PGCC

i∗i )
)
− 1

≤ ∆GCC
i∗i ·

2e

e− 1
· 1

Ω(δ2)
.

Hence, we have proved an upper bound as

T∑
ni=0

E

[
T∑
t=1

1[at = i,Nii∗(t) = ni, i
∗ ∈ At]

]
≤ ∆GCC

i∗i ·
2e

e− 1
·
(

(1 + δ) log(TnC)

d(PGCC
i∗i ,

1
2 )

+
1

Ω(δ2)

)

F Additional Information About Experimental Setup

F.1 Synthetic Datasets

In this section we provide additional information about our synthetic datasets.

• MNL-Exp: A MNL model was generated by drawing random weights from the exponential distribution with
parameter λ = 3.5, i.e. for arm i ∈ [n], log vi was sampled i.i.d. from Exp(λ = 3.5).

• MNL-Geom: A MNL model was generated with weights v1 = e, v2 = e
1
2 , . . ., vn = e1/2n−1

.

• GCC-One: For this choice model, we selected arm 1 to be the GCW, and for each set S containing arm 1, we set
p1|S = 0.51 and pi|S = 0.49

|S|−1 ∀i ∈ S\{1}; for sets S not containing the GCW 1, we selected the smallest-index
arm in S to be the highest-probability arm i∗S in S, and set pi∗S |S = 0.51 and pi|S = 0.49

|S|−1 ∀i ∈ S \ {i
∗
S}).

• GCC-Two: For this choice model, we selected arm 1 to be the GCW, and for each set S we defined ∆S =
min{ |S|−1

10 , 0.99}. If i∗ /∈ S we selected the smallest-index arm in S to be the highest-probability arm i∗S in S,
otherwise we let i∗S := i∗. We defined Pi∗S |S = 1+∆S

|S|(1−∆S)+2∆S
and for any i ∈ S\{i∗S}, Pi|S = 1−∆S

|S|(1−∆S)+2∆S
.
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• GCC-Three: For this choice model, we selected arm 1 to be the GCW, and for each set S we defined ∆S =
max{ 11−|S|

11 , 0.01}. Given this definition of ∆S , the choice probabilities we defined in a similar manner as
GCC-Two.

Note that the above GCC choice models are similar to the instance constructed in the proof of the lower bound, except
that the ∆ term now depends on the size of the set.

F.2 Real-World Datasets

In this section we provide additional information for our real-world datasets.
Estimation of choice models from real-world datasets. We estimate choice probabilities from several real-world
preference datasets, which contain multiple partial preference orders over items. The choice probability Pi|S of an
item i over S, was taken to be the fraction of times in these partial order item i was the top ranked items in S. More
formally, let there be m partial orders, P1, · · · ,Pm, over n items. For any subset S ⊆ [n], and i ∈ [n], let Ni|S be
defined as:

Ni|S :=
∑
j∈[m]

1[∀i′ ∈ S \ {i} : i �Pj
i′] .

The choice probability Pi|S is then estimated as:

Pi|S :=
Ni|S∑
i′∈S Ni′|S

.

We conducted experiments on three real-world datasets.

• Sushi: This is a dataset from [24] which contains 5000 partial preference orders given by humans over 100
different types of sushis. Similar to [25], we selected a subset of 16 sushi types, such that there exists a GCW
among them.

• IrishMeath: This is a dataset downloaded from preflib.org and contains data about elections held in Dublin,
Ireland. The dataset contains 64, 081 partial preference orders given by humans over 14 candidates. We selected
a subset of 12 candidates, such that there exists a GCW among them.

• IrishDublin: This dataset was also downloaded from preflib.org and also contains data about elections held in
Dublin, Ireland. The dataset contains 29, 988 partial preference orders given by humans over 9 candidates. We
again selected a subset of 8 candidates, such that there exists a GCW among them.

F.3 Runtime and Space Complexity of WBA

The space complexity of our algorithm is O(n2) as it only stores the pairwise statistics extracted from multiway
choices. Each trial of our algorithm runs in time polynomial in n. The most non-trivial step is computing Ji(t, C)
for each arm. This step requires polynomial time because we can compute the quantity argmaxS⊆[n] Ii(t, S) − |S| ·
log(nC) and check if it is greater than log(t). We compute argmaxS⊆[n] Ii(t, S)− |S| · log(nC) by first sorting arms
j in the order of values 1[P̂ij(t) ≤ 1

2 ] · Nij(t) · d(P̂ij(t),
1
2 ). We then start with S ← ∅ and add one arm at a time

from this sorted ordering to S. We stop adding arms to the set S once the value 1[P̂ij(t) ≤ 1
2 ] ·Nij(t) · d(P̂ij(t),

1
2 )

of the current arm j is less than log(nC). It is easy to see that computing Ii(t, S)− |S| · log(nC) for this set S gives
the value of argmaxS⊆[n] Ii(t, S)− |S| · log(nC).

F.4 Hardware Specifications

We ran all our experiments on a 32 core machine with Intel(R) Xeon(R) CPU E5-2683 v4 @ 2.10GHz processor cores.
No GPUs were used in the experiments.
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Figure 1: Dueling Bandit Regret (RDB) defined in Appendix G v/s trials for our algorithm WBA (for k = 2) against dueling bandit
algorithms (DTS, BTM, RUCB and RMED1) (the shaded region corresponds to std. deviation). As can be observed, our algorithm
is competitive against these algorithms.
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Figure 2: Dueling Bandit Regret (RDB) defined in Appendix G v/s trials for our algorithm WBA against the MaxMinUCB (MMU)
algorithm for k = 2 and k = 5 (the shaded region corresponds to std. deviation). We observe that our algorithm is better than
MaxMinUCB on all datasets for both values of k. We further observe that under several datasets the regret achieved by our algorithm
for k > 2 is better than the regret of our algorithm for k = 2.
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G Results for Additional Notion of Regret

In the section we define a simple generalization of dueling bandit regret. All our results can be be extended to this
notion of regret. Under this notion the regret for an arm is measured as the shortfall in the preference probability in a
direct pairwise comparison to the best arm i∗.

Definition 1. For a set S ⊆ [n], we define the regret rDB(S) to be

rDB(S) =
∑
i∈S

(
Pi∗|{i,i∗} − Pi|{i,i∗}

)
. (G.1)

This notion of regret allows for a more direct comparison between the regret of a choice bandits algorithm and a
dueling bandits algorithm, as the regret for pulling an arm i does not depend on the other arms pulled together with i.
Using the definition of GCW i∗, it is easy to observe that rDB({i∗}) = 0, and 0 ≤ rDB(S) ≤ |S| for any set S ⊆ [n].
We present additional experimental results for this notion of regret. Figure 1 contains plots for comparisons with the
dueling bandit algorithms, and Figure 2 contains plots for the comparisons of our algorithm with the MaxMinUCB
algorithm. The experimental setup was the same as the one described in Section 6 and Appendix F. The overall
conclusion with these experiments match the conclusions drawn from the experiments given in Section 6.

H Technical Fact

Fact 1. Consider the following experiment: we repeatedly toss (independent) coins from a finite set S of coins with
different biases until we get a heads. Let the probability of heads for the i-th coin toss be given by pi ≥ 0, and the cost
be given by ci. The expected cost of this experiment is upper bounded as

E

 |S|∑
i=1

1[no heads till i− 1] · ci

 ≤ 2c

p
· e

e− 1
,

where c
p := maxi∈S

ci
pi

Proof. We will group the sequence of coin tosses such that each group has a total probability mass of at least 1.
Formally, group G1 will consist of the first l1 coins such that

∑l1
i=1 pi ≥ 1 and l1 is minimized, group G2 will consist

of the next l2 coins such that
∑l2
i=l1+1 pi ≥ 1 and l2 is minimized, and so on. The probability that we do not see a

head in the first group G1 is upper bounded as
l1∏
i=1

(1− pi) ≤
l1∏
i=1

e−pi = e−
∑l1

i=1 pi ≤ e−1 .

A similar calculation works for each group, showing that we will see a success in a particular group with probability
at least 1− 1/e.
Now, the amount of cost required for each group cG :=

∑
i∈G ci is upper bounded by 2 maxi∈S

c
p . This is due to the

fact that each group contains a probability mass of at most 2; and the fact that the maximum cost per a probability
mass of p is at most c, hence, the maximum cost per a probability mass of 2 can be at most 2c/p.

E

[ ∞∑
i=1

1[no heads till i− 1] · ci

]
= E

 ∞∑
j=1

1[no heads in group Gj−1] · cGj


≤ 2c

p
· (1− 1

e
) +

4c

p
· 1

e
· (1− 1

e
) +

6c

p
· 1

e2
· (1− 1

e
) · · ·

≤ 2c

p
· e

e− 1
.
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