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Abstract
A fundamental question in multiclass classification concerns understanding the
consistency properties of surrogate risk minimization algorithms, which minimize
a (often convex) surrogate to the multiclass 0-1 loss. In particular, the framework of
calibrated surrogates has played an important role in analyzing Bayes consistency of
such algorithms, i.e. in studying convergence to a Bayes optimal classifier (Zhang,
2004; Tewari and Bartlett, 2007). However, follow-up work has suggested this
framework can be of limited value when studying H-consistency; in particular,
concerns have been raised that even when the data comes from an underlying
linear model, minimizing certain convex calibrated surrogates over linear scoring
functions fails to recover the true model (Long and Servedio, 2013). In this
paper, we investigate this apparent conundrum. We find that while some calibrated
surrogates can indeed fail to provideH-consistency when minimized over a natural-
looking but naïvely chosen scoring function class F , the situation can potentially
be remedied by minimizing them over a more carefully chosen class of scoring
functions F . In particular, for the popular one-vs-all hinge and logistic surrogates,
both of which are calibrated (and therefore provide Bayes consistency) under
realizable models, but were previously shown to pose problems for realizable
H-consistency, we derive a form of scoring function class F that enables H-
consistency. WhenH is the class of linear models, the class F consists of certain
piecewise linear scoring functions that are characterized by the same number of
parameters as in the linear case, and minimization over which can be performed
using an adaptation of the min-pooling idea from neural network training. Our
experiments confirm that the one-vs-all surrogates, when trained over this class of
nonlinear scoring functions F , yield better linear multiclass classifiers than when
trained over standard linear scoring functions.

1 Introduction and Background

Consider a standard multiclass classification problem, with instance space X ⊆ Rd, label space
Y = [n] := {1, . . . , n} with n > 2 classes, and standard 0-1 loss `0-1 : Y × Y→R+ given by
`0-1(y, ŷ) = 1(ŷ 6= y). There is an unknown probability distribution D on X × Y; given a training
sample S = ((x1, y1), . . . , (xm, ym)) containing examples drawn i.i.d. from D, the goal is to learn a
classifier h : X→Y with small 0-1 generalization error on new examples drawn from D:

er0-1
D [h] = E(X,Y )∼D

[
`0-1(Y, h(X))

]
= P(X,Y )∼D

(
h(X) 6= Y

)
. (1)

A Bayes consistent algorithm is one which, given enough training examples, learns a classifier whose
generalization error approaches the Bayes optimal error:

er0-1,∗
D = inf

h:X→Y
er0-1
D [h] . (2)
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Table 1: Examples of convex surrogate losses used by various multiclass classification algorithms, together with
a summary of some previous consistency results (here z+ = max(0, z)). In this paper, we show that one-vs-all
surrogates can in fact achieveH-consistency if minimized over the right scoring function class.

Algorithm Surrogate loss ψ : Y × Rn→R+ Universally Realizable Realizable
calibrated? calibrated? Hlin-consistent?

Multiclass ψmlog(y,u) = −uy + ln
(∑n

y′=1 exp(uy′)
)

X X X
logistic regression
Crammer-Singer ψCS(y,u) = maxy′ 6=y(1− (uy − uy′))+ × X X
multiclass SVM
One-vs-all ψOvA,log(y,u) = X X ×
logistic regression ln(1 + e−uy ) +

∑
y′ 6=y ln(1 + euy′ ) (we give a fix)

One-vs-all ψOvA,hinge(y,u) = × X ×
SVM (1− uy)+ +

∑
y′ 6=y(1 + uy′)+ (we give a fix)

On the other hand, for a class of modelsH ⊂ {h : X→Y}, anH-consistent algorithm is one which,
given enough training examples, learns a classifier whose generalization error approaches the optimal
error inH: er0-1

D [H] = inf
h∈H

er0-1
D [h] . (3)

Since minimizing the discrete 0-1 loss directly is generally computationally hard, a popular approach
to multiclass classification is to learn n real-valued scoring functions f1, . . . , fn : X→R, one for
each class, by minimizing a (often convex) surrogate loss, and then given a new test point x ∈ X ,
to predict a class y with highest score fy(x). Specifically, given a training sample S as above, a
surrogate loss ψ : Y ×Rn→R+, and a scoring function class F ⊂ {f : X→Rn}, a (ψ,F) surrogate
risk minimization algorithm finds a vector of n scoring functions f̂ : X→Rn by solving

f̂ ∈ argminf∈F
1
m

∑m
i=1ψ(yi, f(xi)) , (4)

and then returns a classifier ĥ : X→Y given by
ĥ(x) ∈ argmaxy∈[n] f̂y(x) . (5)

This approach includes several popular multiclass learning algorithms, such as multiclass logistic
regression, various forms of multiclass SVMs [15, 4, 6, 5], one-vs-all logistic regression, and one-vs-
all SVM; see Table 1 for a summary of the surrogate losses used by some of these algorithms.

A natural question then is: Under what conditions do such surrogate risk minimization algorithms
provide Bayes consistency or, for various classesH of interest,H-consistency, for the target 0-1 loss?

Surrogate losses and Bayes consistency. For Bayes consistency, the above question is answered
by the notion of calibrated surrogates [2, 17, 16, 14, 13, 11]. Specifically, if a surrogate loss ψ is
calibrated w.r.t. the 0-1 loss, then for any universal function class Funiv, the (ψ,Funiv) surrogate risk
minimization algorithm (implemented with suitable regularization) is a Bayes consistent algorithm
for `0-1.1 Among the surrogate losses shown in Table 1, ψmlog and ψOvA,log are universally calibrated
for `0-1 (calibrated for all probability distributions), while ψCS and ψOvA,hinge are calibrated under the
so-called ‘dominant-label’ condition (calibrated for distributions in which the conditional distributions
p(y|x) assign probability at least 1

2 to one of the n classes) [16].

Surrogate losses and H-consistency. For H-consistency, the situation is more complex [3, 7]. In
particular, Long and Servedio [7] showed the following results:2

(1) RealizableHcls-consistency of Crammer-Singer surrogate for closed-under-scaling modelsHcls.
Let Fcls ⊂ {f : X→Rn} be any class of (vector) scoring functions that is closed under scaling, and

Hcls =
{
h : X→Y

∣∣ ∃f ∈ Fcls s.t. h(x) ∈ argmaxy∈[n]fy(x) ∀x
}
.

Long and Servedio [7] showed that if the data distribution D isHcls-realizable (i.e. the data is labeled
according to a true model h∗ ∈ Hcls), then minimizing the Crammer-Singer surrogate ψCS over Fcls
isHcls-consistent, i.e. the (ψCS,Fcls) surrogate risk minimization algorithm isHcls-consistent. This
was viewed as surprising in light of the fact that ψCS is not (universally) calibrated for `0-1.

1A universal function class is one that can approximate any continuous function; such classes can be obtained,
for example, via reproducing kernel Hilbert spaces (RKHSs) associated with Gaussian kernels [12], or via
sufficiently flexible neural networks [1].

2Long and Servedio [7] presented the results slightly differently; in particular, in their case, H refers to a
class of real-valued functions from which individual scoring functions are drawn, and consistency is defined in
terms of this class. We describe the results here in terms of our notation and terminology.
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Figure 1: Example in d = 2 dimensions with n = 4 classes. Top row: True linear 4-class classifier h∗ ∈ Hlin.
The first 4 plots show contours of the 4 linear scoring functions f∗1 , . . . , f∗4 : X→R (darker shades represent
higher values); the 5th plot shows the regions corresponding to the classifier h∗(x) ∈ argmaxy∈[n]f

∗
y (x). As

can be seen, each class is described by a convex polytope, and is separated from the rest by a piecewise linear
decision boundary. Middle row: Contours of scoring functions and decision regions learned from training data
labeled according to h∗ by minimizing the one-vs-all logistic surrogate ψOvA,log over the linear scoring function
class Flin. The generalization accuracy is 0.886. Bottom row: Contours of scoring functions and decision
regions learned from the same training data by minimizing the same one-vs-all logistic surrogate ψOvA,log over
the ‘shared’ piecewise linear scoring function class Fspwlin. The decision regions are closer to the true model,
and the generalization accuracy is 0.986. Since the piecewise linear functions have shared pieces, the number of
parameters to be learned is the same as in the linear case; moreover, the resulting model can also be transformed
to a linear model if desired (see Theorem 3 and Corollary 4). See Section 5 for details of the experimental setup.

(2) Lack of realizableHlin-consistency of one-vs-all logistic surrogate for linear modelsHlin. Let Flin
be the class of linear (vector) scoring functions andHlin the class of linear multiclass classification
models:

Flin =
{
f : X→Rn

∣∣ ∃w1, . . . ,wn ∈ Rd s.t. fy(x) = w>y x ∀x
}

(6)
Hlin =

{
h : X→Y

∣∣ ∃w1, . . . ,wn ∈ Rd s.t. h(x) ∈ argmaxy∈[n]w
>
y x ∀x

}
. (7)

Long and Servedio [7] showed that even if the data distribution D is Hlin-realizable (i.e. the data
is labeled according to a true linear model h∗ ∈ Hlin), minimizing the one-vs-all logistic surrogate
ψOvA,log over Flin fails to give an Hlin-consistent algorithm, i.e. the (ψOvA,log,Flin) surrogate risk
minimization algorithm is not Hlin-consistent, even though ψOvA,log is universally calibrated for `0-1.

Our contributions. As discussed by Long and Servedio [7] and summarized above, it seems peculiar
that the Crammer-Singer surrogate ψCS, which is not universally calibrated for `0-1, provides realizable
Hlin-consistency (and more generally, realizableHcls-consistency for closed-under-scaling models
Hcls), while the one-vs-all logistic surrogate, ψOvA,log, which is universally calibrated for `0-1, fails to
provide realizableHlin-consistency. In this paper, we investigate this apparent conundrum.

First, regarding result (1) of Long and Servedio [7] above, we note that any realizable distribution D
(i.e. a distribution that labels data points x according to a deterministic model y = h(x)) trivially
satisfies the dominant-label condition (for each x, one class y has conditional probability p(y|x) ≥ 1

2 ),
and therefore the Crammer-Singer surrogate ψCS is in fact calibrated for any such distribution.
Therefore, in the realizable setting studied by Long and Servedio [7], the surrogate ψCS is in fact
calibrated for `0-1 (the paper emphasizes that ψCS is not calibrated/consistent for `0-1, implicitly
referring to universal calibration, and misses the fact that it is indeed calibrated for the setting studied).
So, while the result (1) is still interesting and non-trivial, it should be kept in mind that under the
realizable setting studied in [7], all the surrogates studied by the authors are in fact calibrated for `0-1.

Second, and more importantly, we look into result (2) of Long and Servedio [7] above. We know that
minimizing the one-vs-all logistic surrogate ψOvA,log over a universal scoring function class Funiv
gives Bayes consistency for all distributions D. Therefore, forHlin-realizable distributions D, where
er0-1,∗
D = er0-1

D [Hlin] and therefore Bayes consistency is equivalent toHlin-consistency, we have that
minimizing the ψOvA,log surrogate over such a class Funiv gives anHlin-consistent algorithm. So why
does minimizing the same surrogate over the class Flin of linear scoring functions fail in this regard?
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On closer inspection, we find that an important part of the answer lies in the form of the decision
boundaries induced by a linear (or more generally, affine) multiclass classification model. As an
example, Figure 1 shows an affine 4-class model in a 2-dimensional instance space; specifically,
the figure shows the 4 affine scoring functions for the 4 classes, and the corresponding decision
regions. As can be seen, the one-vs-all boundaries induced by such a model are not linear! Indeed, in
general, each class is described by a convex polytope, and is separated from the rest of the classes
by a piecewise linear decision boundary (where the boundaries for different classes include shared
pieces). Therefore, when the one-vs-all classifier is forced to separate each class from the rest using a
linear decision boundary, it can end up learning a suboptimal separator.

In the rest of the paper, we use the above insight to design a special class of ‘shared’ piecewise linear
scoring functionsFspwlin such that minimizing the one-vs-all logistic surrogate ψOvA,log over this class
yields anHlin-consistent algorithm. We will see that Fspwlin is characterized by the same number of
parameters as Flin; in fact, Fspwlin will also be parametrized by n weight vectors w1, . . . ,wn ∈ Rd.3
In order to minimize ψOvA,log over this scoring function class, we will make use of an adaptation of
the min-pooling idea from neural network training. The same idea can be applied to other one-vs-all
surrogates as well; in our experiments, we consider both ψOvA,log and the one-vs-all SVM surrogate
ψOvA,hinge, and find that in both cases, while minimizing these surrogates over the class of linear
scoring functions Flin fails to provideHlin-consistency, minimizing them over the nonlinear scoring
function class Fspwlin does indeed provideHlin-consistency.

An additional interesting aspect of the scoring function class Fspwlin is that, while the individual
scoring functions in it are nonlinear (specifically, piecewise linear), the classification models resulting
from taking the highest-scoring class according to these scoring functions can also be expressed as
linear models. Therefore, having learned a classifier by minimizing a one-vs-all surrogate over this
nonlinear scoring function class, one can then convert the learned model to a linear model inHlin.

We believe our study can pave the way for a more thorough understanding of the role of surrogate
losses in H-consistency. In particular, our results suggest that, when studying H-consistency, one
needs to carefully take into account the interplay between surrogate losses and the scoring function
class over which they are minimized, and that this can lead to unexpected improvements to learning
algorithms used in practice.

Organization. We start by giving various formal definitions in Section 2. We then describe the class
of ‘shared’ piecewise linear scoring functions Fspwlin and give our associated consistency result in
Section 3. We discuss how to minimize one-vs-all surrogates over this scoring function class in
practice in Section 4, and describe our numerical experiments in Section 5. Section 6 concludes with
a brief summary. Additional details/proofs are provided in the supplementary material.

2 Formal Definitions: Consistency, Calibration, Realizability
Consistency. We start with formal definitions of Bayes consistency andH-consistency:
Definition 1 (Bayes consistency). We say a multiclass learning algorithm that maps training samples
S ∈ ∪∞m=1(X ×Y)m to multiclass models ĥ : X→Y is Bayes consistent (w.r.t. `0-1) for a distribution
D if for all ε > 0,

lim
m→∞

PS∼Dm

(
er0-1
D [ĥ]− er0-1,∗

D > ε) = 0 .

If an algorithm is Bayes consistent for all distributions D, we say it is universally Bayes consistent.

Definition 2 (H-consistency). LetH ⊂ {h : X→Y}. We say a multiclass learning algorithm that
maps training samples S ∈ ∪∞m=1(X × Y)m to multiclass models ĥ : X→Y isH-consistent (w.r.t.
`0-1) for a distribution D if for all ε > 0,

lim
m→∞

PS∼Dm

(
er0-1
D [ĥ]− er0-1

D [H] > ε) = 0 .

Note that we do not require the algorithm to produce a model inH; we only require that as m→∞,
the performance of the model it learns approaches that of the best model in H. If an algorithm is
H-consistent for all distributions D, we say it is universallyH-consistent.

Calibration. Next, we give the standard definition of calibration of a surrogate loss that is useful
for studying Bayes consistency of surrogate risk minimization algorithms, followed by a definition

3More generally, we will allow both the linear and piecewise linear classes to be characterized by n weight
vectors w1, . . . ,wn ∈ Rd and n bias/offset terms b1, . . . , bn ∈ R.
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of calibration w.r.t. H that is useful for studying H-consistency of such algorithms. To give these
definitions, for a surrogate loss ψ : Y ×Rn→R+, we need the following notions of ψ-generalization
error, Bayes optimal ψ-error, and optimal ψ-error in a scoring function class F ⊂ {f : X→Rn}:

erψD[f ] = E(X,Y )∼D
[
ψ(Y, f(X))

]
; erψ,∗D = inf

f :X→Rn
erψD[f ] ; erψD[F ] = inf

f∈F
erψD[f ] . (8)

Definition 3 (Calibration (standard definition)). We say a surrogate loss ψ : Y × Rn→R+ is
calibrated w.r.t. `0-1 for a distribution D if there exists a strictly increasing function g : R+→R+ that
is continuous at 0 with g(0) = 0 such that for all f : X→Rn,

er0-1
D

[
argmax ◦ f︸ ︷︷ ︸

h

]
− er0-1,∗

D ≤ g
(

erψD[f ]− erψ,∗D
)
,

where h ≡ argmax ◦ f denotes a classifier that satisfies h(x) ∈ argmaxy∈[n]fy(x). If ψ is calibrated
w.r.t. `0-1 for all distributions D, we say ψ is universally calibrated w.r.t. `0-1.

Definition 4 (Calibration w.r.t.H). For a class of multiclass modelsH ⊂ {h : X→Y}, a surrogate
loss ψ : Y × Rn→R+, and a scoring function class F ⊂ {f : X→Rn}, we say (ψ,F) is calibrated
w.r.t. (`0-1,H) for a distribution D if there exists a strictly increasing function g : R+→R+ that is
continuous at 0 with g(0) = 0 such that for all f ∈ F ,

er0-1
D

[
argmax ◦ f︸ ︷︷ ︸

h

]
− er0-1

D [H] ≤ g
(

erψD[f ]− erψD[F ]
)
,

where h ≡ argmax ◦ f denotes a classifier that satisfies h(x) ∈ argmaxy∈[n]fy(x). If (ψ,F)
is calibrated w.r.t. (`0-1,H) for all distributions D, we say (ψ,F) is universally calibrated w.r.t.
(`0-1,H).

Realizability and realizable calibration/consistency. Finally, we give formal definitions of real-
izable andH-realizable distributions, realizable calibration, and Long and Servedio’s definition of
realizableHF -consistency.

Definition 5 (Realizability andH-realizability). We say a distribution D over X × Y is realizable
if (almost surely) it labels points according to a deterministic model, i.e. if ∃h : X→Y such that
P(X,Y )∼D

(
h(X) = Y

)
= 1. For a classH ⊂ {h : X→Y}, we say a distribution D over X × Y is

H-realizable if (almost surely) it labels points according to a deterministic model inH, i.e. if ∃h ∈ H
such that P(X,Y )∼D

(
h(X) = Y

)
= 1.

Definition 6 (Realizable calibration). We say a surrogate loss ψ : Y × Rn→R+ is realizable
calibrated (w.r.t. `0-1) if it is calibrated (w.r.t. `0-1) for all realizable distributions.4

Definition 7 (Long and Servedio’s definition of realizable HF -consistency [7]). Let F ⊂ {f :
X→Rn}, and let HF = {h : X→Y | ∃f ∈ F s.t. h(x) ∈ argmaxyfy(x) ∀x}. A surrogate loss
ψ : Y × Rn→R+ is realizable HF -consistent if (ψ,F) is calibrated w.r.t. (`0-1,HF ) for all HF -
realizable distributions.5,6

3 Minimizing One-vs-All Surrogates over a Class Fspwlin of ‘Shared’
Piecewise Linear Scoring Functions isHlin-Consistent

As discussed in Section 1, even though the one-vs-all logistic surrogate ψOvA,log is universally
calibrated for `0-1, Long and Servedio [7] showed that the (ψOvA,log,Flin) surrogate risk minimization
algorithm, which minimizes ψOvA,log over the class of linear scoring functions Flin, is not Hlin-
consistent even when the data distribution D is Hlin-realizable. In this section, we remedy this
situation by showing how to minimize the same surrogate loss ψOvA,log (as well as other one-vs-all
surrogate losses) over a different, nonlinear scoring function class Fspwlin such that the resulting
algorithm isHlin-consistent for allHlin-realizable distributions D.

4This is the sense used in Table 1, column 4.
5Technically, Long and Servedio’s definition [7] applies to scoring function classes F for which individual

scoring function components come independently from a common fixed class, i.e. for which there is a class
F0 ⊂ {f : X→R} such that F = {f : X→Rn | fy ∈ F0 ∀y}, and they would refer to such a surrogate as
realizable F0-consistent. We modify the terminology slightly to better fit our presentation of ideas, and the
definition we give is slightly more general (in that it allows for more general scoring function classes F ).

6This is the sense used in Table 1, column 5.

5



Linear models. For the remainder of the paper, we will re-define the classes of linear scoring
functions and linear classification models to allow for the inclusion of bias/offset terms:
Flin =

{
f : X→Rn

∣∣ ∃w1, . . . ,wn ∈ Rd, b1 . . . , bn ∈ R s.t. fy(x) = w>y x+ by ∀x
}

(9)

Hlin =
{
h : X→Y

∣∣ ∃w1, . . . ,wn ∈ Rd, b1 . . . , bn ∈ R s.t. h(x) ∈ argmaxy∈[n]w
>
y x+ by ∀x

}
. (10)

Our conclusions will apply both in this more general setting, and in the special case where by = 0 ∀y.

‘Shared’ piecewise linear scoring functions. To motivate the scoring function class we will con-
struct, consider again the example in Figure 1. As this example makes clear, under a linear classifica-
tion model in Hlin defined by weight vectors w1, . . . ,wn ∈ Rd and bias terms b1 . . . , bn ∈ R, the
decision region corresponding exclusively to class y ∈ [n] is the (open) convex polytope given by

Xy =
{
x ∈ X

∣∣ w>y x+ by > w>y′x+ by′ ∀y′ 6= y
}

(11)

=
{
x ∈ X

∣∣ (wy −wy′)
>x+ (by − by′) > 0 ∀y′ 6= y

}
(12)

=
{
x ∈ X

∣∣∣ min
y′ 6=y

{
(wy −wy′)

>x+ (by − by′)
}
> 0
}
. (13)

We use this observation to construct the following special class of ‘shared’ piecewise linear scoring
functions:

Fspwlin =
{
f : X→Rn

∣∣∣ ∃w1, . . . ,wn ∈ Rd, b1 . . . , bn ∈ R s.t.

fy(x) = min
y′ 6=y

{
(wy −wy′)

>x+ (by − by′)
}
∀x
}
. (14)

Clearly, this class is parametrized by the same number of parameters as Flin. The reason that the
class Fspwlin is useful is that the scoring functions in this class will allow for learning precisely the
form of one-vs-all decision boundaries that are induced by linear multiclass models. In particular, we
have the following result:
Lemma 1 (Scoring functions in Fspwlin capture correct one-vs-all decision boundaries for linear
multiclass models). Let f ∈ Fspwlin be parametrized by w1, . . . ,wn ∈ Rd, b1, . . . , bn ∈ R. Then

fy(x) ≥ 0 ⇐⇒ y ∈ argmaxy′∈[n]w
>
y′x+ by′ . (15)

Since one-vs-all surrogates effectively learn scoring functions that aim to separate points x with
label y from points with other labels according to whether fy(x) ≥ 0, the above result implies that
minimizing such surrogates over the class Fspwlin should allow learning precisely the form of one-
vs-all separation boundaries induced by linear multiclass models. Formally, we have the following
Hlin-consistency result:
Theorem 2 (Hlin-consistency of (ψOvA,log,Fspwlin) surrogate risk minimization algorithm). The pair
(ψOvA,log,Fspwlin) is calibrated w.r.t. (`0-1,Hlin) for allHlin-realizable distributions.
Remark 1 (Generalization to other one-vs-all surrogates). The aboveHlin-consistency result can be
generalized to other one-vs-all surrogates, such as the one-vs-all hinge surrogate ψOvA,hinge.
Remark 2 (Loss of ‘independence’ of one-vs-all binary classifiers). Since the n components of the
(vector) scoring functions in Fspwlin share parameters, they can no longer be learned independently by
training separate binary classifiers in parallel; while minimizing a one-vs-all surrogate over Fspwlin
still amounts to learning binary separators for each of the classes versus the rest, these separators
must be learned together in an "all-in-one" multiclass learning algorithm.
Remark 3 (Non-convexity of resulting optimization problems). Although the one-vs-all surrogates
ψOvA,log and ψOvA,hinge are convex, minimizing these surrogates over the function class Fspwlin
results in non-convex optimization problems. In order to solve these optimization problems, our
implementation makes use of an adaptation of the min-pooling idea from neural network training
(see Section 4). Additional details regarding the behavior of this approach in our experiments are
discussed in Section 5.

We also have the following result, which shows that the classification models induced by the nonlinear
(vector) scoring functions in Fspwlin are in fact equivalent to those in the class of linear classification
modelsHlin:
Theorem 3 (Scoring functions in Fspwlin induce linear multiclass classifiers). LetHspwlin be the class
of multiclass classifiers induced by Fspwlin:

Hspwlin =
{
h : X→Y

∣∣ ∃f ∈ Fspwlin s.t. h(x) ∈ argmaxy∈[n]fy(x)
}
. (16)

ThenHspwlin = Hlin.
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Indeed, the following corollary shows that once we have learned a nonlinear (vector) scoring function
in Fspwlin, we can easily transform it into a linear classification model inHlin:
Corollary 4 (Converting a nonlinear scoring function in Fspwlin to a linear classification model in
Hlin). Let f ∈ Fspwlin be parametrized by w1, . . . ,wn ∈ Rd, b1, . . . , bn ∈ R. Then for all x ∈ X ,

argmaxy∈[n] fy(x) = argmaxy∈[n] w
>
y x+ by . (17)

Margin interpretation of Fspwlin. We note that the scoring functions in Fspwlin can also be viewed
as computing a multiclass ‘margin’ vector over the underlying linear functions defining the shared
piecewise linear scores. Specifically, recall that a (vector) scoring function f ∈ Fspwlin has the form
fy(x) = min

y′ 6=y

{
(wy −wy′)

>x+ (by − by′)
}

= (w>y x+ by)−max
y′ 6=y

{
w>y′x+ by′

}
(18)

for some {wy, by}ny=1. This suggests that for each y, the score fy(x) effectively computes the
‘margin’ of separation between (w>y x+by) and maxy′ 6=y{w>y′x+by′}; if this margin is non-negative,
then y ∈ argmaxy′∈[n]w

>
y′x+ by′ , and if it is negative, then y /∈ argmaxy′∈[n]w

>
y′x+ by′ .

Generalization to other multiclass modelsH. The above construction can be generalized beyond
Hlin to other multiclass models HG defined in terms of a class of real-valued scoring functions
G ⊂ {g : X→R}. Specifically, for any such class G, let

HG =
{
h : X→Y | ∃g1, . . . , gn ∈ G s.t. h(x) ∈ argmaxy∈[n] gy(x) ∀x

}
. (19)

(Thus Hlin is a special case with Glin = {g : X→R | ∃w ∈ Rd, b ∈ R s.t. g(x) = w>x + b ∀x}.)
Define the class of ‘shared’ piecewise-difference-of-G scoring functions FspwdiffG as follows:
FspwdiffG =

{
f : X→Rn | ∃g1, . . . , gn ∈ G s.t. fy(x) = min

y′ 6=y
{gy(x)− gy′(x)} ∀x

}
. (20)

Then similarly to the linear case, it can be shown that minimizing any of the one-vs-all surrogates
ψOvA,log or ψOvA,hinge over FspwdiffG isHG-consistent for allHG-realizable distributions.

4 Implementation of One-vs-All Surrogate Risk Minimization over Fspwlin

In order to implement surrogate risk minimization over the scoring function class Fspwlin, we make
use of an adaptation of the min-pooling idea from neural network training. Figure 2 shows a summary
of the architecture we use to implement scoring functions f in Fspwlin.

Figure 2: Neural network-like architecture imple-
menting scoring functions in Fspwlin. To find pa-
rameters {wy, by}ny=1 minimizing a surrogate loss
ψ on the training data, we use a backpropagation-
like procedure on this architecture.

Specifically, given an input point x ∈ Rd, the first
layer computes the n linear functions

gy(x) = w>y x+ by , y ∈ [n] .

The second layer then computes the n scoring func-
tion components fy(x) in terms of minima of the
relevant functions from the first layer (see Eq. (14)):

µy(g) = min
y′ 6=y

{
gy − gy′

}
, y ∈ [n] .

To fit the parameters {wy, by}ny=1 to training data,
we then use a backpropagation-like procedure to min-
imize the surrogate loss of interest. Any existing
neural network training library can be easily modi-
fied to perform this minimization; in our experiments,
we implemented this approach using PyTorch [10].

5 Experiments
We conducted two sets of experiments. In the first set, we generated synthetic data from a true
linear model (i.e. a knownHlin-realizable distribution) and tested theHlin-consistency of minimizing
one-vs-all surrogates over Fspwlin. In the second set, we implemented the approach on various real
benchmark data sets to test its practical behavior. In all cases, we implemented a total of 6 multiclass
algorithms: all 4 algorithms shown in Table 1 with surrogate risk minimized over linear scoring
functions Flin, and the two one-vs-all algorithms with surrogate risk minimized over Fspwlin. All
algorithms were implemented in PyTorch and used the AdamW optimizer [8].7,8

7As noted above, the minimization over Fspwlin is non-convex; we found that for most (but not all) data
sets, the results were fairly stable under different random initializations. The results we report are for a single
random initialization; our results could potentially be improved by starting the optimizer from multiple random
initializations, and keeping the model with best training objective value.

8In all cases, the optimizer was run for 50 epochs over the training sample; the learning rate parameter α was
initially set to 0.01 and was halved at the end of every 5 epochs.
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Figure 3: Convergence behavior of various multiclass surrogate risk minimization algorithms on synthetic data
generated from a true linear model inHlin. Left: d = 2, n = 4. Right: d = 100, n = 10. In both cases, the
ψOvA,log and ψOvA,hinge surrogates fail to converge to the optimal performance inHlin when minimized over
standard linear scoring functions Flin, but successfully do so when minimized over the class Fspwlin. (In the
right plot, the curves for all fourHlin-consistent algorithms overlap.) See Section 5.1 for details.

5.1 Synthetic Data: Consistency Behavior on Linear Models

We generated two synthetic data sets. The first data set had d = 2 features and n = 4 classes. A
true model h∗ ∈ Hlin was created by choosing {wy, by}4y=1 as follows: elements of wy ∈ R2 were
drawn i.i.d. from N (0, 1) and subsequently scaled so that ‖wy‖2 = 1 ∀y; bias terms b1, . . . , b4
were set to 0.2, 0.1,−0.1,−0.2 (decision regions of the resulting model h∗ are shown in Figure 1).
Instances x were then drawn uniformly at random from a disk of radius 0.5 centered at (0.3,−0.1),
and labeled according to h∗. We ran all 6 algorithms (using AdamW with zero weight decay factor)
on increasingly large training samples (up to 30,000 data points) generated in this manner, and
measured the generalization accuracy on a large test set of 10,000 data points generated in the same
manner. The results are shown in Figure 3 (left); an illustration of some of the models learned from
10,000 data points is also shown in Figure 1.

The second data set had d = 100 features and n = 10 classes. A true model h∗ ∈ Hlin was created in
the same manner as above, except that in this case we set by = 0 ∀y ∈ [100]. Instances x were drawn
uniformly at random from X = [−1, 1]100, and labeled according to h∗. We ran all 6 algorithms on
increasingly large training samples (up to 40, 000 data points) and measured accuracy on a large test
set of 10, 000 data points. The results are shown in Figure 3 (right).

In both cases, the one-vs-all surrogates fail to give Hlin-consistency when minimized over linear
scoring functions Flin, but successfully do so when minimized over the scoring function class Fspwlin.

5.2 Real Data: Practical Behavior
We evaluated the performance of all 6 algorithms on various benchmark multiclass classification
data sets drawn from the UCI repository and the LIBSVM data repository.9 Details of the data
sets are provided in the supplementary material; the number of features d ranges from 16 to 3072,
and the number of classes n ranges from 7 to 26. Several of the data sets come with prescribed
train/validation/test splits; for the others, we randomly chose a 3:1:1 split. For all algorithms, we used
AdamW with a weight decay factor λ; the factor λ was chosen from {10−3, ..., 102} to maximize 0-1
accuracy on the validation set.

Table 2: Results (in terms of test accuracy) on various real multiclass data sets. See Section 5.2 for details.
Data set ψmlog ψOvA,log ψOvA,log ψCS ψOvA,hinge ψOvA,hinge

Flin Flin Fspwlin Flin Flin Fspwlin
Covertype (50K) 0.6606 0.6943 0.6607 0.7186 0.7069 *0.7193*
Digits 0.8985 0.8696 0.8982 0.9025 0.8819 *0.9042*
USPS *0.9153* 0.9138 0.9148 0.9128 0.9063 0.9148
MNIST (70K) 0.9270 0.9200 0.9271 0.9307 0.9216 *0.9317*
CIFAR10 0.4000 *0.4066* 0.3763 0.3831 0.3686 0.4006
Sensorless *0.8266* 0.6539 0.7918 0.7703 0.5381 0.7791
Letter 0.7644 0.7126 0.7662 0.7738 0.6058 *0.7804*

The results are shown in Table 2. For each data set, the best-performing algorithms within the group
of logistic surrogates and within the group of hinge surrogates are shown in bold font; the best overall
is enclosed in asterisks. For hinge surrogates, consistent with previous results [5], we find ψOvA,hinge,

9https://archive.ics.uci.edu/ml/index.php and https://www.csie.ntu.edu.tw/∼cjlin/libsvmtools/datasets/
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when minimized over Flin, does slightly poorer than ψCS, but minimizing it over Fspwlin brings it in
line with (and even slightly exceeds) ψCS. For logistic surrogates, the results are more mixed, although
(ψOvA,log,Fspwlin) frequently outperforms (ψOvA,log,Flin). Overall, despite the good performance,
we do not necessarily advocate minimizing one-vs-all surrogates over Fspwlin as a practical strategy,
as training is 2-3 times slower than for ψCS or ψmlog, which generally give comparable results. Our
primary interest is in theHlin-consistency of this scheme underHlin-realizable data distributions; the
main purpose of the experiments on real data was to serve as a sanity check and ensure that this does
not come at a huge price in terms of practical applicability of the resulting algorithms.

6 Conclusion
Our study shows that when studyingH-consistency of surrogate risk minimization algorithms, the
interplay between the surrogate loss and scoring function class can play an important role. In
particular, for ψOvA,log and ψOvA,hinge, we found that minimization over a suitable function class
Fspwlin givesHlin-consistency where standard minimization over linear functions Flin fails to do so.

Broader Impact

The primary goal of this paper is to better understand the statistical consistency properties of surrogate
risk minimization algorithms in machine learning. The insights and results of the paper will benefit
readers who wish to be aware of these properties when designing or selecting learning algorithms.

We do not expect this research to put anyone at a disadvantage. Nevertheless, issues related to data
bias and fairness can potentially affect any algorithm that learns models from data [9], and users
should keep this in mind when applying the ideas discussed here to domains where such issues may
be important. In the future, it may also be of interest to consider incorporating fairness constraints in
the types of algorithms discussed here.
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Bayes Consistency vs.H-Consistency:
The Interplay between Surrogate Loss Functions and

the Scoring Function Class

Appendix

A Proof of Lemma 1

Proof. This essentially follows from the definition of Fspwlin. In particular, we have:

fy(x) ≥ 0 ⇐⇒ min
y′ 6=y

{
(wy −wy′)

>x+ (by − by′)
}
≥ 0

⇐⇒ min
y′ 6=y

{
(w>y x+ by)− (w>y′x+ by′)

}
≥ 0

⇐⇒ (w>y x+ by) ≥ (w>y′x+ by′) ∀y′ 6= y

⇐⇒ y ∈ argmaxy′∈[n] w
>
y′x+ by′ .

B Proof of Theorem 2

Proof. LetD be aHlin-realizable distribution. Then ∃h∗ ∈ Hlin such that P(X,Y )∼D(Y = h∗(X)) =

1, and therefore er0-1
D [Hlin] = 0. Thus our goal is to show that ∃ a strictly increasing function

g : R+→R+ that is continuous at 0 with g(0) = 0 such that for all f ∈ Fspwlin,

er0-1
D [argmax ◦ f ] ≤ g

(
erOvA,log
D [f ]− erOvA,log

D [Fspwlin]
)
.

We will do this in two parts:

(1) We will show that erOvA,log
D [Fspwlin] = 0.

(2) We will show that for all f ∈ Fspwlin, er0-1
D [argmax ◦ f ] ≤ 1

ln(2) erOvA,log
D [f ].

Putting these together will then give that for all f ∈ Fspwlin,

er0-1
D [argmax ◦ f ] ≤ 1

ln(2)

(
erOvA,log
D [f ]− erOvA,log

D [Fspwlin]
)
.

Part 1. We will show that for any sufficiently small ε > 0, ∃f ε ∈ Fspwlin such that erOvA,log
D [f ε] < ε;

this will establish that erOvA,log
D [Fspwlin] = 0.

Let 0 < ε < 2n ln(2). Since h∗ ∈ Hlin, we have ∃{w∗y, b∗y}ny=1 such that

h∗(x) ∈ argmaxy∈[n] (w
∗
y)
>x+ b∗y ∀x .

Define f∗ ∈ Fspwlin as

f∗y (x) = min
y′ 6=y

{
(w∗y −w∗y′)

>x+ (b∗y − b∗y′)
}

= min
y′ 6=y

{
((w∗y)

>x+ b∗y)− ((w∗y′)
>x+ b∗y′)

}
.

Then we have
P(X,Y )∼D

(
f∗Y (X) > 0

)
= 1 .

Therefore ∃κ > 0 such that

P(X,Y )∼D
(
f∗Y (X) < κ

)
≤ ε

2n ln(2)
.
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Define f ε ∈ Fspwlin as

f εy(x) =
f∗y (x)

κ
ln
( 1

eε/2n − 1

)
.

Then it can be verified that

f∗y (x) > 0 =⇒ f εy(x) > 0 =⇒ ψOvA,log(y, f
ε(x)) ≤ n ln(2) ,

and moreover,

f∗y (x) ≥ κ =⇒ f εy(x) ≥ ln
( 1

eε/2n − 1

)
=⇒ ψOvA,log(y, f

ε(x)) ≤ ε

2
.

This gives

erOvA,log
D [f ε] = E(X,Y )∼D

[
ψOvA,log

(
Y, f ε(X)

)]
≤ P(X,Y )∼D

(
0 < f∗Y (X) < κ

)
·E
[
ψOvA,log

(
Y, f ε(X)

) ∣∣ 0 < f∗Y (X) < κ
]

+ P(X,Y )∼D
(
f∗Y (X) ≥ κ

)
·E
[
ψOvA,log

(
Y, f ε(X)

) ∣∣ f∗Y (X) ≥ κ
]

≤ ε

2n ln(2)
· n ln(2) + 1 · ε

2
= ε .

Part 2. Let f ∈ Fspwlin, and let {wy, by}ny=1 be such that

fy(x) = min
y′ 6=y

{
(wy −wy′)

>x+ (by − by′)
}
∀x .

Define h : X→Y such that
h(x) ∈ argmaxy∈[n]fy(x) ∀x .

Then we have

er0-1
D [h] = E(X,Y )∼D

[
`0-1(Y, h(X))

]
= E(X,Y )∼D

[
1
(
h(X) 6= Y

)]
= E(X,Y )∼D

∑
y 6=Y

1
(
h(X) = y

)
≤ E(X,Y )∼D

∑
y 6=Y

1
(
fy(X) ≥ 0

) (by definition of h and Lemma 1)

≤ 1

ln(2)
E(X,Y )∼D

∑
y 6=Y

ln
(
1 + efy(X)

)
≤ 1

ln(2)
E(X,Y )∼D

ln (1 + e−fY (X)
)
+
∑
y 6=Y

ln
(
1 + efy(X)

)
(since ln(1 + e−fy(x)) ≥ 0 ∀(x, y))

=
1

ln(2)
E(X,Y )∼D

[
`OvA,log

(
Y, f(X)

)]
=

1

ln(2)
erOvA,log
D [f ] .

C Proof of Theorem 3

Proof. Let w1, . . . ,wn ∈ Rd, b1, . . . , bn ∈ R, and let f ∈ Fspwlin be parametrized by {wy, by}ny=1,
so that

fy(x) = min
y′ 6=y

{
(wy −wy′)

>x+ (by − by′)
}
∀x .
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We will show that
argmaxy∈[n]fy(x) = argmaxy∈[n] w

>
y x+ by ;

this will establish the result.

To see that the above claim is true, notice that we can write

fy(x) = (w>y x+ by)−max
y′ 6=y

{
w>y′x+ by′

}
.

In other words, fy(x) is the difference between (w>y x+ by) and the largest value of (w>y′x+ by′)

among y′ 6= y. Clearly, this difference is largest when (w>y x + by) ≥ (w>y′x + by′) ∀y′ 6= y (in
particular, in this case the difference is non-negative; in all other cases, the difference is negative, and
therefore smaller). Thus

fy(x) ≥ fy′(x) ∀y′ 6= y ⇐⇒ (w>y x+ by) ≥ (w>y′x+ by′) ∀y′ 6= y .

This proves the claim.

D Proof of Corollary 4

This follows directly from the proof of Theorem 3.

E Details of Real Data Sets Used in Experiments in Section 5.2

Table 3: Multiclass classification data sets used in experiments in Section 5.2.
Data set # train # validation # test # classes # features

(n) (d)
Covertype (50K) 30000 10000 10000 7 54
Digits 5620 1874 3498 10 16
USPS 5468 1823 2007 10 256
MNIST (70K) 45000 15000 10000 10 780
CIFAR10 37500 12500 10000 10 3072
Sensorless 35105 11702 11702 11 48
Letter 10500 4500 5000 26 16

Notes:

Subsampling: For Covertype, we used a random subsample of the original data set containing 50,000
examples (the original data set has 581,012 examples).

Image data sets with pixel features: The versions of the USPS and MNIST datasets that we used
came with features scaled to the ranges [−1, 1] and [0, 1], respectively. For CIFAR10, we similarly
scaled the features to the range [0, 1] by dividing all features by 255.

13


	Introduction and Background
	Formal Definitions: Consistency, Calibration, Realizability
	Minimizing One-vs-All Surrogates over a Class Fspwlin of `Shared' Piecewise Linear Scoring Functions is Hlin-Consistent
	Implementation of One-vs-All Surrogate Risk Minimization over Fspwlin
	Experiments
	Synthetic Data: Consistency Behavior on Linear Models
	Real Data: Practical Behavior

	Conclusion
	Proof of Lemma 1
	Proof of Theorem 2
	Proof of Theorem 3
	Proof of Corollary 4
	Details of Real Data Sets Used in Experiments in Section 5.2

