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Abstract—The design and performance analysis of bandit
algorithms in the presence of stage-wise safety or reliability
constraints has recently garnered significant interest. In this work,
we consider the linear stochastic bandit problem under additional
unknown linear safety constraints that need to be satisfied at
each round. For this problem, we present and analyze a new safe
algorithm based on linear Thompson Sampling (TS). Our analysis
shows that, with high probability, the algorithm chooses actions
that are safe at each round and achieve cumulative regret of
order O(d3/2 log1/2 d · T 1/2 log3/2 T ). Remarkably, this matches
the regret bound provided by [1], [2] for the standard linear
TS algorithm in the absence of safety constraints. Also, our
analysis highlights how the inherently randomized nature of the
TS selection rule suffices to properly expand the set of safe actions
that the algorithm has access to at each round. In particular,
we compare this behavior to alternative safe algorithms, which
typically require distinct rounds of randomization that are
dedicated to learning the unknown constraints.

Index Terms–. Multi-armed bandits, Linear Stochastic
Bandits, Safe Learning, Bandits with Safety Constraint.

I. INTRODUCTION

The application of stochastic bandit optimization algorithms
to safety-critical systems has received significant attention in
the past few years. In such cases, the learner repeatedly interacts
with a system with an uncertain reward function and operational
constraints. In spite of this uncertainty, the learner needs to
ensure that her actions do not violate the operational constraints
at any round of the learning process. As such, especially in the
earlier rounds, there is a need to choose actions with caution,
while at the same time making sure that the chosen action
provide sufficient learning opportunities about the set of safe
actions. Notably, the actions deemed safe by the algorithm
might not originally include the optimal action. This uncertainty
about safety and the resulting conservative behavior means the
learner could experience additional regret in such constrained
environments.

This paper focuses on linear stochastic bandits (LB) where
each action is associated with a feature vector x, and the
expected reward of playing each action is equal to the inner
product of its feature vector and an unknown parameter
vector θ?. There exists several variants of LB that study the
finite or infinite [3], [4], [5] or time-varying [6], [7] set of
actions. Two efficient approaches have been developed: linear
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UCB (LUCB) and linear Thompson Sampling (LTS). For
LUCB, [5] provides a regret bound of order O(d · T 1/2 log T ).
For LTS [1], [2] adopt a frequentist view and show regret
O(d3/2 log1/2 d · T 1/2 log3/2 T ). Here we provide an LTS
algorithm that respects linear safety constraints and study
its performance. We formally define the problem setting before
summarizing our contributions.

A. Safe Stochastic Linear Bandit Model

Reward function. The learner is given a convex and compact
set of actions D0 ⊂ Rd. At each round t, playing an action
xt ∈ D0 results in observing reward rt := x>t θ? + ξt, where
θ? ∈ Rd is a fixed, but unknown, parameter and ξt is a zero-
mean additive noise.
Safety constraint. We further assume that the environment is
subject to a linear constraint:

x>t µ? ≤ C, (1)

which needs to be satisfied by the action xt at every round
t, to guarantee safe operation of the system. Here, C is a
positive constant that is known to the learner, while µ? is a
fixed, but unknown vector parameter. Let us denote the set of
“safe actions” that satisfy the constraint (1) as follows:

Ds0(µ?) := {x ∈ D0 : x>µ? ≤ C}. (2)

By having C > 0 and further assuming that 0 ∈ D0, we know
that the action 0 is always as safe action. However, beyond that
Ds0(µ?) is unknown to the learner, since µ? is itself unknown.
We consider a bandit-feedback setting in which, at every round
t, the learner receives side information about the safety set via
noisy measurements:

wt = x>t µ? + ζt, (3)

where ζt is zero-mean additive noise. During the learning
process, the learner needs a mechanism that allows her to
use the side measurements in (3) for determining the safe
set Ds0(µ?). This is critical, since it is required (at least with
high-probability) that xt ∈ Ds0(µ?) for all rounds t.
Regret. The cumulative pseudo-regret for T rounds is R(T ) =∑T
t=1 x

>
? θ?−x>t θ?, where x? = arg maxx∈Ds0(µ∗) x

>θ? is the
optimal safe action that maximizes the expected reward over
Ds

0(µ?).
Learning goal. The learner’s objective is to control the growth
of the pseudo-regret. Moreover, we require that the chosen
actions xt, t ∈ [T ] are safe (i.e., they belong to Ds0(µ?) in (2)),
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with high probability over T rounds. As is common, we use
regret to refer to the pseudo-regret R(T ).
Example. We do believe that, albeit simple, linear models for
safety constraints could be directly relevant in traditionally
advocated applications of bandit problems such as medical
trials applications [8], recommendation systems [9], and ad
placement [10]. Even in more complex settings where linear
models are not directly applicable, we still believe that this
is the appropriate first step towards a principled study of the
performance of safe algorithms.

As a concrete motivation example of our setting, consider
medical trials, a problem traditionally advocated as an appli-
cation area for linear bandits, where the effect of different
therapies is unknown a-priori to the doctors and can only
be determined through clinical trials. Free exploration is not
possible, since it may lead to actions that cause harm to the
patient, an outcome to be avoided at all times. To model
this, we pick the unknown parameter µ? so as to represent
the patients’ response, and the known parameter C so as to
represent a safety threshold that doctors need to account for.
The hazard-threshold C can be assumed known as it is the
same for all patients (and can be estimated from existing data).
In this example, actions xt represent selected therapies at time
t (e.g., drug-dosage) and we assume that a (conservative) safe
seed set of harmless (but, plausibly not efficient) therapies
is known to the doctor. Overall, while doctors try to select
therapies (xt) with high reward (which could be a signal that
shows improvement in patient’s health condition), they should
not violate the safety constraint x>t µ? ≤ C at any time.

B. Contributions

• We provide the first safe Linear Thompson Sampling (Safe-
LTS) algorithm with provable regret guarantees for the linear
bandit problem with linear safety constraints.
• Our analysis shows that Safe-LTS achieves the same order
O(d3/2 log1/2 d · T 1/2 log3/2 T ) of regret as the original LTS
(without safety constraints) [2]. Hence, the dependence of our
regret bound on the time horizon T cannot be improved modulo
logarithmic factors (see lower bounds in [3], [4]).
• We compare Safe-LTS to existing safe versions of LUCB.
We show that our algorithm has: better regret in the worst-case,
fewer parameters to tune and superior empirical performance.
• We propose a heuristic modification to our Safe-LTS
algorithm that adapts a dynamic noise-distribution scheme and
is shown empirically to outperform the latter. This idea might
also be relevant in the unconstrained linear bandit setting.

On a technical level, to derive Safe-LTS and its regret bound,
need to properly account for the fact that the optimal safe
action x? is not necessarily in the estimated safe decision
set (see Eqn. (8) for formal definition) at each round t. This
is because, at each time step, we only have an estimate of
the unknown parameter µ∗, thus the estimated set is only a
conservative inner approximation of the actual safe set in (2).
Consequently, we need to design an action selection rule that is
simultaneously: (i) Frequently optimistic in spite of limitations
on actions imposed because of safety. Here, we achieve this by
appropriately tuning the randomization of Thompson Sampling.

Specifically, through a careful analysis, essentially controlling
the distance of the optimal action x? from the estimated safe
set, we find that the appropriate tuning involves scaling with a
simple function of the problem parameters including the safety
constant C. (ii) Guarantees a proper expansion of the estimated
safe set so as to not exclude good actions for a long time,
leading to large regret of safety. Here, we show that it is the
randomized nature of LTS that achieves this second goal, and
this is exactly where the LUCB action selection rule seems to
fail to provide the same guarantees.

C. Other Related Work

Multi-armed Bandits (MAB) - Two popular algorithms have
been studied in MAB in order to capture the trade-off between
exploration and exploitation in sequential decision making
problems: 1) Upper confidence bound (UCB), which consists of
choosing the optimal action according to the upper-confidence
bounds on the true parameter (i.e., θ?) [11]; 2) Thompson
Sampling (TS), which samples the true parameter from a prior
distribution, and selects the optimal action with respect to
the sampled parameter [12]. Moreover, [13] considers a new
approach to the MAB problem based on Deterministic Sequenc-
ing of Exploration and Exploitation (DSEE). In particular, they
divide time horizon to the pure exploration phase and pure
exploitation phase. In the former, the player plays all arms in a
round-robin fashion. In the latter, the player plays the arm with
the largest sample mean. [14], [15] study the MAB problem
in the multiplayer settings where a team of agents cooperate
on a network in order to maximize their collective reward. In
[16], [17], they study the multi-objective MAB problem where
the components of the reward signal correspond to different
objectives. They evaluate the performance of their algorithm
with notions of 2-D regret and Pareto regret. Other lines of
works have studied best-arm identification problem in MAB
that aims to identify the arm with the largest expected regret
[18] as well as cascading bandits where the goal is to learn
arms in order to rank them based on the users preferences such
as recommendation systems [19]. In [20], [21], they study the
MAB problem given adversarial attacks, where the adversary
can change the action selected by the learner, and they propose
a robust algorithm for the case that the total attack cost is
given. Also, [22] studies the MAB problem in the case that
the statistical rewards of different arms may be correlated.
In particular, they study the regional bandits problem where
the arms belong to different groups such the expected reward
of the arms in a same group is a function of the common
parameter, and the parameters are independent across different
groups. Another line of work focuses on the design of risk-
sensitive algorithms [23], [24], [25]. In particular, in economic
and finance applications, the learner may be more interested
in reducing the uncertainty (i.e., risk) in the outcome, rather
than achieving the highest cumulative reward [26], [27].
Safety - A diverse body of related works on stochastic optimiza-
tion and control have considered the effect of safety constraints
that need to be met during the run of the algorithm [28],
[29] and references therein. Closely related to our work, [30],
[31] study nonlinear bandit optimization with nonlinear safety
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constraints using Gaussian processes (GPs) as non-parametric
models for both the reward and the constraint functions. Their
algorithms have shown great promises in robotics applications
[32], [33]. Without the GP assumption, [8] proposes and
analyzes a safe variant of the Frank-Wolfe algorithm to solve
a smooth optimization problem with an unknown convex
objective function and unknown linear constraints (with side
information, similar to our setting). All the above algorithms
come with provable convergence guarantees, but no regret
bounds. To the best of our knowledge, the first work that
derived an algorithm with provable regret guarantees for bandit
optimization with stage-wise safety constraints, as the ones
imposed on the aforementioned works, is [34]. While [34]
restricts attention to a linear setting, their results reveal that
the presence of the safety constraint –even though linear– can
have a non-trivial effect on the performance of LUCB-type
algorithms. Specifically, the proposed Safe-LUCB algorithm
comes with a problem-dependent regret bound that depends
critically on the location of the optimal action in the safe
action set – increasingly so in problem instances for which the
safety constraint is active. In [34], the linear constraint function
involves the same unknown vector (say, θ?) as the one that
specifies the linear reward. Instead, in Section I-A we allow
the constraint to depend on a new parameter vector (say, µ?) to
which the learner get access via side-information measurements
(3). This latter setting is the direct linear analogue to that of
[30], [31], [8] and we demonstrate that an appropriate Safe-
LTS algorithm enjoys regret guarantees of the same order as
the original LTS without safety constraints. A more elaborate
comparison to [34] is provided in Section IV-C. In contrast to
the previously mentioned references, another recent work [9]
defines safety as the requirement of ensuring that the cumulative
(linear) reward up to each round stays above a given percentage
of the performance of a known baseline policy. A “stage-wise”
variant of this type of constraints was recently studied in
another interesting work [35]. Compared to [9], the setting of
[35] is closer to ours, but there are still some key differences.
Most notably, in contrast to [35], the constraint studied here
is such that the optimal action x? is not guaranteed to be in
the estimated safe-set (especially at early rounds t). Because
of this, the analysis of [35] is not directly applicable here. On
a technical side, [35] proves a bound on the expected reward
(but they restrict actions to an ellipsoidal). Instead, we present
a high-probability bound on the regret similar to [9], [34].
Also, it is worth mentioning that the algorithms presented
in [34], [35] require distinct rounds of randomization that
are dedicated to learning the unknown constraints. Instead,
our analysis shows that the inherent randomization of the TS
action selection rule suffices for this purpose. As a closing
remark, [34], [9], [8], [35], [36] show that simple linear
models for safety constraints might be directly relevant to
several applications such as medical trials, recommendation
systems or managing the customers’ demand in power-grid
systems. Moreover, even in more complex settings where linear
models do not directly apply (e.g., [32], [33]), we believe
that this simplification is an appropriate first step towards
a principled study of regret behavior of safe algorithms in
sequential decision settings.

Thompson Sampling - Even though TS-based algorithms
[37] are computationally easier to implement than UCB-based
algorithms and have shown great empirical performance, they
were largely ignored by the academic community until a few
years ago, when a series of papers [38], [2], [12], [39] showed
that TS achieves optimal performance in both frequentist and
Bayesian settings. Most of the literature focused on the analysis
of the Bayesian regret of TS for general settings such as linear
bandits or reinforcement learning (see e.g., [40]). More recently,
[41], [42], [43] provided an information-theoretic analysis of
TS. Additionally, [44] provides regret guarantees for TS in the
finite and infinite MDP setting. Another notable paper is [45],
which studies the stochastic MAB problem in complex action
settings providing a regret bound that scales logarithmically in
time with improved constants. None of these papers study the
performance of TS for LB with safety constraints.

II. SAFE LINEAR THOMPSON SAMPLING

Our proposed algorithm is a safe variant of Linear Thompson
Sampling (LTS). At any round t, given a regularized least-
squares (RLS) estimate θ̂t, the algorithm samples a perturbed
parameter θ̃t that is appropriately distributed to guarantee
sufficient exploration. Considering this sampled θ̃t as the
true environment, the algorithm chooses the action with the
highest possible reward while making sure that the safety
constraint (1) holds. The presence of the safety constraint
complicates the learner’s choice of actions. In order to ensure
that actions remain safe at all rounds, the algorithm uses the
side-information (3) to construct a confidence region Ct, which
contains the unknown parameter µ? with high probability. With
this, it forms an inner approximation Dst of the safe set, which
is composed by all actions xt that satisfy the safety constraint
for all v ∈ Ct. The summary is presented in Algorithm 1 and
a detailed description follows.

Algorithm 1: Safe Linear Thompson Sampling (Safe-
LTS)

1 Input: δ, T, λ. Set δ′ = δ
6T

2 for t = 1, . . . , T do
3 Sample ηt ∼ HTS

4 Set Vt = λI +
∑t−1
s=1 xsx

>
s and compute

RLS-estimates θ̂t and µ̂t
5 Set: θ̃t = θ̂t + βt(δ

′)V
− 1

2
t ηt

6 Build the confidence region:
Ct(δ′) = {v ∈ R : ‖v − µ̂t‖Vt ≤ βt(δ

′)}
7 Compute the estimated safe set:

Dst = {x ∈ D0 : x>v ≤ C, ∀v ∈ Ct(δ′)}
8 Play the following action: xt = arg maxx∈Dst x

>θ̃t
9 Observe reward rt and measurement wt

A. Model assumptions

Notation. [n] denotes the set {1, 2, . . . , n}. The Euclidean
norm of a vector x is denoted by ‖x‖2. Its weighted `2-
norm with respect to a positive semidefinite matrix V is



4

denoted by ‖x‖V =
√
x>V x. We also use the standard

Õ notation that ignores poly-logarithmic factors. Finally,
for ease of notation, from now on-wards we refer to the
safe set in (2) by Ds0 and drop the dependence on µ?.
Let Ft = (F1, σ(x1, . . . , xt, ξ1, . . . , ξt, ζ1, . . . , ζt)) denote the
filtration representing the accumulated information up to round
t. We also introduce standard assumptions on the problem as
follows.

Assumption 1. For all t, ξt and ζt are conditionally zero-
mean, R-sub-Gaussian noise variables, i.e., E[ξt|Ft−1] =

E[ζt|Ft−1] = 0, E[eαξt |Ft−1] ≤ exp (α
2R2

2 ), E[eαζt |Ft−1] ≤
exp (α

2R2

2 ), ∀α ∈ R.

Assumption 2. There exists a positive constant S such that
‖θ?‖2 ≤ S and ‖µ?‖2 ≤ S.

Assumption 3. The action set D0 is a star-convex subset of
Rd and contains the origin. We assume ‖x‖2 ≤ L, ∀x ∈ D0.

It is straightforward to generalize our results when the sub-
Gaussian constants of ξt and ζt and/or the upper bounds on
‖θ?‖2 and ‖µ?‖2 are different. Throughout, we assume they
are equal, for brevity.

B. Algorithm description and discussion
Let {xi}i∈[t] be the sequence of actions and {ri}i∈[t],
{wi}i∈[t] be the corresponding rewards and side-information
measurements. For any λ > 0, the RLS-estimates θ̂t of θ? and
µ̂t of µ? are θ̂t = V −1t

∑t−1
s=1 rsxs, µ̂t = V −1t

∑t−1
s=1 wsxs,

where Vt = λI+
∑t−1
s=1 xsx

>
s . Based on θ̂t and µ̂t, we construct

two confidence regions Et := Et(δ′) and Ct := Ct(δ′) as
follows:

Et := {θ ∈ Rd :
∥∥∥θ − θ̂t∥∥∥

Vt
≤ βt(δ′)}, (4)

Ct := {v ∈ Rd : ‖v − µ̂t‖Vt ≤ βt(δ
′)}. (5)

Both Et and Ct depend on δ′, but we will often suppress notation
for simplicity. The ellipsoid radius βt is properly chosen as in
[5] in order to guarantee that θ? ∈ Et and µ? ∈ Ct with high
probability.

Theorem II.1. Let Assumptions 1-2 hold. For δ ∈ (0, 1), and

βt(δ) = R

√
d log

( 1+ tL2

λ

δ

)
+
√
λS, with probability at least

1− δ, it holds that θ? ∈ Et(δ) and µ? ∈ Ct(δ), ∀t ≥ 1.

1) Background on LTS: a frequently optimistic algorithm:
Our algorithm inherits the frequentist view of LTS first
introduced in [1], [2], which is essentially defined as a
randomized algorithm over the RLS-estimate θ̂t of the unknown
parameter θ?. Specifically, at any round t, the randomized
algorithm of [1], [2] samples a parameter θ̃t centered at θ̂t:

θ̃t = θ̂t + βt(δ
′)V
− 1

2
t ηt, (6)

and chooses the action xt that is best with respect to the new
sampled parameter, i.e., maximizes the objective x>t θ̃t. The
key idea of [1], [2] on how to select the random perturbation
ηt ∈ Rd to guarantee good regret performance is as follows.
On the one hand, θ̃t must stay close enough to the RLS-
estimate θ̂t so that x>t θ̃t is a good proxy for the true (but

unknown) reward x>t θ?. Thus, ηt must satisfy an appropriate
concentration property. On the other hand, θ̃t must also favor
exploration in a sense that it leads –often enough– to actions
xt that are optimistic, i.e., they satisfy

x>t θ̃t ≥ x>? θ? (7)

Thus, ηt must satisfy an appropriate anti-concentration property.
Algorithm 1 also builds on these two key ideas, but the safe
setting imposes additional challenges that we need to address.

2) Addressing challenges in the safe setting: Compared
to the classical linear bandit setting [1], [2], the presence of
the safety constraint raises the following two questions: (i)
How to guarantee actions played at each round are safe? (ii)
In the face of the safety restrictions, how can optimism (cf.
(7)) be maintained? In the rest of this section, we explain the
mechanisms that Safe-LTS employs to address both of these
challenges.
Safety - First, the chosen action xt at each round need not only
maximize x>t θ̃t, but also, it needs to be safe. Since the learner
does not know the safe action set Ds0, Algorithm 1 performs
conservatively and guarantees safety as follows. After creating
the confidence region Ct around the RLS-estimate µ̂t, it forms
the so-called safe decision set at round t denoted as Dst :

Dst = {x ∈ D0 : x>v ≤ C, ∀v ∈ Ct}. (8)

Then, the chosen action is optimized over only the subset Dst ,
i.e.,

xt = arg max
x∈Dst

x>θ̃t. (9)

We make the following two remarks about Dst . On a positive
note, Dst is easy to compute:

Dst := {x ∈ D0 : x>v ≤ C, ∀v ∈ Ct} (10)

= {x ∈ D0 : max
v∈Ct

x>v ≤ C} (11)

= {x ∈ D0 : x>µ̂t + βt(δ
′) ‖x‖V −1

t
≤ C}. (12)

Indeed, the optimization in (9) is an efficient convex quadratic
program. Yet, the challenge remains that Dst contains actions
which are safe with respect to all the parameters in Ct, and
not only µ?. As such, it is only an inner approximation of the
true safe set Ds0. As we will see next, this fact complicates the
requirement for optimism.
Optimism in the face of safety - The fact that Dst is only
an inner approximation of Ds0 makes it harder to maintain
optimism of xt as defined in (7). To see this, note that in the
classical setting, the algorithm of [2] would choose xt as the
action that maximizes θ̃t over the entire set D0. In turn, this
would imply that x>t θ̃t ≥ x>? θ̃t because x? belongs to the
feasible set D0. This observation is the critical first argument
in proving that xt is optimistic often enough, i.e., (7) holds
with fixed probability p > 0. Unfortunately, in the presence
of safety constraints, xt is a maximizer over only the subset
Dst . Since x? may not lie within Dst , there is no guarantee
that x>t θ̃t ≥ x>? θ̃t as before. So, how does then one guarantee
optimism?
Intuitively, at the first rounds, the estimated safe set Dst is
only a small subset of the true Ds0. Thus, xt ∈ Dst is a vector
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of small norm compared to that of x? ∈ Ds0. Thus, for (7)
to hold, it must be that θ̃t is not only in the direction of θ?,
but it also has larger norm than that. To satisfy this latter
requirement, the random vector ηt must be large; hence, it
will “anti-concentrate more”. As the algorithm progresses, and
–thanks to side-information measurements– the set Dst becomes
an increasingly better approximation of Ds0, the requirements
on anti-concentration of ηt become the same as if no safety
constraints were present. Overall, at least intuitively, we might
hope that optimism is possible in the face of safety, but only
provided that ηt is set to satisfy a stronger (at least at the first
rounds) anti-concentration property than that required by [2]
in the classical setting.

At the heart of Algorithm 1 and its proof of regret lies
an analytic argument that materializes the intuition described
above. Specifically, we will prove that optimism is possible in
the presence of safety at the cost of a stricter anti-concentration
property compared to that specified in [2]. While the proof of
this fact is deferred to Section III-A, we now summarize the
appropriate distributional properties that provably guarantee
good regret performance of Algorithm 1 in the safe setting.

Definition II.1. In Algorithm 1, the random vector ηt is
sampled IID at each t from a distribution HTS on Rd that
is absolutely continuous with respect to the Lebesgue measure
and satisfies:
Anti-concentration: There exists constant p > 0 such that for
any u ∈ Rd with ‖u‖2 = 1,

P
(
u>ηt ≥ 1 +

2

C
LS
)
≥ p. (13)

Concentration: There exists positive constants c, c′ > 0 such
that ∀δ ∈ (0, 1),

P
(
‖ηt‖2 ≤

(
1 +

2

C
LS
)√

cd log (
c′d

δ
)
)
≥ 1− δ. (14)

In particular, the difference to the distributional assumptions
required by [2] in the classical setting is the extra term 2

CLS
in (13) (naturally, the same term affects the concentration
property (14)). Our proof of regret in Section III shows that
this extra term captures an appropriate notion of the distance
between the approximation Dst (where xt lives) and the true
safe set Ds0 (where x? lives), and provides enough exploration
for the sampled parameter θ̃t so that actions in Dst can be
optimistic. While this intuition can possibly explain the need
for an additive term in Definition II.1, it is insufficient when
it comes to determining its “correct” value. This is determined
by our analytic treatment in Section III-A.

Finally, we remark that it is not hard to construct distributions
that simultaneously satisfy the two conditions in (13) and
(14). For example, a multivariate zero-mean IID Gaussian
distribution with all entries having a (possibly time-dependent)
variance (1 + 2

CLS)2 satisfies the Definition II.1 and can be
chosen to sample ηt in Algorithm 1 from it.

III. REGRET ANALYSIS

Here, we present a tight regret bound for Safe-LTS by
proving that its action selection rule is simultaneously: 1)

frequently optimistic, and, 2) guarantees a proper expansion
of the estimated safe set. Our main result Theorem III.1 is
perhaps surprising: in spite of the additional safety constraints,
Safe-LTS has regret O(d3/2 log1/2 d · T 1/2 log3/2 T ) that is
order-wise the same as that in the classical setting [1], [2].

Theorem III.1 (Regret of Safe-LTS). Let λ ≥ 1 and Assump-
tions 1, 2, 3 hold. Fix δ ∈ (0, 1). Then, with probability at
least 1− δ, Safe-LTS is safe and its regret is upper bounded
as follows:

R(T ) ≤
(
βT (δ′) + γT (δ′)(1 +

4

p
)
)√

2Td log (1 +
TL2

λ
)

+
4γT (δ′)

p

√
8TL2

λ
log

4

δ
, (15)

where δ′ = δ
6T , βt(δ′) as in Theorem II.1 and, γt(δ′) =

βt(δ
′)
(
1 + 2

CLS
)√

cd log ( c
′d
δ′ ) .

The theorem above provides guarantees both on the safety
of the actions chosen by Safe-LTS Algorithm 1, as well as, on
its regret.

First, we comment on the safety of the actions, which is
ensured by construction of the algorithm as discussed in Section
II-B. Formally, fix a desired δ and set δ′ = δ

6T . Consider any
time t ∈ [T ]. On the one hand, from Theorem II.1, it holds that
P(µ? ∈ Ct(δ′)) ≥ 1− δ′. On the other hand, by construction
(lines 7-8, Algorithm 1), Safe-LTS guarantees that xt at time
t belongs to Dst , i.e., x>t v ≤ C, ∀v ∈ Ct(δ′). Putting these
two together shows that P(x>t µ? ≤ C) ≥ 1 − δ′. Then, a
union bound (see Lemma VI.4) over all time steps from 1 to
T proves that P(∀t ∈ [T ] : x>t µ? ≤ C) ≥ 1 − Tδ′ ≥ 1 − δ

6 ,
i.e., Safe-LTS is with high probability at least 1− δ safe at all
rounds.
Next, we discuss the regret bound of Theorem III.1, which
requires a careful analysis. The detailed proof is in given in App.
VII. In the rest of the section, we highlight the key changes
compared to [1], [2] that occur due to the safety constraint. To
begin, let us consider the following standard decomposition of
the cumulative regret

R(T ) =
T∑
t=1

(
x>? θ? − x>t θ̃t︸ ︷︷ ︸

Term I

)
+

T∑
t=1

(
x>t θ̃t − x>t θ?︸ ︷︷ ︸

Term II

)
. (16)

Regarding Term II, the concentration property of HTS guaran-
tees that θ̃t is close to θ̂t, and consequently, close to θ? thanks
to Theorem II.1. Therefore, controlling Term II can be done
similar to previous works e.g., [5], [2]; see App. VII-B for
more details. Next, we focus on Term I.
To see how the safety constraints affect the proofs let us first
review the treatment of Term I in the classical setting. For
UCB-type algorithms, Term I is always non-positive since the
pair (θ̃t, xt) is optimistic at each round t by design [3], [4],
[5]. For LTS, Term I can be positive; that is, (7) may not
hold at every round t. However, [1], [2] proved that thanks to
the anti-concentration property of ηt, this optimistic property
occurs often enough. Our main technical contribution, detailed
in the next section, is to show that the properly modified
anti-concentration property in Definition II.1 together with
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the construction of approximated safe sets as in (12) can
yield frequently optimistic actions even in the face of safety.
Specifically, it is the extra term 2

CLS in (13) that allows enough
exploration to the sampled parameter θ̃t in order to compensate
for safety limitations on the chosen actions, and because of
that we are able to show Safe-LTS obtains the same order of
regret as that of [2]. After that, in Section III-B, we show that
we can bound the overall regret of Term I with the Vτ norm
of the optimistic actions.

As a closing remark, we note that our proof of optimism in
the face of safety directly applies as is above to a scenario where
the constraint and the reward function are parameterized by the
same vector θ?, i.e., the constraint is of the form x>t θ? ≤ C.
In this case, obviously, no side information is required and we
can show the same order of regret as in Theorem III.1. Please
see Section IV-C for a discussion on how this result improves
upon that of [34] who studied constraints parameterized by θ?.

A. Proof sketch: Optimism despite safety constraints

We prove that θ̃t is optimistic with constant probability (see
App. VI for formal statement and proof).

Lemma III.2. (Optimism in the face of safety; Informal) For
any t ≥ 1, Safe-LTS samples parameter θ̃t and chooses action
xt such that the pair (θ̃t, xt) is optimistic frequently enough,
i.e., P

(
x>t θ̃t ≥ x>? θ?

)
≥ p, where p > 0 is the probability of

the anti-concentration property (13).
The challenge in the proof is that xt is chosen from Dst ,

which does not necessarily contain all feasible actions and
hence, may not contain x?. Thus, we need a mechanism to
control the distance of x? from the optimistic actions that
can only lie within the subset Dst (distance is defined here
in terms of an inner product with the optimistic parameters
θ̃t). Unfortunately, we do not have a direct control on this
distance term and so at the heart of the proof lies the idea of
identifying a “good” feasible action x̃t ∈ Dst whose distance
to x? is easier to control. To be concrete, we show that it
suffices to choose the good feasible point in the direction
of x?, i.e., x̃t = αtx?, where the key parameter αt ∈ (0, 1]
must be set to satisfy x̃t ∈ Dst . Naturally, the value of αt
is determined by the approximated safe set Dst as defined in
(12). The challenge though is that we do not know how the
value of x>∗ µ̂t compares to the constant C. We circumvent this
issue by introducing an enlarged confidence region centered
at µ? as C̃t := {v ∈ Rd : ‖v − µ?‖Vt ≤ 2βt(δ

′)}, and the
corresponding shrunk safe decision set as

D̃st := {x ∈ D0 : x>v ≤ C, ∀v ∈ C̃t}
= {x ∈ D0 : x>µ? + 2βt(δ

′) ‖x‖V −1
t
≤ C} ⊆ Dst . (17)

D̃st is defined with respect to an ellipsoid centered at µ? (rather
than at µ̂t). This is convenient since x>? µ? ≤ C. Using this,
it can be easily checked that αt =

(
1 + 2

Cβt(δ
′) ‖x?‖V −1

t

)−1
ensures αtx? ∈ D̃st ⊆ Dst . From this, and optimality of xt =
arg maxx∈Dst x

>θ̃t we have that

x>t θ̃t ≥ αtx>? θ̃t. (18)

Using (18), it suffices to prove that p ≤ P
(
αtx
>
? θ̃t ≥

x>? θ?
)

= P
(
x>? θ̃t ≥ x>? θ? + 2

Cβt(δ
′) ‖x?‖V −1

t
x>? θ?

)
, where,

the equality follows by definition of αt. To continue, recall
that θ̃t = θ̂t + βtV

− 1
2

t ηt. Thus, the probability we want to
lower bound can be equivalently rewritten as

P
(
βt(δ

′)x>? V
− 1

2
t ηt ≥ x>? (θ? − θ̂t) +

2

C
βt(δ

′) ‖x?‖V −1
t

x>? θ?
)
.

To simplify the above, we use (i) |x>? θ?| ≤ ‖x?‖2‖θ?‖2 ≤ LS;
(ii) x>? (θ? − θ̂t) ≤ ‖x?‖V −1

t
‖θ? − θ̂t‖Vt ≤ βt(δ

′)‖x?‖V −1
t

,
because of Cauchy-Schwartz and Theorem II.1. Put together,
we need that p ≤ P

(
βt(δ

′)x?V
− 1

2
t ηt ≥ βt(δ

′)‖x?‖V −1
t

+
2
CLSβt(δ

′) ‖x?‖V −1
t

)
, or equivalently,

p ≤ P
(
u>t ηt ≥ 1 + (2/C)LS

)
, (19)

where we have defined ut = V
− 1

2
t x?

/
‖x?‖V −1

t
. By definition

of ut, note that ‖ut‖2 = 1. Hence, the desired (19) holds due
to the anti-concentration property of the HTS distribution in
(13).
The key differences to the proof of optimism in the classical
setting in [2, Lemma 3] are as follows. First, we present an
algebraic version of the basic machinery introduced in [2,
Sec. 5] that we show is convenient to extend to the safe setting.
Second, we employ the idea of relating xt to a “better” feasible
point αtx? and show optimism for the latter. Third, even after
introducing αt, the fact that 1/αt−1 is proportional to ‖x?‖V −1

t

is critical for the seemingly simple algebraic steps that follow
(18). In particular, in deducing (19) from the expression above,
note that we have divided both sides in the probability term by
‖x?‖Vt−1. It is only thanks to the proportionality observation
that we made above that the term ‖x?‖Vt−1 cancels throughout
and we can conclude with (19) without a need to lower bound
the minimum eigenvalue of the Gram matrix Vt (which is
known to be hard).

B. Proof sketch: Why frequent optimism is enough to bound
Term I

As discussed in Section III, the presence of the safety
constraints complicates the requirement for optimism. We show
in Section III-A that Safe-LTS is optimistic with constant
probability in spite of safety constraints. Based on this, we
complete the sketch of the proof here by showing that we can
bound the overall regret of Term I in (16) with the Vτ -norm
of optimistic (and in our case, safe) actions. Let us first define
the set of the optimistic parameters as

Θopt
t (δ′) = {θ ∈ Rd : maxx∈Dst x

>θ ≥ x>? θ?}. (20)

In Section III-A, we show that Safe-LTS samples from this
set i.e., θ̃t ∈ Θopt

t , with constant probability. Note that, if at
round t Safe-LTS samples from the set of optimistic parameters,
Term I at that round is non-positive. In the following, we show
that selecting the optimal arm corresponding to any optimistic
parameter can control the overall regret of Term I. The argument
below is adapted from [2] with required modifications.
For the purpose of this proof sketch, we assume that at each
round t, the safe decision set contains the previous safe action
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Figure 1. Comparison of mean per-step regret for Safe-LTS, Safe-LUCB, and Naive Safe-LUCB. The shaded regions show one standard deviation around the
mean. The results are averages over 30 problem realizations.

that the algorithm played, i.e., xt−1 ∈ Dst . However, for the
formal proof in App. VII-A, we do not need such an assumption.
Let τ be a time such that θ̃τ ∈ Θopt

t , i.e., x>τ θ̃τ ≥ x>? θ?. Then,
for any t ≥ τ we have

Term I := RTS
t = x>? θ? − x>t θ̃t
≤ x>τ θ̃τ − x>t θ̃t ≤ x>τ

(
θ̃τ − θ̃t

)
. (21)

The last inequality comes from the assumption that at each
round t, the safe decision set contains the previous played safe
actions for rounds s ≤ t; hence, x>τ θ̃t ≤ x>t θ̃t. To continue
from (21), we use Cauchy-Schwarz, and obtain

RTS
t ≤ ‖xτ‖V −1

τ

∥∥∥θ̃τ − θ̃t∥∥∥
Vτ

≤
(∥∥∥θ̃τ − θ?∥∥∥

Vτ
+
∥∥∥θ? − θ̃t∥∥∥

Vτ

)
‖xτ‖V −1

τ

≤
(∥∥∥θ̃τ − θ?∥∥∥

Vτ
+
∥∥∥θ? − θ̃t∥∥∥

Vt

)
‖xτ‖V −1

τ
. (22)

The last inequality comes from the fact that the Gram matrices
construct a non-decreasing sequence (Vτ � Vt, ∀t ≥ τ ). Then,
we define the ellipsoid ETS

t (δ′) such that

ETS
t (δ′) := {θ ∈ Rd :

∥∥∥θ − θ̂t∥∥∥
Vt
≤ γt(δ′)}, (23)

where

γt(δ
′) = βt(δ

′)
(
1 +

2

C
LS
)√

cd log (
c′d

δ
). (24)

It is not hard to see by combining Theorem II.1 and the
concentration property that θ̃t ∈ ETS

t (δ′) with high probability.
Hence, we can bound (22) using triangular inequality such
that:

RTS
t ≤

(
γτ (δ′) + βτ (δ′) + γt(δ

′) + βt(δ
′)

)
‖xτ‖V −1

τ
(25)

≤ 2

(
γT (δ′) + βT (δ′)

)
‖xτ‖V −1

τ
(26)

The last inequality comes from the fact that βt(δ′) and γt(δ′)
are non-decreasing in t by construction. Therefore, following
the intuition of [2], we can upper bound Term I with respect
to the Vτ -norm of the optimal safe action at time τ (see
App. VII-A for formal proof). Bounding the term ‖xτ‖V −1

τ
is

standard based on the analysis provided in [5] (see Proposition

VI.1 in the Appendix).

IV. NUMERICAL RESULTS AND COMPARISON TO
STATE OF THE ART

We present details of our numerical experiments on synthetic
data. First, we show how the presence of safety constraints
affects the performance of LTS in terms of regret. Next, we
evaluate Safe-LTS by comparing it against safe versions of
LUCB. Then, we compare Safe-LTS to [34]’s Safe-LUCB.
In all the implementations, we used: T = 10000, δ = 1/4T ,
R = 0.1 and D0 = [−1, 1]2. Unless otherwise specified, the
reward and constraint parameters θ? and µ? are drawn from
N (0, I2) each; C is drawn uniformly from [0, 1]. Throughout,
we have implemented a modified version of Safe-LUCB which
uses `1-norms instead of `2-norms, due to computational
considerations (e.g., [3], [34]). This highlights a well-known
benefit associated with TS-based algorithms, namely that they
are easier to implement and more computationally-efficient
than UCB-based algorithms. In particular, the action selection
rule in UCB-based algorithms involves solving optimization
problems with bilinear objective functions, whereas, for TS-
based algorithms, it would lead to linear objectives (see [2]).

A. The effect of safety constraints on LTS

In Fig. 2(left), we compare the average cumulative regret of
Safe-LTS to the standard LTS with oracle access to the true safe
set Ds0. The results are averages over 20 problem realizations.
As shown, even though Safe-LTS requires that chosen actions
belong to the conservative inner-approximation set Dst , it still
achieves a regret of the same order as the oracle reaffirming the
prediction of Theorem III.1. Also, the comparison to the oracle
reveals that the action selection rule of Safe-LTS is indeed such
that it guarantees fast safe-set expansion so as to not exclude
optimistic actions for a long time. Fig. 2(left) also shows the
performance Safe-LTS with dynamic noise distribution. In order
for Safe-LTS to be frequently optimistic, our theory requires
that the random perturbation ηt satisfies (13) for all rounds.
Specifically, we need the extra 2

CLS factor compared to [2] in
order to ensure safe set expansion. While this result is already
sufficient for the tight regret guarantees of Theorem III.1, it
does not fully capture our intuition (see also Sec. II-B2) that as
the algorithm progresses and Dst gets closer to Ds0, exploration
(and thus, the requirement on anti-concentration) does not need
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Figure 2. Left: Average cumulative regret of Safe-LTS vs standard LTS with
oracle access to the safe set and Safe-LTS with a dynamic noise distribution
described in Section IV-A. Right: Cumulative regret of Safe-LTS, Naive Safe-
LUCB and Inflated Naive Safe-LUCB for a specific problem instance.

to be so aggressive. Based on this intuition, we propose the
following heuristic modification, in which Safe-LTS uses a
perturbation with the following dynamic property:

Pη∼HTS

(
u>η ≥ k(t)

)
≥ p, (27)

for k(t) a linearly-decreasing function k(t) = (1+ 2
CLS)2(1−

t/T ). In particular, this can be implemented by sampling each
entry of ηt, t ∈ [T ] i.i.d from N (0, k(t)). Fig. 2(left) shows
empirical evidence of the superiority of the heuristic.

B. Comparison to the safe version of LUCB

Here, we compare the performance of our algorithm with
the safe version of LUCB, as follows. We implement a natural
extension of the classical LUCB algorithm in [3], which we
call “Naive Safe-LUCB” and which respects safety constraints
by choosing actions from the estimated safe set in (8). We
consider an improved version, which we call “Inflated Naive
Safe-LUCB” and which is motivated by our analysis of Safe-
LTS. Specifically, in light of Lemma III.2, we implement
the improved LUCB algorithm with an inflated confidence
ellipsoid by a fraction 1 + 2

CLS in order to favor optimistic
exploration. In Fig. 2(right), we employ these two algorithms
for a specific problem instance showing that both fail to provide
the Õ(

√
T ) regret of Safe-LTS, in general. Specifically, we

chooose θ∗ =

[
0.5766
−0.1899

]
, µ∗ =

[
0.2138
−0.0020

]
, and C = 0.0615.

Further numerical simulations suggest that while Safe-LTS
always outperforms Naive Safe-LUCB, the Inflated Naive Safe-
LUCB can have superior performance to Safe-LTS in many
problem instances (see Fig. 3). Unfortunately, not only is this
not always the case (cf. Fig. 2(right)), but also we are not
aware of an appropriate modification to our proofs to show
this problem-dependent performance. Further investigations in
this direction might be of interest.

C. Comparison to Safe-LUCB

We compare our algorithm to the Safe-LUCB algorithm of
[34]. In [34], the linear safety constraint involves the same
unknown parameter vector θ? of the linear reward function
and –in our notation– it takes the form x>Bθ? ≤ C, for some
known matrix B. As such, no side-information measurements
are needed. First, while our proof does not show a regret of
Õ(
√
T ) for the setting of [34] in the general case, it does so
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Figure 3. Comparison of the cumulative regret of Safe-LTS and Naive Safe-
LUCB and Inflated Naive Safe-LUCB algorithms over randomly generated
instances.
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Figure 4. Left: Regret of Safe-LUCB vs Safe-LTS, for a single problem
instance with active safety constraint. Right: Average cumulative regret of
Safe-LTS vs two safe LUCB algorithms.

for special cases. For example, it is not hard to see that our
proofs readily extend to their setting when B = I . This already
improves upon the Õ(T 2/3) guarantee provided by [34]. Indeed,
for B = I , there are non-trivial instances where C−x>∗ θ∗ = 0
(i.e., the safety constraint is active), in which Safe-LUCB
suffers from a Õ(T 2/3) bound [34]. Second, while our proof
adapts to a special case of [34]’s setting, the other way around
is not true, i.e., it is not obvious how one would modify the
proof of [34] to obtain a Õ(

√
T ) guarantee even in the presence

of side information. This point is highlighted by Fig. 4(left)
that numerically compares the two algorithms for a specific
problem instance with side information: θ∗ = [0.9, 0.23]>,
µ∗ = [0.55, 0.31]T , and C = 0.11 (note that the constraint is
active at the optimal). Also, see Section IV-E for a numerical
comparison of the estimated safe-sets’ expansion for the two
algorithms. Fig. 4(right) compares Safe-LTS against Safe-
LUCB and Naive Safe-LUCB over 30 problem realizations.
As already pointed out in [34], Naive Safe-LUCB generally
leads to poor regret, since the LUCB action selection rule
alone does not provide sufficient exploration towards safe set
expansion. In contrast, Safe-LUCB is equipped with a pure
exploration phase over a given seed safe set, which is shown
to lead to proper safe set expansion. Our paper reveals that the
inherent randomized nature of Safe-LTS is alone capable to
properly expand the safe set without the need for an explicit
initialization phase (during which regret grows linearly).

D. Standard deviations

Figure 1 shows the sample standard deviation of regret
around the average per-step regret for each one of the
curves depicted in Figure 4(right). We remark on the strong
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Figure 5. Comparison of expansion of safe decision sets for Safe-LTS, and
Inflated Naive Safe-LUCB.
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Figure 6. Comparison of expansion of a safe decision sets for Safe-LUCB
and Safe-LTS, for a single problem instance.

dependency of the performance of LUCB-based algorithms
on the specific problem instance, whereas the performance of
Safe-LTS does not vary significantly under the same instances.

E. Safe-set expansion

We also plot the expansion of the estimated safe set Dst in
time for different problem instances for Saf-LTS and ”Inflated
Naieve Safe-LUCB” and Safe-LUCB in [34]. In particular, Fig.
6 highlights the gradual expansion of the safe decision set
for Safe-LUCB in [34] and Safe-LTS for a problem instance
in which the safety constraint is active for parameters θ∗ =[

0.9
0.23

]
, µ∗ =

[
0.55
−0.31

]
, and C = 0.11. Similarly, Fig. 5

illustrates the expansion of the safe decision set for “Inflated
Naive Safe-LUCB” and Safe-LTS for a problem instance with

parameters θ∗ =

[
0.5766
−0.1899

]
, µ∗ =

[
0.2138
−0.0020

]
, and C =

0.0615 in which the former provides poor (almost linear) regret.
These empirical experiments reinforce the main message of
our paper that the inherent randomized nature of TS is crucial
for properly expanding the safe action set.

Next, we comment on the dependence of the regret of Safe-
LTS on the size of the safe set. Note that the size of the safe
action set depends on the safety constant C as well as on
the unknown parameter µ?. Recall that S is an upper bound
on the norm of µ?, and, also ‖x‖2 ≤ L for any action vector
x ∈ D0. Since the constraint is of the form x>µ? ≤ C, the size
of the set of safe actions depends on the values L, S,C. We
will also assume that LS > C, since otherwise it follows by
Cauchy-Schwartz that all actions in D0 are safe and the regret
is no different compared to the unconstrained case. Intuitively,
for smaller values of C (compared to LS), the “smaller” the
safe set around zero. This means that the algorithm can only
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Figure 7. Comparison of the cumulative regret of Safe-LTS for different
values of the safety constant C.

take actions in a very conservative manner to guarantee that
actions remain safe. At an intuitive level, we would then expect
an increase on the regret. This intuition is in fact captured
by our regret bound in Theorem III.1 showing that the bound
increases with increasing values of the ratio LS

C . Thus, the
smaller C, the larger our regret bound.

In Figure 7 we showcase the effect of decreasing C on
the regret. Specifically, we have chosen θ? = [0.3; 0.8], µ? =
[0.2; 0.7], D0 = [−1, 1]2, S =

√
2 and L =

√
2 and we

have plotted the regret of Safe-LTS for different values of
C = 0.7, 0.8, 0.9 and 1. We see that the regret increases for
smaller values of C as suggested by our bound of Theorem
III.1.

As a closing remark, while we make no claim that our bound
captures sharply the effect of the size of the safe set (perhaps
measured in terms of some geometric quantity such as volume),
we showed that our bound captures the effect of the size in
the summary term LS/C, which also appears to agree with
the empirical results of Figure 7.

V. CONCLUSION

In this paper, we study a linear stochastic bandit (LB)
problem in which the environment is subject to unknown linear
safety constraints that need to be satisfied at each round. As
such, the learner must make necessary modifications to ensure
that the chosen actions belong to the unknown safe set. We
propose Safe-LTS, which to the best of our knowledge, is the
first safe linear TS algorithm with provable regret guarantees for
this problem. Moreover, we show that the Safe-LTS achieves the
same frequentist regret of order O(d3/2 log1/2 d·T 1/2 log3/2 T )
as the original LTS problem studied in [2]. We also compare
Safe-LTS with several several UCB-type safe algorithms. We
show that our algorithm has: better regret in the worst-case
(Õ(T 1/2) vs. Õ(T 2/3)), fewer parameters to tune and often
superior empirical performance. Interesting directions for future
work include gaining a theoretical understanding of the regret
of the algorithm when the TS distribution satisfies the dynamic
property in (27), which empirically leads regret of smaller order
as well as, investigating TS-based alternatives to the GP-UCB-
type algorithms of [30], [31]. Additionally, it is interesting to
study extensions of our theory on linear constraints to the more
general setting in which constraints are modeled as Gaussian
Processes. This would also allow more complex settings in
which the safe regions may even be disconnected.
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VI. APPENDIX A

We first state the standard results that plays an important
role in most proofs for linear bandits problems.

Proposition VI.1. ( from[5]) Let λ ≥ 1. For any arbitrary
sequence of actions (x1, . . . , xt) ∈ Dt, let Vt be the corre-
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sponding Gram matrix, then
t∑

s=1

‖xs‖2V −1
s
≤ 2 log

det(Vt+1)

det(λI)
≤ 2d log (1 +

tL2

λ
). (28)

In particular, we have

T∑
s=1

‖xs‖V −1
s
≤
√
T

(
T∑
s=1

‖xs‖2V −1
s

) 1
2

≤

√
2Td log

(
1 +

TL2

λ

)
. (29)

Also, we recall the Azuma’s concentration inequality for
super-martingales.

Proposition VI.2. (Azuma’s inequality [46]) If a super-
martingale (Yt)t≥0 corresponding to a filtration Ft satisfies
|Yt − Yt−1| < ct for some positive constant ct, for all
t = 1, . . . , T , then, for any u > 0,

P (YT − Y0 ≥ u) ≤ 2e
− u2

2
∑T
t=1 c

2
t . (30)

Next, we define the high probability confidence regions for
the RLS-estimates that er use in the rest of the proof.

Definition VI.1. Let δ ∈ (0, 1), δ′ = δ
6T , and t ∈ [T ]. We

define the following events:
• Êt is the event that the RLS-estimate θ̂ concentrates

around θ? for all steps s ≤ t, i.e., Êt = {∀s ≤
t,
∥∥∥θ̂s − θ?∥∥∥

Vs
≤ βs(δ′)};

• Ẑt is the event that the RLS-estimate µ̂ concentrates
around µ?, i.e., Ẑt = {∀s ≤ t, ‖µ̂s − µ?‖Vs ≤ βs(δ

′)}.
Moreover, define Zt such that

Zt = Êt ∩ Ẑt.

• Ẽt is the event that the sampled parameter θ̃t con-
centrates around θ̂t for all steps s ≤ t, i.e., Ẽt =

{∀s ≤ t,
∥∥∥θ̃s − θ̂s∥∥∥

Vs
≤ γs(δ

′)}. Let Et be such that

Et = Ẽt ∩ Zt.

Lemma VI.3. Under Assumptions 1, 2, we have P(Z) =
P(Ê ∩ Ẑ) ≥ 1 − δ

3 where Ê = ÊT ⊂ · · · ⊂ Ê1, and Ẑ =

ẐT ⊂ · · · ⊂ Ẑ1.

Proof. The proof is similar to the one in Lemma 1 of [2] and
is ommited for brevity.

Lemma VI.4. Under Assumptions 1, 2, we have P(E) =
P(Ẽ ∩ Z) ≥ 1− δ

2 , where Ẽ = ẼT ⊂ · · · ⊂ Ẽ1.

Proof. We show that P(Ẽ) ≥ 1 − δ
6 . Then, from Lemma

VI.3 we know that P(Z) ≥ 1− δ
3 , thus we can conclude that

P(E) ≥ 1− δ
2 . Bounding Ẽ comes directly from concentration

inequality (14). Specifically, for 1 ≤ t ≤ T

P
(∥∥∥θ̃t − θ̂t∥∥∥

Vt
≤ γt(δ′)

)
= P

(
‖ηt‖2 ≤

γt(δ
′)

βt(δ′)

)
= P

(
‖ηt‖2 ≤

(
1 +

2

C
LS

)√
cd log (

c′d

δ′
)

)
≥ 1− δ′.

Applying union bound on this ensures that P(Ẽ) ≥ 1− Tδ′ =
1− δ

6 .

Now we are ready to provide the formal proof of Lemma
III.2. First, we provide a formal statement and a detailed proof
of Lemma III.2. Here, we need several modifications compared
to [2] that are required because in our setting, actions xt belong
to inner approximations of the true safe set Ds0. Moreover, we
follow an algebraic treatment that is perhaps simpler compared
to the geometric viewpoint in [2].

Lemma VI.5. Let Θopt
t = {θ ∈ Rd : maxx∈Ds

t
x>θ ≥

x>? θ?} ∩ ETS
t be the set of optimistic parameters, θ̃t =

θ̂t + βt(δ
′)V
− 1

2
t ηt with ηt ∼ DTS, then ∀t ≥ 1,

P
(
θ̃t ∈ Θopt

t |Ft, Zt
)
≥ p

2 .

Proof. First, we provide the shrunk version D̃st of Dst as
follows:

A shrunk safe decision set D̃st . Consider the enlarged
confidence region C̃t centered at µ? as

C̃t := {v ∈ Rd : ‖v − µ?‖Vt ≤ 2βt(δ
′)}. (31)

We know that Ct ⊆ C̃t, since ∀v ∈ Ct, we know that
‖v − µ?‖Vt ≤ ‖v − µ̂t‖Vt + ‖µ̂t − µ?‖Vt ≤ 2β(t). From
the definition of enlarged confidence region, we can get the
following definition for shrunk safe decision set:

D̃st :={x ∈ D0 : x>v ≤ C, ∀v ∈ C̃t}
= {x ∈ D0 : max

v∈C̃t
x>v ≤ C}

= {x ∈ D0 : x>µ? + 2βt(δ
′) ‖x‖V −1

t
≤ C}, (32)

and note that D̃st ⊆ Dst , and they are not empty, since they
include zero due to Assumption 3.

Then, we define the parameter αt such that the vector zt =
αtx? in direction x? belongs to D̃st and is closest to x?. Hence,
we have:

αt := max
{
α ∈ [0, 1] : zt = αx? ∈ D̃st

}
. (33)

Since D0 is convex by Assumption 3 and both 0, x? ∈ D0, we
have

αt = max
{
α ∈ [0, 1] : α

(
x>? µ? + 2βt(δ

′) ‖x?‖V −1
t

)
≤ C

}
.

(34)

From constraint (1), we know that x>? µ? ≤ C. We choose αt
such that

1 +
2

C
βt(δ

′) ‖x?‖V −1
t

=
1

αt
. (35)

We need to study the probability that a sampled θ̃t drawn from
HTS distribution at round t is optimistic, i.e.,

pt = P
(

(xt(θ̃t))
>θ̃t ≥ x>? θ?

∣∣∣ Ft, Zt) .
Using the definition of αt in (34), we have

(xt(θ̃t))
>θ̃t = max

x∈Dst
x>θ̃t ≥ αtx>? θ̃t. (36)
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Hence, we can write

pt ≥P
(
αtx
>
? θ̃t ≥ x>? θ?

∣∣∣ Ft, Zt)
= P

(
x>?

(
θ̂t + βt(δ

′)V
− 1

2
t ηt

)
≥ x>? θ?

αt

∣∣∣∣ Ft, Zt)
Then, we use the value that we chose for αt in (35), and we
have

= P
(
x>? θ̂t + βt(δ

′)x>? V
− 1

2
t ηt ≥

x>? θ? +
2

C
βt(δ

′) ‖x?‖V −1
t

x>? θ?|Ft, Zt
)

we know that |x>? θ?| ≤ ‖x?‖2‖θ?‖2 ≤ LS. Hence,

pt ≥ P
(
βt(δ

′)x>? V
− 1

2
t ηt ≥

x>? (θ? − θ̂t) +
2

C
LSβt(δ

′) ‖x?‖V −1
t
| Ft, Zt

)
From Cauchy–Schwarz inequality and (5), we have

| x>?
(
θ? − θ̂t

)
|≤ ‖x?‖V −1

t

∥∥∥θ? − θ̂t∥∥∥
Vt
≤ βt(δ′) ‖x?‖V −1

t
.

Therefore, we can write

pt ≥ P
(
x>? V

− 1
2

t ηt ≥

‖x?‖V −1
t

+
2

C
LS ‖x?‖V −1

t
| Ft, Zt

)
(37)

We define u> =
x>? V

− 1
2

t

‖x?‖V−1
t

, and hence ‖u‖2 = 1. It follows

from (37) that

pt ≥ P
(
u>ηt ≥ 1 +

2

C
LS

)
≥ p, (38)

where the last inequality follows the concentration inequality
(14) of the TS distribution. We also need to show that the high
probability concentration inequality event does not effect the
TS of being optimistic. This is because the chosen confidence
bound δ′ = δ

6T is small enough compared to the anti-
concentration property (13). Moreover, we assume that T ≥ 1

3p

which implies that δ′ ≤ p
2 . We know that for any events A ans

B, we have

P(A ∩B) = 1− P(Ac ∪Bc) ≥ P(A)− P(Bc). (39)

We apply (39) with A = {Jt(θ̃t) ≥ J(θ?)} and B = {θ̃t ∈
ETS
t } which leads to

P
(
θ̃t ∈ Θopt

t

∣∣∣ Ft, Zt) ≥ p− δ′ ≥ p

2
.

VII. APPENDIX B
The proof presented below follows closely the proof of [2]

and is primarily presented here for completeness. Specifically,
we have identified that the only critical change that needs to
be made to account for safety is the proof of actions being
frequently optimistic in the face of constraints thanks to the
modified anti-concentration property 13. This was handled in

the previous section VI. For completeness, we also prove in
Lemma VII.1 that the first action of Safe-LTS is always safe
under our assumptions.

We use the following decomposition for bounding the regret:

R(T ) ≤
T∑
t=1

(
x>? θ? − xtθ?

)
1{Et} =

T∑
t=1

x>? θ? − x>t θ̃t︸ ︷︷ ︸
Term I

1{Et}+
T∑
t=1

x>t θ̃t − x>t θ?︸ ︷︷ ︸
Term II

1{Et}.

(40)

A. Bounding Term I.

For any θ, we denote xt(θ) = arg maxx∈Dst x
>θ. On the

event Et, θ̃t belongs to ETS
t which leads to

(Term I)1{Et} := RTS
t 1{Et}

≤
(
x>? θ? − inf

θ∈ETS
t

(xt(θ))
>θ

)
1{Zt}. (41)

Here and onwards, we use 1{E} as the indicator function
applied to an event E . We have also used the fact that Et is a
subset of Zt. Next, we can also bound (41) by the expectation
over any random choice of θ̃ ∈ Θopt

t (recall (20)) that leads to

RTS
t ≤ E

[(
(xt(θ̃))

>θ̃ − inf
θ∈ETS

t

(xt(θ))
>θ

)
1{Zt}

∣∣∣∣ Ft, θ̃ ∈ Θopt
t

]
.

Equivalently, we can write

RTS
t ≤ E

[
sup
θ∈ETS

t

((
xt(θ̃)

)>
θ̃ −

(
xt(θ)

)>
θ
)
1{Zt}

∣∣∣∣∣ Ft, θ̃ ∈ Θopt
t

]
,

(42)

Then, using Cauchy–Schwarz and the definition of γt(δ′) in
(24)

E

[
sup
θ∈ETS

t

(
xt(θ̃)

)> (
θ̃ − θ

)
1{Zt}

∣∣∣∣∣ Ft, θ̃ ∈ Θopt
t

]

≤ E

[∥∥∥xt(θ̃)∥∥∥
V −1
t

sup
θ∈ETS

t

∥∥∥θ̃ − θ∥∥∥
Vt

∣∣∣∣∣ Ft, θ̃ ∈ Θopt
t , Zt

]
P(Zt)

≤ 2γt(δ
′)E
[∥∥∥xt(θ̃)∥∥∥

V −1
t

∣∣∣∣ Ft, θ̃ ∈ Θopt
t , Zt

]
P(Zt).

This property shows that the regret RTS
t is upper bounded

by V −1t -norm of the optimal safe action corresponding to the
any optimistic parameter θ̃. Hence, we need to show that TS
samples from the optimistic set with high frequency. We prove
in Lemma VI.5 that TS is optimistic with a fixed probability
(p2 ) which leads to bounding RTS

t as follows:

RTS
t

p

2
≤ 2γt(δ

′)E
[∥∥∥xt(θ̃t)∥∥∥

V −1
t

∣∣∣∣ Ft, θ̃t ∈ Θopt
t , Zt

]
P(Zt)

p

2
≤

(43)

2γt(δ
′)E
[∥∥∥xt(θ̃t)∥∥∥

V −1
t

∣∣∣∣ Ft, θ̃t ∈ Θopt
t , Zt

]
P(Zt)P

(
θ̃t ∈ Θopt

t

∣∣∣ Ft, Zt)
≤ 2γt(δ

′)E
[∥∥∥xt(θ̃t)∥∥∥

V −1
t

∣∣∣∣ Ft, Zt]P(Zt). (44)
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By reintegrating over the event Zt we get

RTS
t ≤

4γt(δ
′)

p
E
[∥∥∥xt(θ̃t)∥∥∥

V −1
t

1{Zt}
∣∣∣∣ Ft] . (45)

Recall that Et ⊂ Zt, hence

RTS(T ) ≤
T∑
t=1

RTS
t 1{Et}

≤ 4γT (δ′)

p

T∑
t=1

E
[∥∥∥xt(θ̃t)∥∥∥

V −1
t

∣∣∣∣ Ft] . (46)

For bounding this term, we rewrite the RHS above as:

RTS(T ) ≤
T∑
t=1

‖xt‖V −1
t

+

T∑
t=1

(
E
[∥∥∥xt(θ̃t)∥∥∥

V −1
t

∣∣∣∣ Ft]− ‖xt‖V −1
t

)
. (47)

We can now bound the first expression using Proposition VI.1.
For the second expression we proceed as follows:

• First, the sequence

Yt =

t∑
s=1

(
E
[∥∥∥xs(θ̃s)∥∥∥

V −1
s

∣∣∣∣ Fs]− ‖xs‖V −1
s

)
is a martingale by construction.

• Second, under Assumption 3, ‖xt‖2 ≤ L, and since
V −1t ≤ 1

λI , we can write

E
[∥∥∥xs(θ̃s)∥∥∥

V −1
s

∣∣∣∣ Fs]− ‖xs‖V −1
s
≤ 2L√

λ
, ∀t ≥ 1.

(48)

• Third, for bounding YT , we use Azuma’s inequality, and
we have that with probability 1− δ

2 ,

YT ≤
√

8TL2

λ
log

4

δ
. (49)

Putting these together, we conclude that with probability 1− δ
2 ,

RTS(T ) ≤ 4γT (δ′)

p

(√
2Td log

(
1 +

TL2

λ

)
+

√
8TL2

λ
log

4

δ

)
.

B. Bounding Term II

We can bound on Term II using the general result of [5]. In
fact, we can use the following general decomposition:
T∑
t=1

(Term II)1{Et} := RRLS(T )

=
T∑
t=1

(
x>t θ̃t − x>t θ?

)
1{Et}

≤
T∑
t=1

| x>t (θ̃t − θ̂t) | 1{Et}+
T∑
t=1

| x>t (θ̂t − θ?) | 1{Et}.

(50)

By Definition VI.1, we have Et ⊆ Zt and Et ⊆ Ẽt, and hence

| x>t (θ̃t − θ̂t) | 1{Et} ≤ ‖x‖V −1
t

γt(δ
′)

| x>t (θ̂t − θ?) | 1{Et} ≤ ‖x‖V −1
t

βt(δ
′).

Therefore, from Proposition VI.1, we have with probability
1− δ

2

RRLS(T ) ≤ (βT (δ′) + γT (δ′))

√
2Td log

(
1 +

TL2

λ

)
. (51)

C. Overall Regret Bound

Recall that from (16), R(T ) ≤ RTS(T ) + RRLS(T ). As
shown previously, each term is bounded separately with
probability 1 − δ

2 . Using union bound over two terms, we
get the following expression:

R(T ) ≤ (βT (δ′) + γT (δ′)(1 +
4

p
))

√
2Td log (1 +

TL2

λ
)

+
4γT (δ′)

p

√
8TL2

λ
log

4

δ
, (52)

holds with probability 1− δ where δ′ = δ
6T .

For completeness we show below that action x1 is safe.
Having established that, it follows that the rest of the actions
xt, t > 1 are also safe with probability at least 1 − δ′. This
is by construction of the feasible sets Dst and by the fact that
µ? ∈ Ct(δ′) with the same probability for each t.

Lemma VII.1. The first action that Safe-LTS chooses is safe,
that is x>1 µ? ≤ C.

Proof. At round t = 1, the RLS-estimate µ̂1 = 0 and V1 =
λI . Thus, Safe-LTS chooses the action which maximizes the
expected reward while satisfying x>1 µ̂1 +β1(δ′) ‖x1‖V −1

1
≤ C.

Hence, x1 satisfies:

β1(δ′) ‖x1‖V −1
1
≤ C.

From Theorem II.1 and V −11 = (1/λ)I leads to S ‖x1‖2 ≤ C
which completes the proof.
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