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Abstract—Many applications require a learner to make se-
quential decisions given uncertainty regarding both the system’s
payoff function and safety constraints. In safety-critical systems,
it is paramount that the learner’s actions do not violate the
safety constraints at any stage of the learning process. In this
paper, we study a stochastic bandit optimization problem where
the unknown payoff and constraint functions are sampled from
Gaussian Processes (GPs) first considered in [1]. We develop
a safe variant of GP-UCB called SGP-UCB, with necessary
modifications to respect safety constraints at every round. The
algorithm has two distinct phases. The first phase seeks to
estimate the set of safe actions in the decision set, while the second
phase follows the GP-UCB decision rule. Our main contribution
is to derive the first sub-linear regret bounds for this problem.
We numerically compare SGP-UCB against existing safe Bayesian
GP optimization algorithms.

A full version referred to as supplementary material (SM) of

this paper is accessible at: https://arxiv.org/pdf/2005.01936.pdf

I. INTRODUCTION

The application of stochastic bandit optimization in safety-
critical systems requires the learner to select actions that satisfy
a number of unknown safety constraints at each round. This
setting has recently found many applications in medical trials
and robotics, e.g., [2], [3], [4], [5]. In this paper, we consider a
stochastic bandit optimization problem where both the reward
function f and the constraint function g are samples from
Gaussian Processes. We require that the learner’s chosen actions
respect safety constraints at every round in spite of uncertainty
about safe actions. This setting was first studied in [6] in the
specific case of a single safety constraint of the form f(x) > h.
The proposed safe algorithm in [6] guarantees that the system’s
performance never falls below a critical value; that is, safety is
defined based on the reward function. Later, in [7], the authors
studied the more general case of g(x) > h as adopted in our
paper. The reason for this generalization is that coupling the
system’s performance and safety requirements is often not
desirable in applications such as robotics. For example, high-
gain controllers might have great performance by achieving
low average tracking error, however, they can overshoot and
violate input constraints which is not desirable [5].

In the presence of safety constraints, the learner hopes to
overcome the two-fold challenge of keeping the cumulative
regret as small as possible while ensuring that selected actions
respect the safety constraints at each round of the algorithm.
We present SGP-UCB, which is a safety-constrained variant
of GP-UCB proposed by [1]. To ensure constraint satisfaction,

Mahnoosh Alizadeh
UCSB, alizadeh@ucsb.edu

Christos Thrampoulidis
UBC, cthrampo@ece.ubc.ca

SGP-UCB restricts the learner to choose actions from a
conservative inner-approximation of the safe decision set that is
known to satisfy safety constraints with high probability given
the algorithm’s history. The cumulative regret bound of our
proposed algorithm (given in Section III as our main theoretical
result) implies that SGP-UCB is a no-regret algorithm. This is
the main difference of our results compared to the algorithms
studied in [6], [7] that only come with convergence-but, no
regret- guarantees.

Notation. ||x||2 denotes the Euclidean norm of a vector x. The
weighted 2-norm of a vector v € R? with respect to A € R?*9
is defined by ||v]|a= VVvT Av. We denote the minimum and
maximum eigenvalue of A by Apin(A) and Apax(A). The
maximum of two numbers «, 3 is denoted oV 3. For a positive
integer n, [n] denotes the set {1,2,...,n}.

A. Problem Statement

The learner is given a finite decision set Dy C R?. At each
round ¢, she chooses an action x; € Dy and observes a noise-
perturbed value of an unknown reward function f : Dy —
R, i.e. y¢ := f(x¢) + n:. At every round, the learner must
ensure that the chosen action x; satisfies the following safety
constraint:

(D

where g : Dy — R is an unknown function and A is a known
constant.! We define the safe set from which the learner is
allowed to take action as:

g(x¢) > h,

D :={x €Dy : g(x) > h}. (2)

Since ¢ is unknown, the learner cannot identify D§. As such,
the best she can do is to choose actions x; that are in Dj with
high probability. We assume that at every round, the learner
also receives noise-perturbed feedback on the safety constraint,
i.e. Zt = g(Xt) + Ct'

Goal. Since our knowledge of g comes from noisy observations,
we are not able to fully identify the true safe set D and infer
g(x) exactly, but only up to some statistical confidence g(x)+te
for some € > 0. Hence, we consider the optimal action through
an e-reachable safe set for some € > 0:

DS = {x € Dy:g(x)>h+e}, 3)

'Our results can be simply extended to the settings with several safety
constraints, i.e., set of g;’s and h;’s, however, for the sake of brevity we focus
on one constraint function.
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as our benchmark. A natural performance metric in this context
is cumulative pseudo-regret [8] over the course of T' rounds,
which is defined by Ry = S, f(x¥) — f(x¢), where x* is
the optimal safe action that maximizes the reward in expectation
over the D2, i.e., X! € argmax,ps f(x). For the rest of this
paper, we simply use regret to refer to the pseudo-regret R
and drop the subscript € from x?. The goal of the learner is
to follow a no-regret algorithm, i.e. such that Rr/T — 0 as
T grows, while ensuring all actions she chooses are safe with
high probability over the the entire time horizon [T).
Regularity Assumptions. The above specified goal cannot be
achieved unless certain assumptions are made on f and g.
We model the reward function f and the constraint function
g as a sample from a Gaussian Process (GP) [9]. We now
present necessary standard terminology and notations on GPs.
A GP(u(x),k(x,x')) is a probability distribution across
a class of smooth functions, which is parameterized by a
kernel function k(x,x’) that characterizes the smoothness
of the function. The Bayesian algorithm we analyze uses
GP(0,k¢(x,x")) and GP(0, ky(x,x’)) as prior distributions
over f and g, respectively, where ks and k, are positive
semi-definite kernel functions. Moreover, we assume bounded
variance ks(x,x) < 1 and k4(x,x) < 1. For a noisy sample
vyt = [y1,-..,97, with i.i.d Gaussian noise 7; ~ N(0,02)
the posterior over f is also a GP with the mean py,(x) and
variance o7 ,(x):

pre(x) = k()" (Kpe + 0"y

O'%t x) = ky(x,x)
where kpi(x,x') = kp(x,x) — kpi(x)T(Kpe +
o?D)kyp (%), kpi(x) = [kp(x1,%),..., kp(xe,x)]7
and Ky; is the positive definite kernel matrix

(kr(x, %) xx'e{x1,..x;}- Associated with ¢ with iid
Gaussian noise ¢; ~ N(0,0?), the mean p, +(x) and variance

02 ,(x) are defined similarly.

B. Comparison to Related work

In this section we discuss the most closely related works:
[5], [6], [7] and [10]. See SM for a broader discussion.

As mentioned our GP model for the reward and constraints
is motivated by [6], [7], [5]. First, contrary to us, the aforemen-
tioned papers seek to identify a safe decision with the highest
possible reward given a limited number of trials; i.e., their
goal is to provide best-arm identification with convergence
guarantees by [11]. Instead, our paper focuses on a long-term
performance characterized through cumulative regret bounds.
Second, implementing the algorithms of [6], [7] requires the
knowledge (or at least some estimate) of the Lipschitz constant
L of f and g over the decision set. In contrast, our algorithm
does not use Lipschitzness of either f or g, hence, it avoids
the need for a processing step that estimates L.

Our algorithm can be seen as an extension of Safe-LUCB
proposed by [10] to safe GPs. Specifically, in Section III-A, we
show that our algorithm and guarantees are similar to those in
[10] for linear kernels. While [10] studies a frequentist setting,
our results hold for a rich class of kernels beyond linear kernel.

II. A SAFE GP-UCB ALGORITHM

We start with a description of SGP-UCB, which is summa-
rized in Algorithm 1. Similar to a number of previous works
(e.g., [71, [10]), SGP-UCB proceeds in two phases to balance
the goal of expanding the safe set and controlling the regret.
Prior to designing the decision rule, the algorithm requires
a proper expansion of DS. Hence, in the first phase, it takes
actions at random from a given safe seed set D" until the
safe set has sufficiently expanded. In the second phase, the
algorithm exploits GP properties to make predictions of f
from past noisy observations y;. It then follows the Upper
Confidence Bound (UCB) machinery to select the action. In
the absence of constraint (1), UCB-based algorithms select
action x; that maximizes a high probability upper bound
of f(x) for all x € Dy. However, the safety constraint (1)
requires the algorithm to have a more delicate sampling rule
as follows. Thus, the algorithm exploits the noisy constraint
observations z; to further establish confidence intervals for the
unknown constraint function, which allow us to design an inner
approximation Dts of the safe set (see (6)). The chosen actions
belong to D which guarantees that the safety constraint (1)
is met with high probability.

A key difference in the analysis of SGP-UCB compared
to the classical GP-UCB is that x* may not lie within
the estimated safe set DY (see (6)) at each round. To see
what changes, consider the standard decomposition of the
instantaneous regret r; := f(x*) — f(x;) in two terms as
follows: 7y = (f(x*) —use(xe)) + (upe(x¢) — f(x¢)), where,
x¢ is the optimistic action at round ¢, i.e. the solution to the
maximization in Eqn. (7). On the one hand, controlling the
second term, is more or less standard and closely follows
previous such bounds on UCB-type algorithms [1]. On the
other hand, controlling the first term is more delicate. This
complication lies at the heart of the new formulation with
additional safety constraints. When safety constraints are absent,
classical GP-UCB guarantees that the first term is non-positive.
Unfortunately, this is not the case here since x* does not
necessarily belong to Dts (see (6)). Our main contribution
towards establishing regret guarantees is to add the extra pure-
exploration phase with duration 7", where T” is chosen such
that for all ¢ > T + 1, the first term above is non-positive
with high probability.

Exploration phase: The exploration phase aims to reach a
sufficiently expanded safe subset of Dy. The algorithm starts
exploring by choosing actions from D" at random and it stops
after T” rounds once it has reached an approximate safe set
within which x* lies with high probability.

Safe exploration-exploitation phase: In the second phase,
the algorithm follows an approach similar to GP-UCB [1] in
order to balance exploration and exploitation and guarantee
the no-regret property. At rounds ¢ = 77 + 1,...,T, SGP-
UCB uses previous observations to estimate D and predict
f. Tt creates the following confidence interval for f(x):



Algorithm 1 SGP-UCB

Input: 6, €, Dy, DY, A_(A_), T', T
Pure exploration phase:
fort=1...,7" do
Randomly choose x; € D" and observe y; and z;.
end for
Safe exploration-exploitation phase:
fort=7"+1...,T do
Compute 5 4(x), uss(x), and £4(x) for all x € Dy
using (4) and (5) and B; specified in Theorem 1.
Create Df as in (6).
Choose x; = argmax,ps r,¢(x) and observe y;, 2.
end for

Qy(x) := [lr(x),us(x)], where,

“)
®)
Confidence intervals Q) +(x) corresponding to g(x) are defined
in a similar way. We choose f; according to Theorem 1 to

guarantee f(x) € Q+(x) and g(x) € Qg+(x) for all x € Dy
and ¢ > 0 with high probability.

Lyi(x) = pypi—1(x) — ﬂtl/QUf,tq(X%
wp (%) = ppam1(x) + B o p o1 (x).

Theorem 1 (Confidence Intervals, [1]). Pick § € (0,1) and
set By = 21log(2|Do|t2m?/65), then, f(x) € Qr4(x) , g(x) €
Qg.+(x), Vx € Dy,t > 0, with probability at least 1 — 0.

Using the above defined confidence intervals @ .(x) and
Qg,+(x), the algorithm is able to act conservatively to ensure
that safety constraint (1) is satisfied. Specifically, at the begin-
ning of each round t =T’ +1,...,T, SGP-UCB forms the
following so-called safe decision sets based on the mentioned
confidence bounds:

D} := {x € Dy : £y4(x) > h}. (6)

Recall that g(x) > ¢, ,(x) for all ¢ > 0 with high probability.
Therefore, Dts is guaranteed to be a set of safe actions with
the same probability. After creating safe decision sets in the
second phase, the algorithm follows a similar decision rule as
in GP-UCB algorithm in [1]:

Xy = argmax 4 (x).
x€D}

(7

III. REGRET ANALYSIS OF SGP-UCB

Consider decomposing the cumulative regret as
Tl

Ry = Z Ty +
t=1

Bounding Term IL. In the following sections, we show how T”
is appropriately chosen such that x* € D} with high probability
for all t > T’ + 1. Once this is accomplished, we bound the
second term of (8) using the standard regret analysis in [1].
Specifically, the bound depends on the so-called information

T
Z 7y = Term I + Term II.  (8)
t=T"+1

gain ~; which quantifies how fast f can be learned in an
information theoretic sense. See [1] and SM for more details.
Bounding Term I Since for the first 77 rounds actions
are selected at random, the bound on Term I is linear in
T’. In other words, the upper bound on the first term is of
the form BT’, where B := C+v/2¢d diam(Dy)/§ for some
C > 0 if k; is an RBF kernel with parameter ¢, otherwise
B = 2,/210g(2|Dy|)/d such that (see SM for details):
maxx yep, |f(x) — f(y)|< B, with probability at least 1 — 4.
Determining T°. We need to find the value of 7" such that
with high probability x* € D} for all ¢ > T’ +1. The following
lemma, proved in the SM establishes a sufficient condition for
x* € D} which is more convenient to work with.

Lemma 1 (x* € DY). With probability at least 1 — 6, it holds
that x* € Df for any t > 0 that satisfies:
2

15 2 Ohea () ©)

From Lemma 1, it suffices to establish an appropriate upper
bound on the RHS of (9) to determine the duration of the
first phase, i.e., 7". We do this by expressing o2, ;(x*) in
terms of the associated feature maps as follows. Recall that
a positive semi-definite kernel function k, : R x RY — R is
associated with a feature map ¢, : R? — Hy, that maps the
vectors in the primary space to a reproducing kernel Hilbert
space (RKHS). In terms of the mapping ¢, the kernel function
kg is defined by: k,(x,x') = ¢,(x)Tpy(x'), Vx,x" € R4
Let d, denote the dimension of Hy, (potentially infinite) and
define the ¢ x d, matrices @, = [py(x1),...,0q(x:)]T at
each round ¢. Using this notation, we can rewrite (see SM):

02 (%) = 0% (x)" (®L, @y, + 0’ I) Tpy(x).  (10)
A. Constraint with finite-dimensional RKHS

In this section we consider g with finite dimensional RKHS.
For example, for linear kernel k,(x,y) = xTy and polynomial
kernel k,(x,y) = (xTy + 1), the corresponding d,, is d and
(417), respectively [12].

Let x ~ Unif(D"¥) be a d-dimensional random vector
uniformly distributed in D*. We denote the covariance matrix
of 4(X) by B, = E[p, (X)py(X)T] € Rs*ds. A key quantity
in our analysis is the minimum eigenvalue of X, denoted by:

A= Amin(Zy). (11)

At rounds ¢ € [T’], SGP-UCB chooses safe iid actions
x; S Unif(D"). Regarding the definition of o7 ,(x) in (10),
we show that if A_ >0, o7, ;(x*) can be controlled for all
t > T' + 1 by appropriately lower bounding the minimum
eigenvalue of the Gram matrix '~I>£T/<I>97T/, which is possible
due to the randomness of chosen actions in the first phase.

Lemma 2. Assume d, < 0o, A_ > 0, and x € Dy. Then, for
any 6 € (0,1), provided T' > t5 := 3 1og(%"), the following
holds with probability at least 1 — 6,

AT
Amin (<1>9T,T,<1»97T/ + 021) >ot+ - (1))



Consequently, o2, ;(x*) < %,ﬁ)r allt > T +1.

— 20

Combining Lemmas 1 and 2 gives the desired value of T
that guarantees x* € D5 for all t > T”+1 with high probability.
Putting these together, we conclude the following regret bound
for constraint with corresponding finite-dimensional RKHS.

Theorem 2 (Regret bound for g with finite dimensional RKHS).

2
Let the same assumptions as in Lemma 2 hold. Let t. := 8;7 sz

and define T' := t. V ts. Then for sufficiently large T such
that T > T' and any 0 € (0,1/3), with probability at least
1—34:

Ry < BT+ /CiTBryr,
where C1 = 8/log(1 + o~2).

As a special case, let f and g be associated with linear ker-
nels. Let k be a linear kernel with mapping ¢, : R — H;, =
R?, X; = ®; = [x1,...,%¢]7, and y be the corresponding
observation vector. Therefore, we have i (x) = x7 0, where
0, = (XTX, + 02I)"'XTy. We derive the following from
(10): o2 (x) = o’2||x||A 1, where A; = XT'X; + 021 Thus,
we observe the close relation in these notations with that in
Linear stochastic bandits settings, [13]. As such, our setting is
an extension to [10], where linear loss and constraint functions
have been studied (albeit in a frequentist setting).

B. Constraint with infinite-dimensional RKHS

In the infinite-dimensional RKHS setting, controlling
ogt—1(x*) for t > T' 4+ 1 can be challenging. To address
this issue, we focus on stationary kernels, i.e., ky4(x,y) =
kg(x — y)?, and apply a finite basis approximation in our
analysis. Particularly, we consider ¢, : R? — RPs which
maps the input to a lower-dimensional Euclidean inner product
space with dimension D, such that: ky(x,y) = @g4(x)7 34 (y)-

Definition 1 ((¢o, Dy)-uniform approximation). For a sta-
tionary kernel kg R? x RY — R, the inner prod-
uct py(x)T¢,(y) in RPs, (eg, D,)-uniformly approximates
kq(x,y) if and only if:

sup |¢g(X)T§5g(Y) -
x,y€Dy

k(X, Y)|S €0-

Due to the infinite dimensionality of Hy,,, there is no notion
for minimum eigenvalue of ®7 9.7 Rg.17- Hence we adopt an
(€0, Dg)-uniform approximation to bound o7, ;(x*) for all
t > T’ + 1 by lower bounding the minimum eigenvalue of
the approximated D, x D, matrix &7 T,CI'g 7+ instead. The
argument follows the same procedure as in Lemma 2, other
than an error bound on o7, ;(x*) caused by the (e, Dy)-
unifromly approximation is required.

We consider ¢4(.) to be an (eg, Dy)-uniform approxima—
tion and denote the covariance matrix of ¢4(X) by 2
E[@,(X)pg(%x)T] € RPs*Ps with minimum eigenvalue:

A= Amin (). (13)

2This property holds for a wide variety of kernels including Exponential,
Gaussian, Rational quadratic, etc.

Lem{na 3. Assume that dg = oo, kg is a stationary kernel,
and A\_ defined in (13) is positive. Fix 0,eq € (0,1). Then, it
holds with probability at least 1 — 6 for all t > T' + 1,

202 43¢

2 * 0

Oge-1(x") < 22 1 AT o2 (14)
. ; D,

provided that T' > t5 := < (52)-

See the SM for rechnical details on how ¢, analytically helps
us obtain this upper bound on o7, ,(x*) forall t > 7" +1
by lower bounding the minimum eigenvalue of &7 7, T,<I>q .
Putting these together leads to the following general regret
bound.

Theorem 3 (Regret bound for g with infinite dimensional
RKHS). Assume there exists an (eo,Dg)-unlform approxl-

mationNOf stationary kernel kg with 0 < €y < 32T35 for
which A_ defined in (13) is positive. Let 1. := 1?\‘7 sz and

ts = 8 log( 2 and define T' := t.Vts. Then, for sufficiently

large T such that T > T' and any § € (0,1/3), with
probability at least 1 — 30:

Rp < BT' +
where C = 8/log(1+ o72).

Ci T Bryr, (15)

Depending on the feature map approximation ¢4, the
dimension D, can be appropriately chosen as a function of
the algorithm’s inputs €, 6 and d to control the accuracy of the
approximation. We emphasize that our analysis is not restricted
to specific approximations. We focus on the Quadrature
Fourier features (QFF) for which [14] showed that the QFF
uniform approximation error €; decreases exponentially with
D,. Concretely, in this case, Dy = O ((d +log(d/€))?)
features are required to obtain an €p-accurate approximation
of the SE kernel £,.

IV. ADDITIVE MODELS WITH LOW EFFECTIVE DIMENSION

Our analysis above suggests that Safe GP learning is easy
when the safety constraint is simple (e.g. linear/polynomial
kernels). However, for instances with dimension d, = oo,
the assumption A_ > 0 requires D to contain at least
D,=0 ((d + log(T'/ e))d) actions, scaling unfavorably with
d. While this can be problematic in general, the use of
QFF remains relevant in applications involving either small
dimensional problems ( d < 5), or high dimensional GPs
with low effective dimension, such as additive models [14],
[15]. Specifically, suppose the constraint function g admits an
additive decomposition: [14], [15]:

G .
x) = 3 gi(x),
=1

where x(9) € D(i), D(()i) C Dy is a d;-dimensional subspace
of Dy with d; <« d, and D(()Z) N D(()J) = () for any i
and j # i. Let the effective dimension of the model by
de = max;cg d;- Under this assumption, the kernel and

(16)
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(a) True f,g and given safe seed set.
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Figure 1: Illustration of SGP-UCB: (a) The dark blue and red solid lines denote the unknown reward function f and constraint
function g, respectively. The dashed green line represents the threshold h + ¢, the gray bar shows the safe seed set D", and the
red star is the optimum value of f through DS. (b,c) The dotted blue and pink lines are the estimated GP mean functions

corresponding to f and g, respectively at rounds 50 and 200.
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Figure 2: Regret comparison of AdditiveSGP-UCB with G =
3,dy = 1,ds = 2,d3 = 3 vs Non-additive SGP-UCB with
d=6.

the mean function of g decompose in the same fashion:
ko (%) = S kg, (X0, ¥ D), pig(x) = Y pg, (x9).
Thus, similar to what we did in previous sections, we can
define the following quantities for each i € [G]: pg, (x¥),
o2 (x™), and £y, +(x™) for all xV) € D((f) and i € [G]. With
these, after appropriately choosing 7”, the agent constructs
the following safe estimated set at round ¢ > T’ + 1:
DS == {x € Dy : 2.7, 4, +(xD) > h}. Thus, using
the machinery of in Section III-B, we can show that the
“new” D, := max;cg) Dy,, that now determines 7" is
O((de + log(T/€))%), i.e., it only depends on the effective
dimension d, rather than the ambient dimension d that can be
much larger d > d.

V. EXPERIMENTS

In Figure 1, we give an illustration of SGP-UCB’s per-
formance. For the sake of visualization, we implement the
algorithm in a 1-dimensional space and connect the data points
since we find it instructive to also depict estimates of f and
g as well as the growth of the safe sets. The algorithm starts
the first phase by sampling actions at random from a given
safe seed set. After 50 rounds, in Figure 1b, the safe set has
sufficiently expanded such that the optimal action x* lies within

the D3,,. Figure lc shows the expansion of the safe set after
200 rounds, which still includes x*.

Figure 2 illustrates the superiority SGP-UCB’s performance
when g admits an additive model, as above, compared to its
performance when faced with g of the same total dimension d
but no additive structure.

In (Figure 2 of) the SM, we present additional experiments
comparing SGP-UCB’s performance against other existing
algorithms: 1) StageOpt [7]; 2) SafeOpt-MC [5]; 3) A heuris-
tic variant of GP-UCB, which proceeds the same as SGP-
UCB except that there is no exploration phase, i.e., 77 = 0;
4) The standard GP-UCB with oracle access to the safe set.
In summary we find that when the safe seed set contains
enough actions (in line with the requirements of our theorems),
SGP-UCB outperforms SafeOpt-MP and StageOpt. We also
implemented SGP-UCB for settings where D" has relatively
small number of safe actions. The results show the poor
performance of SGP-UCB which is expected since D" is
not large enough to explore the whole space for the purpose
of safe set expansion.

Please refer to Section 4 in the SM for details on implemen-

tation and additional discussions.
VI. FUTURE WORK
Several issues remain to be studied. While our algorithm is

the first providing regret guarantees for safe GP optimization,
it is not clear whether it is the best to apply. The answer could
depend on the application. Hence, numerical comparisons on
real application-specific data are worth investigating. A related
important issue that needs to be addressed is that the existing
guarantees (either in terms of cumulative regret, simple regret
or optimization gap) for all safe-GP optimization algorithms,
suffer from loose constants that make such comparisons hard.
Indeed evaluating the performances of all these four algorithms
in numerical experiments requires us to resort to empirical
tuning of parameters like 7" °, which is an important challenge
to overcome.

3For all our implementations, we stopped the first pure-exploration phase
when the safe region plateaued for at least 20 iterations, and also hard capped
T’ at 100 iterations (a similar approach was adopted by [7]).
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