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ABSTRACT

In this paper, the authors propose a new dimension reduction
method for level-set-based topology optimization of conforming
thermal structures on free-form surfaces. Both the Hamilton-
Jacobi equation and the Laplace equation, which are the two
governing PDEs for boundary evolution and thermal conduction,
are transformed from the 3D manifold to the 2D rectangular do-
main using conformal parameterization. The new method can
significantly simplify the computation of topology optimization
on a manifold without loss of accuracy. This is achieved due
to the fact that the covariant derivatives on the manifold can be
represented by the Euclidean gradient operators multiplied by
a scalar with the conformal mapping. The original governing
equations defined on the 3D manifold can now be properly mod-
ified and solved on a 2D domain. The objective function, con-
straint, and velocity field are also equivalently computed with
the FEA on the 2D parameter domain with the properly modi-
fied form. In this sense, we are solving a 3D topology optimiza-
tion problem equivalently on the 2D parameter domain. This
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reduction in dimension can greatly reduce the computing cost
and complexity of the algorithm. The proposed concept is proved
through two examples of heat conduction on manifolds.
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1 INTRODUCTION

Efficient thermal management is essential to many engineer-
ing applications to maintain a moderate temperature field and ex-
tend the lifespan of the devices. Topology optimization, which
seeks to find the optimum material distributions of the design for
the desired performance, has been a powerful tool for the con-
ceptual design of thermal structures in recent years [1-5]. In par-
ticular, extensive studies have been conducted on the topology
optimization of heat conduction problems [6—11]. For instance,
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Iga et al. [12] carried out topology optimization of thermal con-
ductors considering the design-dependent effects using the ho-
mogenization method. Gersborg-Hansen et al. [13] used the solid
isotropic material with penalization (SIMP) based topology opti-
mization method and the finite volume method (FVM) to solve a
2D thermal conduction problem. Qing et al. [14] applied the evo-
lutionary structural optimization (ESO) to efficiently reduce the
temperature at selected control points. Zhuang et al. [15] tack-
led the problem of level-set-based topology optimization on heat
conduction under multiple load cases. Xia et al. [16] revisited
the heat conduction topology optimization problems by combin-
ing the level set method with the bidirectional evolutionary opti-
mization (BESO) method to achieve better hole nucleation flexi-
bility. Yamada et al. [17] investigated a thermal diffusivity max-
imization problem with generic heat transfer boundaries under
the level set framework, where a fictitious interface energy was
incorporated to regulate the topology optimization problem.

Among the different methods of topology optimization [18—
22], the level set methods [21,22] are getting attention because of
its clear boundary expression and flexibility in handling topolog-
ical changes. The aforementioned level-set-based topology opti-
mizations of heat conduction problems mainly deal with 2D pla-
nar cases. But in practice, heat conductors as free-form surfaces
may have broader applications than 2D planar designs [23, 24].
The extended level set method (X-LSM) proposed by Chen and
Gu et al. [25] systematically investigated the structural shape and
topology optimization on manifolds by integrating the conformal
geometry theory [26,27] into the level set framework. The key
ingredient of the X-LSM is to conformally map the original man-
ifold to a 2D rectangular domain where the modified Hamilton-
Jacobi equation is solved to evolve the structural boundaries. The
rationality behind this modification lies in that the corresponding
covariant derivatives on a surface can be represented by the Eu-
clidean differential operators multiplied by a scaling factor based
on the conformal parameterization [28]. This method elegantly
extends the conventional level-set-based topology optimizations
from the Euclidean space to manifolds.

In the conventional X-LSM, only the Hamilton-Jacobi equa-
tion, which governs the boundary evolution, is transferred from
the original manifold to the mapped 2D domain. However, the
finite element analysis (FEA) is always conducted on the origi-
nal free-form surfaces. The FEA costs the majority of the com-
puting time in topology optimization [29]. In this paper, in or-
der to further reduce the computing cost and algorithm complex-
ity, we conduct the FEA on the mapped 2D domain. We essen-
tially reduce the dimension of FEA by equivalently transforming
the Laplace equation from the 3D surface to the 2D planar do-
main. It reduces the total number of degrees of freedom (DOF),
and thus results in the reduction of the overall computational
cost. Beside, the FEA implementation can also be simplified
by moving the FEA from the 3D surface to the 2D rectangu-
lar domain where the mesh generation can be much easier than

the original manifold. Similar to the derivation of the modified
Hamilton-Jacobi equation in the conventional X-LSM, we need
to derive the corresponding modified thermal conduction equa-
tions on the 2D mapped domain to ensure consistency with the
FEA performed on the original 3D manifold. As for the heat
conduction problems studied in this paper, the governing equa-
tion is the Laplace equation with no body heat source. One of
the characteristics of the Laplace equation is its conformal in-
variance. That is, the conformal mapping does not change the
solution to the Laplace equation on the original manifold and its
corresponding 2D plane [30]. In other words, we can equally
solve the Laplace equation on the 2D mapped domain without
losing accuracy. Usually, the three quantities, namely, the ob-
jective function, the current volume, and the velocity field, are
computed on the 3D manifold together with the FEA. In this pa-
per, we transfer the FEA from the manifold to the 2D parameter
domain equivalently. The three quantities will also be evaluated
from the FEA on the 2D domain with a properly modified form
to ensure consistency. Several numerical examples are presented
to demonstrate the effectiveness of the proposed methodology.

This paper is organized as follows: Section 2 will pro-
vide some theoretical background, including the conventional
level set method, the conformal mapping theory and X-LSM, the
Laplace equation and its conformal invariance. The problem for-
mulation will be detailed in Section 3, followed by the numerical
implementation in Section 4. Numerical examples and discus-
sions will be presented in Section 5. Section 6 will conclude
with some closing remarks.

2 THEORETICAL BACKGROUND

This section will provide theoretical background underlying
the formulation of the proposed method.

2.1 Conventional Level Set Method

Initiated by Allaire [22] and Wang [21], level set method has
become a promising shape and topology optimization method,
particularly for multimaterial and multiphysics problems. Level
set method could generate and maintain a clear boundary during
the optimization process, with the structural boundary implicitly
represented as the zero contour of a one-higher dimensional
level set function. It is a preferred property when a detailed
description of the boundary is required. In the classical level
set framework, the level set function is defined on a fixed
background grid. The structural design is implicitly embedded
in the level set function ®(x,7) as follows:
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=0, x€dQ, boundary (1)

d(x,1) >0, x€Q, material
Lo
P(x,1) <0, x€D/Q, void

The geometric level set model for a 2D structural boundary
is shown in Figure 1. For the structural boundary, it always sat-

4 -

@ =0, boundary

® > 0, material

Q
D <0, void D\Q

FIGURE 1. THE LEVEL SET REPRESENTATION OF A 2D DE-
SIGN

isfies the equation ®(x,7) = 0. By differentiating both sides of
the equation with respect to a pseudo time ¢, we could obtain the
Hamilton-Jacobi (H-J) equation [31]:

ID(x, 1)

% n- [V =0, (@)

where V, =V - (—%) = ‘é—’t‘ . (—%). The dynamics of the
structural boundary evolution is governed by the above H-J equa-
tion. The shape sensitivity analysis can be conducted using the
adjoint sensitivity method. The design velocity field is con-
structed from case to case depending on the specific optimization

problems at hand.

2.2 Conformal Mapping Theory and Extended Level
Set Method (X-LSM)

A conformal mapping is essentially a function that locally
preserves angles, but not necessarily lengths. It originates from
differential geometry on the Riemannian manifold [26]. A
visualization of the angle preservation property of conformal
mapping is shown in Figure 2, where the infinitesimal circles
are mapped to infinitesimal circles from the 3D surface to
the 2D disk. The conformal mapping theory has found many
applications in the fields of engineering. Our particular interest
is its application to solving PDEs on manifolds [27,28]. With the
conformal parameterization, the differential operators defined on
the manifolds can be transferred into its Euclidean forms with a
combination of the conformal factor ¢2* describing the scaling
effect of the conformal mapping. Specifically, let M be a mani-

FIGURE 2. CONFORMAL MAPPING FROM 3D SURFACE TO
2D DISK [26]

fold and ¢ : R> — M be a global conformal parameterization of
M. Suppose the conformal factor of ¢ is e**. A scalar function
is defined on the manifold as f : M — R. Then the gradient of f
on the manifold can be represented as:

Vuf = o fi+9,fj
_ 0f0d. _;0f00. 3
- ox 1he dy )

where i = e+ %, ji= et ai' For the detailed derivations, the

interested readers are referred to [27,28].

Resting on this fact, the conventional Hamilton-Jacobi equa-
tion on the manifold can be rewritten as the modified H-J equa-
tion on the 2D parameter domain as follows [25]:

0D(x,1)
ot

—e MV, V| =0. )

In this way, the boundary evolution initially on the 3D manifold
can now be realized by solving the modified H-J equation on the
2D domain, which reduces the complexity of the calculation.
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2.3 Conformal Invariance of the Laplace Equation

Based on our earlier work of the modified H-J equation, we
try to advance the current X-LSM by transferring the FEA also
to the mapped 2D domain. To this end, we need to derive the
corresponding governing equations on the 2D rectangular do-
main. For the heat conduction problems, the governing equation
is the Laplace equation where there is no body heat source. One
characteristic of the Laplace equation is its conformal invariance,
which means the equation takes the same form under the confor-
mal parameterization. A brief derivation for the plane to plane
conformal mapping cases can be readily given as follows with
the aid of complex analysis.

Consider the real valued function U(&,7n) and the analytic
map w = f(z) = f(x+iy) = E(x,y) +in(x,y), where £ and
are real valued functions. If U(&, 1) is a harmonic function of &
and 1, then the composition u(x,y) = U (& (x,y),n(x,y)) is also
a harmonic function of x, y. To prove it, we first apply the chain
rule as below:

Ju QUIE JUIN du JUIE U In

®)

ox ot ax Tomaxay T ooy Tomay
872”_827[](%)2 9?U %@+(927U(87n)2
ox2  JE2 ox 2Edn dx dx  In? odx ©)
e vy
0E dx2  dn Ix?’
&_@(ﬁy 9°U %871] ﬂ(aﬂy
dy>  9E* " dy 9fon dy dy ~on? Iy’ .,

oU 9*E  9U d’n
— 24—
dE dyr  dn dy?

Then the conformal mapping on 2D satisfies the Cauchy-
Riemann equation:

df  dn JdE dn

ox  dy'dy ox ®)

After some algebra, we will arrive at:

Pu Pu  IE, A, PU  PU
A“—**‘f—[(a) +(§) ](87524_87172

et 2
axz ayz ) - ‘f (Z)| AU.

C))

This equation implies that if « is harmonic in a region of the z-
plane, U is also harmonic in a conformally mapped region of the
w-plane.

3 CONFORMAL TOPOLOGY OPTIMIZATION OF HEAT
CONDUCTION PROBLEMS ON MANIFOLDS
3.1 Problem Formulation
In this study, we consider a steady-state heat conduction
problem. All the material properties are assumed to be isotropic.
The governing equations for the heat conduction phenomena are
as follows:

To on I'p

FIGURE 3. DIAGRAM OF A HEAT CONDUCTOR

—kV2T = b, in Q
kVT -n=gq, on I'y
kVT -n=0,0n I'y
T=Ty, onIp

(10)

where k is the thermal conductivity; T is the state variable tem-
perature; b is the rate of internal heat generation; n is the outward
unit normal vector of the structural boundary; ¢ is the heat flux
in the inward normal direction. As shown in Figure 3, the struc-
tural boundaries are composed of a Dirichlet boundary I'p with
T = Ty, a homogeneous Neumann boundary 'y which is adi-
abatic, and a non-homogeneous Neumann boundary I'y with a
heat flux ¢. It is noted that when there is no body heat source,
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that is, b = 0, the heat equation is reduced to the Laplace equa-
tion, which holds the property of conformal invariance.

The weak form of the heat equations can be obtained by first
multiplying a test function T, integrating over the whole domain,
utilizing the product rule, and applying the 2D divergence
theorem with the above-mentioned boundary conditions. The
weak form of the governing equation is as follows:

a(T,T) = I(T), VT € Uy (11)

where T is the test function for the temperature and U, is
the space of the virtual temperature field satisfying the same
boundary conditions. The bilinear function on the left side of
equation (11) is defined as

T, T) = /Q KT -VTdQ. (12)

The linear function on the right side of equation (11) is
defined as

Z(T):/ bTdQ+ | qTds. (13)
Q Ty

The objective of the optimization problems is to minimize the
thermal compliance under a volume constraint, which is set as
follows:

Inf J:/ bTdQx+ | qTds,
Q Q I'y

St a(T,T)=U(T), VT € Usg (1

V(Q) =V,

where V (Q) = [ dx denotes the volume of the design, and V* is
the target volume.

3.2 Shape Sensitivity Analysis

To evolve the structural boundaries by solving the
Hamiltion-Jocabi equation under the level set framework, the
shape derivatives need to be conducted to provide a proper
normal velocity field that can drive the boundary propagation

toward the next better design [21,22]. In this study, the material
derivative method [32] and the adjoint method [33] are employed
for the shape derivatives. The Lagrangian of the optimization
problem is defined as

L=J(T)+a(T,T)—I(T). (15)

The material derivative of the Lagrangian is given:

DL DJ(T Da(T, T DI(T
Dt Dt Dt Dt
The material derivative of the objective function J(T') is:
DJ(T "
() _ / (VT +bT")dQ+ / bTV,ds
Dt Q r
3( T) (17)
—|—/(q'T—|—qT/)ds—|—/(L—f—kch)Vnds.

r r Jn

The material derivative of the weak-form governing equation is:

Da(T,T) DI(T
Dr Dt

+/kVT-VT-Vnds—/(b/T+bT’)dQ—/bT-Vnds (18)
I Q T

):/ KVT' -VT+VT-VI'dQ
Q

I 9(qT) -
—/F(q T +4qT )ds—/r(T—chqT)-Vnds.

Collecting all the terms containing 7’ as follows:

/ KVT -VT'dQ — / b dQ — / qTds=0.  (19)
Q Q r

we recover the weak form of the state equation as
a(T,T") = |(T"), for VT’ € U,q. Suppose the b and g are
not time-dependent, and ¢ is a nodal flux, the material deriva-
tives for the Lagrangian can be rewritten as:
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DL
Ph_ / bT'dQ+ / bTV,ds + / qT'ds
Dt Q r r
+/ k[VT’-VT]dQ+/kVT-VT-V,,ds (20)
Q I

—/bT-Vnds.
Jr

Collecting the terms containing 7’ and making the sum equal to
zero, we can obtain the adjoint equation:

/bT’dQ+/qT’ds+/ KVT' -VTldQ=0. (1)
Q r Q

We can readily solve out the adjoint variable T = —T. The re-
maining part for the material derivatives of the Lagrangian reads:

DL ]
oL _ / BTV, ds+ / kYT VT -V,ds
Dt r r

- / bT -V,ds.
r

Substituting 7 = —T into the above equation and applying
the steepest descent method, the design velocity field can be
constructed as:

(22)

Vi = —2bT +kVT -VT. (23)

For the volume constraint, the augmented Lagrangian
method [32, 34] is employed. @ The augmented objective
function will be given as:

J=T+0(Q)=J+A(V(Q)—-V*)+ i(V(Q) V2, (24)

where A is the Lagrangian multiplier, and p is a penalty
parameter set by the designer and is close to zero. During the
optimization process, the update schemes for A and p are as
follows:

1
Al = 0, F+ —(V(Q)=V*)},
max{ +“k( (Q) )} 25

where o € (0,1). After conducting the material derivative of
¢(Q) and applying the steepest descent method, the velocity
field responsible for the volume constraint can be given as:

vnz:—(u%(v«z)—v*)). (26)

Finally, the normal velocity field that drives the boundary
evolution can be given as:

Vi = Vi +Vip = —2bT +kVT - VT — (A + %(V(Q) —V*)).
(27)

4 NUMERICAL IMPLEMENTATION
4.1 Boundary Conditions of the 2D Parameter Do-
main

Figure 4 shows the workflow of the proposed method. The
first step is to conformally map the 3D manifold to a rectangular
parameter domain, where the level set function is initialized
to give the initial design. The modified governing equation is
still the Laplace equation due to its conformal invariance after
conformal mapping. One thing that needs extra attention is
the correspondences of the boundary conditions from the 3D
manifold to the 2D parameter domain. As shown in Figure 3
and equation (10), the whole structural boundary consists of a
Dirichlet boundary I'p with 7 = Tj, a homogeneous Neumann
boundary I'y and a non-homogeneous Neumann boundary
I'y. For the Dirichlet boundary, we assign the same 7j to the
corresponding mapped boundary on the 2D parameter domain
since the scalar field 7 does not change its value under the
conformal mapping. As for the Neumann boundary conditions,
we need to modify the heat flux g based on Section 2.2. To
be specific, the original non-homogeneous Neumann boundary
condition is given as:

kVuT -n=gq, on I'y (28)

Under the conformal parameterization, it should be rewritten as
follows:
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Final design

FIGURE 4. THE FLOWCHART OF THE METHOD

ke%VT-nl =gq, on I'n; 29)

where n; is the normal vector of the boundary on the 2D pa-
rameter domain and I'y; corresponds to the non-homogeneous
boundary on the 2D domain. From the above relation, we can
have that the heat flux should be modified as g - ¢* on the 2D pa-
rameter domain. Physically, this makes sense in that the integral
of the heat flux along the non-homogeneous Neumann bound-
ary actually gives the power, which can be seen as the energy
source into the system. Due to the scaling effect of the conformal
parameterization, the length of the non-homogeneous Neumann
boundary on the manifold differs a factor of ¢* from that on the
2D parameter domain. Assuming the 3D manifold and the 2D
parameter domain share the same thickness, then the heat flux on
the 2D domain can be approximately given as g - r, where r is
the ratio between the length of the non-homogeneous Neumann
boundary on the 3D manifold and the 2D parameter domain. An
illustration of the boundary correspondences is shown in Figure
5, assuming there is no body heat source.

TO on FDl

FIGURE 5. THE BOUNDARY CONDITION CORRESPON-
DENCES

4.2 Evaluate Objective Function, Current Volume and
Velocity Field Equivalently on 2D Parameter Do-
main

In a typical implementation of level-set-based topology
optimization, the objective function, the current volume, and the
velocity field are usually evaluated where the FEA is conducted.

In this study, since the FEA is transferred onto the 2D param-

eter domain, we want to compute the above three quantities

equivalently on the 2D domain. On the original 3D manifold,
the expressions for the objective function, current volume and
normal speed are respectively given as follows:

J= / kVyT -VyuTdQ,
Q

V= /Q dQ, (30)

Vir = kVyT - VT,

where V,,r is the normal velocity component directly pertaining
to the Lagrangian L (see equation (27)). Under the conformal
parameterization, the above formulas should be properly modi-
fied as below according to Section 2.2:

J= / kVT -VTdS,
S

V= /e“ds, (31)
S

Vo = ke 2*VT-VT.
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In this way, the objective function, current volume, and the nor-
mal velocity field can now be equivalently evaluated on the 2D
parameter domain.

5 NUMERICAL EXAMPLES

Two numerical examples are provided, and some compar-
isons with the results obtained by the conventional X-LSM are
given to illustrate the effectiveness of the proposed method. For
the two examples, all the dimension sizes are given in me-
ters. The thermal conductivity for the solid material is given as
k= 10W /(m=K). To avoid singularity, an ersatz material model
is employed with k = 0.001W /(m x K) for the weak material.

5.1 A Fan-shaped Surface

The first numerical example is a fan-shaped surface as the
3D manifold shown in Figure 6 with the boundary conditions.
A Dirichlet boundary condition 7 = 0 is assigned to the top and
bottom curve segments in blue color. A heat flux ¢ = 10W /m?
is applied at the two side curve segments represented in red. The
adiabatic thermal boundary condition is applied to other edges.
These four curve segments in color sit in the middle with the
length set as 1/10 of the respective boundary edge lengths. The
overall size of the manifold is 1x1x0.866. The thickness of the
shell model is uniform and set to be 0.01m. The volume ratio
target is set as Vy = 0.5.

=T=0
=g = 10W /m?

— Adiabatic boundary
y\ﬁ;

FIGURE 6. THE BOUNDARY CONDITION OF A FAN-SHAPED
SURFACE

The plots of the initial design on the 2D parameter domain
and the 3D manifold are given in Figure 7. The original mani-
fold is meshed with 8644 triangular elements in the conventional
X-LSM. The 2D parameter domain is a 0.8596 x 1 rectangle,
which is meshed with 23370 triangular elements. On the 2D do-
main, there are 30 uniformly distributed holes to be the initial

design. According to subsection 4.1, the heat flux on the non-
homogeneous Neumann boundary of the 2D parameter domain
is set to be ¢+ r = 10x1.098=10.98 W /m>. The final optimized

2D parameter domain

3D manifold

FIGURE 7. INITIAL DESIGN FOR THE FAN-SHAPED SURFACE

designs on the 2D parameter domain and the original fan-shaped
manifold are given in Figures 8 and 9. We can notice that there is
little difference in terms of topology between the results obtained
using the proposed method and the conventional X-LSM where
the FEA is still performed on the 3D manifold. Besides, the re-
sults are consistent with a 2D version heat conduction topology
optimization result with similar boundary conditions [17]. The
convergence history plots are given in Figure 10. The volume
constraint Vy = 0.5 is satisfied for both methods. It is appealing
that the objective function values are 0.61665 and 0.61057, re-
spectively, for our proposal and the conventional X-LSM, which
demonstrates the equivalence of conducting FEA on the 2D pa-
rameter domain.

1

0.9

08

07

06

05

0.4

03

0.2

0.1

0
0 02 04 06 08 0 02 04 06 08

Our  proposal:  both X-LSM: only the H-J PDE
Laplace and H-J PDEs are is solved on the 2D plane
solved on the 2D plane

FIGURE 8. FINAL DESIGN ON THE 2D PARAMETER DOMAIN
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Our  proposal:  both
Laplace and H-J PDEs are
solved on the 2D plane plane

X-LSM: only the H-J PDE
is solved on the 2D

FIGURE 9. FINAL DESIGN ON THE FAN-SHAPED MANIFOLD

5.2 A Schwarz’ P TPMS

The second numerical example is a Schwarz’ P triply
periodic minimal surface (TPMS). One interesting geometrical
feature of a TPMS is its large surface area, which is suitable
for applications like chemical reactions or heat and mass trans-
fer [35]. A TPMS can be approximated by a level set equation.
Taking the Schwarz’ P surface as an example, the approximation
can be given as:

Op =cosx+cosy+cosz=c, (32)

where c is a constant. A Schwarz’ P surface is shown in Fig-
ure 11. Due to the symmetry, we select a quarter of Schwarz’ P
TPMS for simplicity. The boundary conditions are shown in Fig-
ure 12. A Dirichlet boundary condition T = 0 is assigned to the
top edge in blue. A heat flux g = 10W/ m? is applied at the bot-
tom edge represented in red. All other boundaries are adiabatic.
The overall size of the Schwarz’ P TPMS unit is 6.2x6.2x6.2.
For the quarter unit cell, the overall size is 3.1x3.1x6.2. The
thickness is uniform and set to be 0.0lm. The volume ratio tar-
getissetto Vy =0.7.

The plots of the initial design on the 2D parameter domain
and the 3D manifold are given in Figure 13. The original man-
ifold is meshed with 25032 triangular elements in the conven-
tional X-LSM. The 2D parameter domain is a 0.5687 x 1 rect-
angle, which is meshed with 19726 triangular elements. On the
2D parameter domain, there are 20 uniformly distributed holes
in the initial design. Based on subsection 4.1, the heat flux on
the non-homogeneous Neumann boundary of the 2D parameter
domain is set to be ¢ - r = 10x4.224=42.24 W /m?.

The final designs optimized on the 2D parameter domain and
the original quarter Schwarz’ P TPMS are shown in Figures 14
and 15. The results obtained by the proposed method and by the
conventional X-LSM are almost identical. Figure 16 shows the

__Obj() = 0.61665, VR(-) = 0.50064 _

15 1
1.3 10.8
x
1.1 106 2
o
— A . =
8 | \ N\ - o &
. / g
0.9 [/ 104 5
N o
>
07 102
0.5 . - . . 0
0 100 200 300 400 500

Our proposal: both Laplace and H-J
PDEs are solved on the 2D plane

Obj(-) = 0.61057, VR(-) = 0.49993

15 1
13 0.8
©
1.1 {06 <
- o
= / T
Z ‘ / — o
uE)
0.9\ 04 5
i o
>
0.7 H 10.2
05 | | | | | | 0
0 50 100 150 200 250 300 350

X-LSM: only the H-J PDE
is solved on the 2D plane

FIGURE 10. CONVERGENCE HISTORY OF THE FAN-SHAPED
SURFACE EXAMPLE

convergence history plots. The volume constraint is satisfied for
both methods. The final objective function values are 190.48 and
196.47, respectively, for our proposal and the conventional X-
LSM. The discrepancy of the objective function value is within
the acceptable range. The final optimized design on the Schwarz’
P TPMS unit is shown in Figure 17. In Figure 18, a 3x3 assem-
bled Schwarz’ P TPMS array is constructed with the optimized
unit cell using the proposed method. Such a device may be used
in a heat exchanger.

6 CONCLUSIONS AND FUTURE WORK

This paper proposes a new dimension reduction method for
topology optimization of conformal thermal structures on free-
form surfaces. The original 3D topology optimization problems
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FIGURE 11. A SCHWARZ’ P SURFACE

=T=0
- q = 10W /m?
— Adiabatic boundary

z

quy

FIGURE 12. THE BOUNDARY CONDITION OF A QUARTER
SCHWARZ’ P SURFACE

defined on manifolds can now be equivalently solved on the 2D
parameter domain with the incorporation of conformal geome-
try theory. Both the Hamilton-Jacobi equation and the govern-
ing equation are transferred to the 2D rectangular domain. This
is achieved due to the fact that the covariant derivatives on the
manifold can be represented by the Euclidean gradient opera-
tors multiplied by a scalar under the conformal parameterization.
The physical quantities necessary for the optimization process
are also evaluated equivalently on the 2D parameter domain.

In this study, a heat conduction topology optimization prob-
lem on the 3D manifold is addressed using the proposed method-
ology. When there is no body heat source, the governing equation
is essentially the Laplace equation, which is invariant through
conformal mapping. Two numerical examples are provided and
some comparisons with the conventional X-LSM are given to
demonstrate the effectiveness of the proposed method. The ob-
jective function, i.e., thermal compliance, design volume, and
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FIGURE 14. FINAL DESIGN ON THE 2D PARAMETER DO-
MAIN

the velocity field, is computed equivalently on the 2D parame-
ter domain with a properly modified form. Good agreement is
achieved between the optimized designs using our proposal and
the conventional X-LSM.

Although the proposed method can significantly reduce the
computational cost and algorithm complexity due to its dimen-
sion reduction, the main focus of this paper is to demonstrate
the feasibility of the methodology. In future work, the perfor-
mance of the proposed method in terms of saving computational
cost will be systematically investigated. One thing that needs to
be mentioned is that the proposed method can be easily applied
to topology optimization problems where the governing equa-
tion is in the form of Laplace equation, e.g., electric conduction
and electrostatics problems. For such physics, the conformal in-
variance can be directly utilized. Specifically, the modified gov-
erning equation on the 2D parameter domain will remain as a
Laplace equation but with different boundary conditions. The
extension of the proposed methodology to other topology opti-
mization problems with different physics equations, e.g., Pois-
son’s equation, will also be our next research focus.

Copyright © 2021 by ASME
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