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ABSTRACT

Accessible machine learning algorithms, software, and diagnos-
tic tools for energy-efficient devices and systems are extremely
valuable across a broad range of application domains. In scientific
domains, real-time near-sensor processing can drastically improve
experimental design and accelerate scientific discoveries. To sup-
port domain scientists, we have developed hls4ml, an open-source
software-hardware codesign workflow to interpret and translate
machine learning algorithms for implementation with both FPGA
and ASIC technologies. In this paper, we describe the essential
features of the h1s4ml workflow including network optimization
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techniques—such as pruning and quantization-aware training—
which can be incorporated naturally into the device implemen-
tations. We expand on previous hls4ml work by extending capa-
bilities and techniques towards low-power implementations and
increased usability: new PyTHON APIs, quantization-aware prun-
ing, end-to-end FPGA workflows, long pipeline kernels for low
power, and new device backends include an ASIC workflow. Taken
together, these and continued efforts in h1s4ml will arm a new gen-
eration of domain scientists with accessible, efficient, and powerful
tools for machine-learning-accelerated discovery.
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1 INTRODUCTION

The efficient implementations of machine learning (ML) algorithms
in dedicated hardware devices at the “edge,” or near-sensor, offers
numerous advantages. Edge processing and data compression can
greatly reduce data rates and the energy required for data move-
ment. Furthermore, real-time data processing and interpretation
can greatly accelerate decision-making, hypothesis testing and even
enable just-in-time interventions.

Staggering data rates and massive datasets are generated across
a broad range of modern scientific applications in high energy
physics, material science, and astrophysics. For example at the
CERN Large Hadron Collider (LHC), experiments typically produce
data at rates of Pb/s, and at the Fermilab accelerator complex, hun-
dreds of thousands of devices monitor miles of beamlines that steer
near speed-of-light particle beams. In these physics experiments,
low-latency ML is required for real-time decision making with a
range with a range of requirements from tens of nanoseconds to sub-
millisecond. In many ways, techniques for resource-constrained
ML implementations are similar whether targeting low power or
ultra low latency and high throughput. In this paper, we discuss
how tools developed for low-latency applications in science
could be deployed for low-power applications.

Demand for accessible tools. Low-power ML is in demand in
scientific, industrial, and commercial computing [1]. Fitness bands,
smartwatches, and other wearables that capture human health
and behaviors from complex and multivariate continuous sensor
data [2], wireless sensor networks deployed for tracking and under-
standing threatened animal populations using imaging and other
sensors [3], and even large-scale wireless agriculture sensing [4]
all necessitate powerful local computation on a budget. Despite
the broad need for local, low-power ML and the growing num-
ber of edge devices and scientific applications, general-purpose
off-the-shelf hardware has not kept pace with these computing
demands. The challenge for domain scientists is that a broad range
of expertise is required to arrive at full ML device implementations.
This requires significant resources and a team of domain scientists,
computer scientists, and engineers. Typically, domain scientists
may be experts in domain ML, their experimental devices, or sys-
tem engineering techniques, but very rarely in all requisite areas
simultaneously.

To tackle this challenge, we need a framework which makes dig-
ital hardware implementations of ML algorithms more accessible,
interpretable, and (re)usable to domain scientists. While ultimately
hardware implementations require completely engineered solu-
tions, allowing domain scientists to codesign algorithms based on
their system and application constraints is extremely valuable in
reducing engineering time and enabling faster design iterations.
Optimizing this process will greatly reduce the time to science. Fi-
nally, to cater to both large experimental collaborations and smaller
laboratory groups, the tools should be as open-source as possible.
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ML-hardware codesign tools. Software like TENSORFLOW and
PyTorcH have democratized ML for scientists, lowering the time-
to-science across domains. In developing hls4ml as an open-source
codesign workflow [5, 6], our main goal has been to augment pop-
ular ML frameworks with an effective path to efficient hardware
implementations. After a user trains their ML algorithms in com-
mon ML software frameworks, hl1s4ml translates them into digi-
tal implementations using high-level synthesis (HLS) tools [7] for
energy-efficient devices, which can be realized with technologies
such as field-programmable gate arrays (FPGAs) and application-
specific integrated circuits (ASICs). The choice of the HLS paradigm
is motivated by the shorter design cycle and similar quality of re-
sult compared to register-transfer level (RTL) flows [8]. With the
introduction of an open-source framework like h1s4ml, “tinyML”
techniques can be made accessible to nonexperts. The benefit of
hls4ml is two-fold: it lets nonexperts create bespoke, cutting-edge
ML accelerators for low-power and low-latency systems, and it lets
nonexperts develop intuition about how their design choices affect
system power consumption.

Several recent results highlight the power of the hls4ml ap-
proach including support for quantization down to binary and
ternary precision [9], pruning, tunable parallelization [5], boosted
decision trees [10], quantization-aware training (QAT) [11], and
convolutional [12] and graph neural networks (NNs) [13]. The de-
velopment of hls4ml is application driven. While originally its
main target was low-latency applications, recent work has focused
on opportunities for longer latency, low-power applications. Al-
gorithm design with hls4ml involves the generation of custom
firmware for a specified NN architecture. The customized design
ensures an efficient use of resources that is essential to run in low-
latency, resource-constrained systems, and is useful across a broader
range of applications. This paper reviews salient core features
of hls4ml and extends previous work [5, 9-12] by present-
ing a number of recently added features that aid in targeting
low-power systems: initial results of quantization-aware pruning
(QAP) [14], full end-to-end workflows that embed hls4ml algo-
rithms into Vitis Accel designs for Xilinx FPGAs, new matrix-vector
kernels which are optimized for longer pipeline intervals, sparse
operations, and low power, and support for multiple HLS compilers
and devices, including ASICs. Our approach for low-power devices
focuses on ML for FPGAs and ASICs as energy efficient hardware
architectures [15, 16]. The hls4ml framework aims to bridge novel
techniques in NN inference optimization and hardware implemen-
tation while making it accessible to domain scientists.

This paper is organized as follows. In Sec. 2, we discuss the
hls4ml workflow and features for introspection, validation, and
support for multiple device types. In Sec. 3, we discuss codesign
techniques developed at ML training to develop optimal hardware
implementations. In Sec. 4, we describe how those NNs get imple-
mented in hardware and the available configurations to the user.
Finally, we summarize and present an outlook in Sec. 5.
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Related Work

Other open-source efforts have explored ML on edge devices, in-
cluding FPGAs, mobile devices, and microcontrollers with inte-
grated workflows from training to deployment. Surveys of exist-
ing toolflows can be found in Refs. [17-20]. The fpgaConvNet
library [21-24] converts CNNs specified in Caffe [25] or Torch
formats into high-level specifications of streaming accelerators
that can be synthesized to hardware with Xilinx Vivado HLS. FP-
DNN [26] is a framework that takes TENSORFLOW [27]-described
CNNs as input, and generates the hardware implementations on
FPGA boards with RTL-HLS hybrid templates. DNNWeaver [28]
is an open-source project that supports CNNs specified in Caffe
and generates Verilog code using hand-optimized Verilog templates
with a high degree of portability. Caffeine [29] is a CNN accelerator
for Caffe models targeting Xilinx coprocessors over a PCle inter-
face. Snowflake [30] is a CNN accelerator with models specified
in Torch [31] and a single, sequential computation architecture
designed to perform at near-peak hardware utilization targeting
Xilinx system-on-chips (SoCs). K. Majumder et al. (2019) propose
an FPGA-based accelerator design to execute CNNs that leverages
TeENsorRFLow for model description and exploits reuse along all
dimensions with a 1D systolic array of processing elements [32]. A.
Rahman et al. (2016) present a flexible 3D neuron array architecture
for CNNs on FPGAs with optimization techniques for a given set
of FPGA resource constraints [33]. Vitis Al [34] is Xilinx’s devel-
opment platform for Al inference on Xilinx devices, consisting of
optimized intellectual property (IP) cores, tools, libraries, models,
and example designs. The FINN project [35-37] is a framework from
Xilinx Research Labs to explore quantized deep NN inference on
FPGAs, with emphasis on generating dataflow-style architectures
customized for each network. It includes tools for training quan-
tized NNs (QNNs) such as BrREviTAs [38], the FINN compiler, and
the finn-hlslib Vivado HLS library of FPGA components for QNNs.
Further, TENsOoRFLow LITE [39] is a set of tools to help developers
run TENSORFLOW [27] models on mobile, embedded, and internet
of things (IoT) devices. It currently supports Android, iOS, and
Linux devices (like Raspberry Pi), as well as microcontrollers (like
Arduinos). It enables on-device ML inference with low latency and
a small binary size. FixyNN [40], and specifically the open-source
DeepFreeze [41], allow for the automatic generation and optimiza-
tion of a fixed-weight feature extractor plus a programmable CNN
hardware accelerator from a TENsoRFLow description for mobile
devices. Hacene et al. (2020) propose a combination of a pruning
technique and a quantization scheme that reduces the complexity
and memory usage of convolutional layers, by replacing the convo-
lutional operation by a low-cost multiplexer [42]. In particular, the
authors propose an efficient hardware architecture implemented on
FPGA on-chip memory. Chang et al. (2021) apply different quantiza-
tion schemes (fixed-point and sum-power-of-two) to different rows
of the weight matrix to achieve better utilization of heterogeneous
FPGA hardware resources [43].

2 HLS4ML WORKFLOW

The hls4ml workflow performs automatically the task of translat-
ing a trained NN, specified by the model’s architecture, weights,
and biases, into the specification of a hardware accelerator that can
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Figure 1: A typical workflow to translate an ML model into
an FPGA or ASIC implementation using hls4ml. The red
boxes (left) describe the model training and compression
steps performed within conventional ML software frame-
works. The hls4ml configuration and conversion steps are
shown in the blue boxes (center). The black boxes (right)
illustrate possible ways to export and integrate the HLS
project into a larger hardware design.

be synthesized with HLS tools. Figure 1 shows the schematic of a
typical workflow. The first part of the workflow illustrated in red
depicts the usual steps required to design a NN for a specific task.
This component, performed with tools like (Q)KEras and PyTorcH,
involves a training step and possible compression steps (explained
in detail in Sec. 3) before converging on a final model. The blue
section of the workflow is performed with h1s4ml, which translates
a model into an HLS project that can subsequently be synthesized
and implemented on an FPGA or ASIC, as depicted by the black
section.

At a high level, FPGA and ASIC algorithm design is different
from programming a CPU in that independent operations may
run fully in parallel or concurrently. Furthermore, independent
operations may be pipelined such that the algorithm can accept
new inputs while it is still operating on previous inputs. However,
such operations consume dedicated resources onboard the FPGA
or ASIC and cannot be dynamically remapped while running. The
challenge in creating an optimal digital design is to balance available
resources with achieving the power, latency, throughput goals of
the target application.

The hls4ml workflow provides a number of configurable pa-
rameters which can help the user explore and customize the space
of latency, throughput, power, and resource usage tradeoffs for
their application. Because every application is different, the goal
of the h1s4ml package is to empower the user to perform this opti-
mization through automated NN translation and design iteration.
hls4ml leverages HLS to generate hardware modules from code
written in high-level programming languages like C/C++ [44]. Each
layer and activation type is implemented as a separate configurable
module customized to perform that specific operation. During the
hls4ml conversion, these modules are composed in the correct way
to perform the inference for a full ML model. Computation for each
layer of the network is carried out in separate hardware, and the
full model is synthesized into an IP core that can be integrated
into a full application. Large throughput and low latency can be
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Figure 2: Internal structure of the hls4ml package. Model
converters translate models from Keras, PYToRcH, etc. into
an intermediate HLSModel representation. This represen-
tation can be further configured and optimized. Different
backend writers can be used to export the model into a given
vendor-specific language, such as Vitis HLS, Quartus HLS,
Catapult HLS, or others.

achieved by pipelining data through the network. Furthermore,
resource usage can be optimized because each layer is tailored dur-
ing conversion to the specific model and, if desired, set of weights.
This optimization extends to zero suppression, where the layer can
be configured to skip multiplications by zero weights. Although
it may lead to slightly less optimal performance than RTL-based
design, HLS-based design has significant benefits: it raises the level
of abstraction, reduces the iteration time, simplifies the validation
phase, and enables greater exploration and evaluation of design
alternatives.

Package Architecture

To provide flexibility and ease-of-use, we implemented hls4ml as
a PyTHON package that provides both a programming API and
visualization capabilities. Figure 2 shows the internal structure
of the hls4ml PyTHON package. The package first converts the
user-specified model into a common internal representation of the
network graph. Converters are provided for (Q)KErAs, TENSOR-
Frow, PyTorcH, and ONNX model formats. At the conversion step,
the user-provided configuration is also attached to the model. For
a NN trained with QKERAS quantization-aware training (QAT), the
quantization settings of the model are propagated into the hl1s4ml
internal representation.

A suite of optimizers then modify the network graph to target a
more lightweight, faster inference. At this step, for example, batch
normalization [45] layers are fused with the preceding dense or
convolutional layer, or with the subsequent binary (or ternary)
tanh activation layer. Where possible, these optimizations precom-
pute quantities needed during inference involving constant model
parameters, in order to reduce operations at runtime.

The hls4ml model object can be inspected, and the package
provides a set of utilities to aid the configuration process. These
include a visualization tool to display the NN graph decorated with
the applied user configuration, and tools to numerically profile the
model which can help guide the user settings, e.g. for bit precision.
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Figure 3 shows an example of the numerical profiling output
from h1ls4ml for a fully-connected NN of a benchmark autoencoder
architecture for anomaly detection [46]. Each hidden layer is com-
posed of a dense layer, batch normalization, and a rectified linear
unit (ReLU) [47, 48] activation function. The distribution of the
weight values is represented by a boxplot, showing the range cov-
ering the bulk of the distribution as well as the extremities. On top
of this, the user-provided precision configuration is shown with
the grey boxes. Generally, it is crucial that the largest absolute val-
ued weights can be represented with the chosen type (the boxes
overlap at the right of the plot). There is some flexibility to reduce
the precision by truncating small valued weights, with minimal
impact on accuracy. This additional visualization tool can be used
to quickly tune the configuration for more efficient inference.

One key feature of the programming API is the capability to exe-
cute the bit-accurate emulation of the generated HLS-synthesizable
code in the PYTHON environment, for example as a Jupyter Note-
book. In conventional HLS-design flows, developers craft C/C++
testbenches which they execute in the HLS-vendor simulation envi-
ronment to verify algorithm performance. The h1s4ml API enables
a workflow that will be much more familiar to ML developers, where
inference can be performed on tensor or array data in PyTHON code,
providing the opportunity to complete a detailed analysis. In ad-
dition to evaluating the hls4ml model output, users can access
the detailed output of any hidden layer of the network, which can
aid in debugging and performing hyperparameter optimization for
quantized models. When the h1s4ml model is written out, the back-
end maps the graph onto its library of optimized inference code.
This inference code can run on the CPU executing the conversion,
in order to check numerical correctness against the original NN.
After this step, the user runs the vendor synthesis tools in order to
produce an IP core, and evaluate latency, throughput, and resources.
Presently, the most advanced backend is for Xilinx Vivado HLS,
with codebases optimized for Intel Quartus HLS [49] and Mentor
Catapult HLS [50] under active development.

3 NEURAL NETWORK TRAINING AND
OPTIMIZATION

Reducing the precision of the calculations in the NN and removing
unimportant calculations can drastically improve the efficiency of
the NN implementation with little to no loss in performance. While
applying these changes to a model post-training can be successful,
to be maximally effective, we should consider these effects at the
time of NN training.

We consider two benchmark tasks to demonstrate the versatil-
ity of model optimization in the h1s4ml workflow. The first is a
high-energy particle jet classification task on a dataset [5, 51, 52]
consisting of 16 features for simulated particle jets produced in
proton-proton collisions and originating from one of five classes of
particles: W or Z bosons, light quarks, top quarks, or gluons. The
baseline model is a simple fully-connected NN with three hidden
layers, with 64, 32, and 32 nodes, respectively, activated by ReLUs.
The second benchmark is the MNIST handwritten digit classifica-
tion task [53]. The baseline model we consider is a fully-connected
NN with one hidden layer with 16 nodes and ReLU activation.
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Figure 3: Numerical profiling graph (top) from hls4ml for a
fully-connected neural network (bottom). The distribution
of the absolute value of the weights is shown on the x-axis.
The items on the y-axis are the different weights (0) and bi-
ases (1) for the model layers.

3.1 Quantization-Aware Training

Quantized [54-59] and even binarized [9, 57, 60-63] NNs have been
studied as a way to compress NNs by reducing the number of bits
required to represent each weight. FPGAs provide considerable free-
dom in the choice of data type and precision. Both choices should
be considered carefully to prevent squandering FPGA resources
and incurring additional latency. In hls4ml, we use fixed-point
arithmetic, which requires less resources and has a lower latency
than floating-point arithmetic. The inputs, weights, biases, sums,
and outputs of each layer are all represented as fixed-point num-
bers. For each, the number of bits used to represent the integer
and fractional part can be configured separately for the use case.
The precision can be reduced significantly without causing a loss
in performance [57]. We determine the number of bits to assign
for the fractional part by scanning the performance values as a
function of the bit precision.

One simple way to reduce a model’s size is through post-training
quantization (PTQ) where pre-trained model parameters are clipped
or rounded to lower precision. However, this process is lossy and
sacrifices model performance. To solve this, QAT has been pro-
posed [60, 64, 65]. In these approaches, the reduced precision of
the weights and biases are accounted for directly in the training of
the NN. In QKERAs, this is implemented using the straight-through
estimator (STE) [60], where the forward pass of the training applies
the quantization, while the backward pass assumes that quantiza-
tion is the identity function, as the quantization function is not
differentiable. It has been found that QAT is even more efficient
than PTQ while retaining the same performance. In these stud-
ies, the same type of quantization is applied everywhere. More
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Figure 4: Performance of quantization-aware training from
Ref. [11] in terms of the relative accuracy as a function of
bit width. The relative accuracy is evaluated with respect
to the floating-point baseline model. The CPU-based emu-
lation (solid green) of the FPGA-based QAT model (solid or-
ange) is compared to the PTQ model (dashed purple).

recently [66, 67], it has been noted that some layers may accom-
modate extreme quantization better than other layers, suggesting
that per-layer heterogeneous quantization is the optimal way to
achieve high accuracy at low resource cost.

An example of the power of QAT is shown in Fig. 4 from Ref. [11]
which uses QKERas. For the particle physics task with a fully-
connected NN, the accuracy of the reduced precision model is
compared to the 32-bit floating-point implementation as the bit
width is scanned. In the PTQ case, the accuracy begins to drop
below 14 bits, while in the QAT case the accuracy is comparable to
the 32-bit floating implementation down to 6 bits. More detailed
discussion on layer-by-layer quantization is presented in Ref. [11].
In Section 4, we discuss the implementation of QAT in hls4ml and
its effect in terms of on-chip resources.

3.2 Quantization-Aware Pruning

Network compression is a common technique to reduce the size,
energy consumption, and overtraining of deep NNs [58]. Several ap-
proaches have been successfully deployed to compress networks [68-
70]. Here we focus specifically on parameter pruning: the selective
removal of weights based on a particular ranking [58, 71-75].
Prior studies have combined pruning and quantization trivially
by pruning 32-bit floating-point models and applying post-training
quantization. One such approach, whose results are shown in Sec. 4.2,
consists of iterative parameter pruning and retraining of a 32-bit
floating-point model [5, 58, 76] with L; regularization, where the
loss function is augmented with an additional penalty term Allw]|; ,
where w is a vector of all of the model weights and A is a tunable hy-
perparameter. L; regularization produces sparse models, provides
built-in feature selection [77], and is readily available in many ML
workflows. After training the model with L; regularization with a
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Figure 5: Performance of quantization-aware pruning using
the lottery ticket pruning scheme as a function of hardware
computational complexity. After QAP, the 6-bit, 80% pruned
model achieves a factor of 50 reduction in BOPs compared
to the 32-bit, unpruned model with no loss in performance.

small A (e.g. 107%), the weights are sorted based on their absolute
value relative to the maximum absolute value of the weights in that
particular layer. Weights falling below a certain percentile are re-
moved. The model can then be trained again with L; regularization
while masking the previously pruned weights. This process can
be iterated several times until the desired level of compression is
reached.

While the above approach is effective, we describe here an al-
ternative approach based on the lottery ticket (LT) hypothesis [73]
where the remaining weights after each pruning step are initialized
back to their original values (“weight rewinding”). We refer to this
method as LT pruning. We also propose a new hybrid method [14]
for constructing efficient NNs, quantization-aware pruning (QAP),
which combines a pruning procedure with training that accounts for
quantized weights. As a first demonstration, we use Brevitas [38]
to perform QAT and iteratively prune a fraction of the weights
following the LT method of weight rewinding.

This is done for the jet classification task presented in the previ-
ous section. At each training iteration, roughly 10% of the original
network is pruned. The results of pruning with this method are
shown in Fig. 5 for a 6-bit fixed-point version of the network com-
pared to the 32-bit floating-point model. The performance in terms
of the area under the curve (AUC) is shown as a function of bit
operations (BOPs) [78], defined per-layer as

BOPs = mn((1 — fp)babw + ba + by, +log, (n)) (1)

where n (m) is the number of inputs (outputs), by (bg) is the bit
width of the weights (activations), and f}, is the fraction of pruned
layer weights. BOPs are a measure of the hardware computational
complexity of a quantized NN after pruning. In Sec. 3.1 we found
that a 6-bit implementation of this network sacrificed no perfor-
mance. Here, we find that pruning the 6-bit network by 80% using
QAP still maintains the same performance as the 32-bit version.
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Model bit width | 16 (PTQ) 14 (PTQ) 6 (QAT)
Accuracy [%] 76.4 75.8 76.2
Latency [ns] 50 50 45
DSP [%] 27 (1,852) 17 (1,132) 0.6 (38)
LUT [%] 7.5 (89,209) 7.6 (90,019) 5.4 (63,251)
FF [%] 05(11,266) 0.4 (9,262) 0.2 (4,394)

Table 1: Model accuracy, latency and resource utilization for
16-, 14-, and 6-bit models. Resources are listed as a percent-
age of available resources, with absolute numbers quoted
in parenthesis, for a Xilinx Virtex UltraScale+ VU9P FPGA
with a clock frequency of 200 MHz using hls4ml v0.5.0 and
Vivado HLS 2019.2

4 DIGITAL IMPLEMENTATION ELEMENTS

Following the training-time optimizations described in the previ-
ous section, we describe important elements for deploying those
optimized NN in efficient digital implementations.

4.1 Quantization with a QKeRras Frontend

Reducing precision saves resources used for signal routing as well
as resources and latency used for mathematical operations. For
example, the limiting resource for many FPGA applications is the
number of DSPs, which are used primarily for multiplications. The
number of DSPs used per multiplier depends on the precision of the
numbers being multiplied and can change abruptly. For example,
one Xilinx DSP48E1 block [79] can multiply a 25-bit number with
an 18-bit number, but two are required to multiply a 25-bit number
with a 19-bit number. Similarly, the latency of multipliers increases
with precision, though they can remain pipelined.

To allow for automated translation of a QKERAs model to RTL,
hls4ml has been extended to interpret and optimize quantized
QKERAs layer types. When converting a QKERAS model into an HLS
project, the model quantization configuration is passed to hls4ml
and enforced in the FPGA firmware. This ensures that the use of
specific, arbitrary precision in the QKERAs model is maintained
during inference. For example, when using a quantizer with a given
rescaling parameter o, h1s4ml inserts an operation to rescale the
layer output. For binary and ternary weights and activations, the
same strategies as in Ref. [9] are used. With binary layers, the
arithmetical value of “-1” is encoded as “0,” allowing the product to
be expressed as an XNOR operation.

As an example of the integration of QKERAs and hls4ml, we
now describe an FPGA implementation of the model presented in
Sec. 3.1. The FPGA implementation results are reported in Table 1
for the 16- and 14-bit PTQ and 6-bit QAT models. The effect of QAT
is that the FPGA resources are drastically reduced, especially in
the case of DSPs. In Ref. [11], a more detailed exploration of model
implementations is presented, including per-layer optimizations.

The QKErAas+h1s4ml framework extends to large CNNs. Specifi-
cally, Ref. [12] demonstrates support for large CNN architectures
through a stream-based implementation of convolutional and pool-
ing layers using first in, first out (FIFO) buffers. A benchmark CNN
classifier trained on the Street View House Numbers Dataset is com-
pressed through pruning and QAT to reduce the FPGA resource
utilization while retaining the floating-point model accuracy. Once
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implemented on the FPGA, the model achieves a 5 us latency, while
consuming less than 10% of the FPGA resources and low estimated
power [16].

4.2 Parallelization and Sparsity

The core component of dense and convolutional NN layer imple-
mentations in hls4ml is a matrix-vector multiplication kernel. In
addition to the precision at which these kernels are executed there
are further configurations that can be used to tune the digital design
for a specific task. We explore two of them here: parallelization and
sparsity.

Parallelization. A matrix-vector multiplication kernel requires a
number of multiplication operations based on the dimensions of
the matrix. The trade off between latency, throughput and FPGA
resource usage is determined by the parallelization of the inference
calculation and the number of multiplications performed in parallel.
In hls4ml, this is configured with a “reuse factor” that sets the
number of times a multiplier is used in the computation of a layer’s
output values. With a reuse factor of one, the computation is fully
parallel, i.e. each multiplier is used once. With a reuse factor of
R, 1/R of the computation is done at a time with a factor of 1/R
fewer multipliers. To make routing more convenient, often there
are preferred values of R depending on the dimensions of the matrix
itself.

The matrix-vector multiplication kernel cannot accept new in-
puts until all of the previous multiplications have been performed,
a period of time known as the initiation interval (II). For larger
reuse factors, the matrix-vector multiplication kernel has longer
latency and II, but uses less on-chip resources. In h1s4ml, we imple-
ment each layer calculation independently and sequentially. The
calculation of one layer cannot be initiated until the calculation of
the previous layer has completed. Therefore, the total latency is
equal to the sum of latencies of each layer plus the latency required
to connect the layers. The processing throughput, i.e. the number
of inferences per unit time, is inversely proportional to the reuse
factor.

The configurability of the reuse factor allows users of hls4ml
to tune their hardware implementation for their system require-
ments. In Fig. 6, we show the FPGA resources for a dense, fully-
connected NN which is used for the MNIST handwritten digit clas-
sification task [53]. The total number of multiplications needed
for this network is (784)(16) + (16)(10) = 12,704. The network
is implemented in an FPGA with various reuse factors from 14
to (784)(16) = 12,544. In these implementations, the reduction
in DSPs can be seen as R is increased. Not shown in the figure is
the complementary behavior where the latency and II of the NN
increase commensurately. For example, the II of the NN increases
from 14 to 12,544 clock cycles as R increases. Thus, for a clock
frequency of 100 MHz, the II of the network would increase from
140 ns to 0.125 ms.

Sparse operations. In Sec. 3.2, pruning is presented to create more
efficient NN implementations by reducing the number of multipli-
cation operations required to evaluate the network. By creating
a network implementation where the matrix-vector kernel has a
large fraction of zero-weights, the computation resources can be
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Figure 6: DSP usage for the MNIST neural network imple-
mentation where the reuse factor R is scanned. As R is in-
creased, the DSP usage decreases while the latency (not
shown) increases accordingly.

greatly reduced. In hls4ml, this can be built into the NN transla-
tion through a dedicated sparse matrix-vector multiplication kernel.
There are two complementary implementations of this kernel in
hls4ml depending on the size of the matrix and the latency of the
operation required.

In the first implementation, HLS preprocessor directives are
used to limit the number of multipliers available to the kernel
based on the number of nonzero weights, and HLS is left to do the
optimization. This is only feasible for smaller network layers. In the
second implementation, the nonzero weights are compressed using
a coordinate list (COO) representation, where indices are packed
into the weights themselves. The hl1s4ml user can specify a Boolean
compression parameter per layer, which activates this kernel. As
an example, the COO implementation is used for the jet classifier
NN described in previous sections. The architecture is pruned using
an iterative pruning approach as described in Sec. 3.2 where the
network is pruned in increments of 10% of the original number
of network weights. Figure 7 illustrates the DSP and LUT usage
of those NN as a function of the pruned weight percentage. The
figure shows the expected scaling of the pruned implementation
where the resources decrease as a larger percentage of the network
is pruned.

4.3 Device-Specific Workflows

4.3.1  Xilinx FPGA workflow with Vitis. There are multiple ways to
execute an hls4ml project on a given FPGA. The RTL code created
by Vivado HLS is fully functional and can be placed in a Vivado
block design. While this allows the user to customize the imple-
mentation to meet specific design goals or to integrate the project
into an existing firmware design, it can also present a barrier for
less experienced developers. Vitis Accel is a Xilinx tool that aims to
assist users in accelerating FPGA kernels. A Vitis Accel design con-
sists of two components: the FPGA kernel and the host code, which
typically runs on a CPU. While the tool supports multiple kernel
description languages, we have focused on HLS-based kernels. Vi-
tis Accel imposes various constraints on the input and output of
the kernel that require the introduction of a wrapper around the
default h1s4ml project. The host code is then able to manage the
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Figure 7: DSP (top) and LUT (bottom) usage of the jet sub-
structure classification network as a function of the percent-
age of the network pruned.

transfer data between the host CPU and the FPGA, either through
DMA transfers or AXI streams. The choice of data transfer proto-
col is critical to the performance of the design. Typically, a small
number of large data transfers is preferable to a large number of
small data transfers. With SoC devices there is significant flexi-
bility in customizing the data transfers due to the many different
memory types available and their physical locations on the chip.
Vitis Accel can be used to integrate h1s4ml kernels. For smaller net-
works run with very large batch sizes, Vitis Accel and h1s4ml are
capable of producing highly performant accelerated coprocessing
systems [80].

4.3.2  ASIC workflow. Domain scientists may choose an ASIC rather
than an FPGA implementation when they aim at sacrificing repro-
grammability for greater efficiency. However, designing for ASICs
is significantly more complicated and time-consuming than for FP-
GAs. In the ASIC design workflow, verification and power analysis
play a bigger role at the various levels of abstractions.

Figure 8 shows the ASIC workflow integrated with h1s4ml. The
ML training phase provides us with both the model and the stimuli
for the subsequent verification steps. h1s4ml compiles the trained
model in a synthesizable C++ specification and a set of directives
for Mentor Catapult HLS to target ASIC design [50]. Thanks to
our state-of-the-art implementation of the C++ ML specification
and optimized synthesis directives, the HLS-generated RTL code is
comparable in power, performance, and area (PPA) to handwritten
RTL [81]. ASIC design projects are often impractical for domain
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Figure 8: Design and verification stack for the ASIC work-
flow.

scientists because of the hardware’s intrinsic complexity and the in-
ability of many small-sized research groups to navigate the lengthy
RTL-based hardware design cycle to meet acceptable deployment
time frames. In our ASIC workflow, we can spend more time (1)
refining the ML model thanks to the quick PPA estimation from Cat-
apult HLS and (2) verifying both the C++ and RTL implementations
to identify bugs and improve performance. We check design rules
on the C++ specification by performing static analysis (Mentor
CDesignChecker); we run C simulation and code coverage (Mentor
CCov); finally, we run C&RTL co-simulation for equivalence check-
ing [82]. The synthesized RTL code is subsequently processed with
a traditional digital implementation flow that integrates simulation
steps to ensure optimal PPA.

As a recent demonstration of this workflow, a completed design
of a low-latency autoencoder for particle physics data compression
has been implemented for the low-power CMOS 65 nm technol-
ogy node [83, 84]. The algorithm, trained in QKERAS, compresses
on-sensor data with convolutional and dense layers to be transmit-
ted off the detector. In order to maintain reconfigurability of the
algorithm in changing experimental conditions, the weights can be
updated via an I2C interface. The design also features triple modu-
lar redundancy to maintain its radiation tolerance up to 200 MRad.
The algorithm, which has roughly 4,400 parameters, has a latency
of 25 ns, occupies an area of 3.6 mm?, and is estimated to consume
2.38 n] per inference.

5 SUMMARY AND OUTLOOK

In this paper, we present the current status of the open-source
codesign hls4ml workflow, focusing on new features and tech-
niques relevant for low-power ML inference. We detail, for the
first time, the structural features of hls4ml which allow for model
introspection and validation in a PyTHON package and support for
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multiple device types. Building on previous work for quantization-
aware training, we introduce quantization-aware pruning for neural
networks, which providing additional resource savings. We also
describe new hls4ml features for implementation for FPGAs and
ASICs. These include configuration handles for quantization and
pruning as well as for parallelization that allow targeting either low
latency or low power implementations. The main advantage over
similar approaches is the acceleration of the codesign process using
an all-in-one, turn-key workflow for a variety of ML models and
devices. This is especially powerful for domain scientists where
ML FPGA development can be drastically sped up from months
and years to weeks. Furthermore, a unique aspect of hls4ml is
the support for multiple vendor backends (e.g. Xilinx, Intel, and
Mentor) with possible expansion to others.

While the current features of hls4ml presented in this paper
offer a set of powerful capabilities, the ultimate goal is to provide
a complete end-to-end toolkit to empower domain scientists to
design machine learning algorithms for low-power devices. This
includes development based on dedicated domain-specific data
sets, models, platforms, and existing implemented designs for a
range of devices. Further maturation of introspection tools and
workflows for design performance, validation, and close integration
with power estimation into standard CAD tools will give neural
network designers timely feedback about the power consumption of
their design choices without the need to consult hardware experts.
Effective design-space exploration from a hardware perspective
allows domain scientists to optimize better the power-performance
trade-offs of their systems. We hope that h1s4ml will lead to broader
adoption of machine learning techniques in the low-power regime
in science, enhancing scientific research with tinyML.
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