
Y-Vector: Multiscale Waveform Encoder for Speaker Embedding

Ge Zhu1, Fei Jiang1,2, and Zhiyao Duan1

1University of Rochester, Rochester, NY, USA
2Beijing Institute of Technology, Beijing, China

{ge.zhu, fei.jiang, zhiyao.duan}@rochester.edu

Abstract

State-of-the-art text-independent speaker verification systems

typically use cepstral features or filter bank energies as speech

features. Recent studies attempted to extract speaker embed-

dings directly from raw waveforms and have shown competitive

results. In this paper, we propose a novel multi-scale waveform

encoder that uses three convolution branches with different time

scales to compute speech features from the waveform. These

features are then processed by squeeze-and-excitation blocks, a

multi-level feature aggregator, and a time delayed neural net-

work (TDNN) to compute speaker embedding. We show that

the proposed embeddings outperform existing raw-waveform-

based speaker embeddings on speaker verification by a large

margin. A further analysis of the learned filters shows that the

multi-scale encoder attends to different frequency bands at its

different scales while resulting in a more flat overall frequency

response than any of the single-scale counterparts.

Index Terms: speaker verification, speaker embedding, raw

waveform, multi-scale learning

1. Introduction

In recent years, the development of deep representations of

speech utterances has made a breakthrough in speaker verifi-

cation in terms of accuracy. Variani et al. [1] first trained a

deep neural network (DNN) to extract utterance-level features

(d-vector), achieving comparable performance to the previous

state of the art, i-vector [2]. Since then, various deep embedding

models have been proposed. Among them, x-vector [3] and its

variants [4, 5, 6] are the most prominent, achieving state-of-the-

art performance in many datasets and tasks [7], [8].

However, the above-mentioned DNN models are still

built upon handcrafted feature inputs such as Mel-Frequency

Cepstral Coefficients (MFCCs), which have long been used

since Gaussian Mixture Model-Universal Background Models

(GMM-UBM). Although MFCCs are designed based on hu-

man perceptual evidence, they are not necessarily optimal for

speaker recognition tasks and could lose important information

during the transform. Thanks to deep learning, there has been

a trend on learning feature representations from raw data (e.g.,

time domain waveforms) to breakthrough the limit of feature

engineering [9, 10].

Speaker verification research also witnessed an increased

effort on developing time-domain deep neural network ap-

proaches. Taking raw waveforms as the input, a 1-d convolu-

tional layer is usually applied as the first layer, where the set of

filters behave like the Short-Time Fourier Transform (STFT),

resulting in time-varying filter responses for future layers to

process. In [11], Muckenhirn et al. first applied a Convolution

Neural Network (CNN) based architecture for speaker verifica-

tion and achieved competitive results to i-vector on Voxforge

dataset. By analyzing the frequency response of the learned

filters, they found that the first layer of the CNN was able to im-

plicitly model the fundamental frequency (F0). To efficiently

learn meaningful filters, Ravanelli and Bengio proposed Sinc-

Net [12, 13] to constrain the free filters in the first convolutional

layer with parameterized sinc functions. Jung et al. [14] later

utilized this sinc-convolution layer with RawNet [15] and fea-

ture map scaling, and marginally outperformed the existing best

spectrogram based system. In [16], Lin and Mak adapted the

architecture in wav2vec [17] and achieved an equal error rate

(EER) of 1.95% on the VoxCeleb1-O test set.

However, the set of filters in a convolutional layer typically

has the same kernel size. This makes it difficult to learn high-

frequency and low-frequency components simultaneously for

wide-band signals. One idea is to split one convolution branch

into several parallel branches with different scales, similar to

InceptionNet [18] in computer vision. In this way, different

groups of parameters for the convolution layer, including the

number of filters, kernel size and stride size, can be indepen-

dently determined, and filters at each scale can respond to dif-

ferent frequency components efficiently. Multi-scale convolu-

tions have also been successfully used in acoustic modeling for

speech recognition tasks from the raw waveform [19, 20]. This

also motivates us to learn time-domain multi-scale representa-

tions for speaker verification.

In this paper, we present a new time-domain speaker em-

bedding (Y-vector) based on a novel multi-scale waveform en-

coder. Compared to existing time-domain approaches [16],

the proposed system uses a multi-scale waveform encoder to

capture broadband responses. It also uses a time-frequency

squeeze-excitation (tf -SE) attention module to re-calibrate the

importance across time and frequency domains, and a TDNN

for frame aggregation. Extensive experiments are conducted

on the VoxCeleb1-O, VoxCeleb1-H and VoxCeleb1-E test sets.

Results show that Y-vector outperforms existing time-domain

speaker verification systems by a large margin. Further analy-

sis shows that the multi-scale encoder responds to different fre-

quency bands at its different scales, while resulting in a more

flat overall frequency response than its single-scale counter-

parts.

2. Proposed System

The proposed Y-vector system is shown in Fig. 1. First, the

multi-scale waveform encoder uses two filtering layers to take

the same raw waveform input into multiple streams operating

at different temporal resolutions. The filtered embeddings are

then concatenated and then go through three (tf -SE) convolu-

tional downsampling blocks. Finally, this representation is fed

into a frame aggregator, implemented as a TDNN with additive

margin softmax (AM-Softmax) to extract speaker embeddings

using a speaker classification task. We now describe the details

of each stage.





these test sets to measure speaker verification accuracy. At test

phase, we apply cosine score backend to all systems to mea-

sure the similarity between testing pair embeddings and calcu-

late EER by adjusting the decision threshold.

3.2. Multiscale Architecture

The detailed multi-scale waveform encoder of Y-vector is

shown in Table 1. Here we fix the ratio between stride size

and kernel size to 0.5, which is equivalent to a 50% overlap

ratio in STFT. In our study, we use a TDNN [3] as the frame

aggregator1.

Table 1: System Y-vector-5. Numbers in brackets are convo-

lution parameters: number of channels, kernel size and stride

size, respectively.

Group Conv. Parameters

Multi-scale Filtering

Branch 1 Branch 2 Branch 3

[90, 12, 6] [90, 18, 9] [90, 36, 18]
[160, 5, 3] [160, 5, 2] [192, 5, 1]

Concatenation -

Downsampling

[512, 5, 2]
[512, 3, 2]
[512, 3, 2]

For the ablation study in Section 3.4.2, we design several

variants of the proposed system. Specifically, we compare sys-

tems with different number of channels in the first layer, as

it can be viewed as the “frequency resolution” counterpart in

STFT. We also compare systems with different total decimation

rates of the first two layers, i.e., the multiplication of their stride

sizes, as this indicates how fast the time dimension is reduced.

We also investigate the effectiveness of multi-level aggregation

and tf -SE components. Details are listed in Table 2.

Table 2: Different multi-scale waveform encoder variants ex-

plored in ablation study.

System # of

Channels

Decimation

Rate

ML

Aggreg.

tf -SE.

Y-vector-1 150 24

Y-vector-2 150 24 X

Y-vector-3 270 24 X

Y-vector-4 270 18 X

Y-vector-5 270 18 X X

3.3. Training Details

At the preprocessing stage, we simply normalize the raw wave-

form of each utterance by its maximum value. No voice activity

detection (VAD) module is used. All of the recordings from

VoxCeleb2 are used without filtering out speakers with short ut-

terances, and we did not perform any data augmentation tricks

either. For each utterance, we randomly crop 3.9s for batchify-

ing to feed to the neural network.

For the TDNN frame aggregator, we empirically find that

layer normalization works better than batch normalization in

our system. We also apply L2 regularization on the last two

fully connected layers combined with LeakyReLU activation

functions with a negative slope of 0.2, following the method

mentioned in [30]. As for the AM-Softmax loss function, the

scale factor and margin are set to 30 and 0.35 respectively. For

1Code is available at https://github.com/gzhu06/Y-vector

training, we use Stochastic Gradient Descent (SGD) with an ini-

tial learning rate of 0.01 and a momentum of 0.9. The learning

rate decays by a factor of 0.5 for every 60 epochs. We train the

system for 300 epochs, and in each epoch, we randomly sample

240,000 utterances from the whole training set. The batch size

is set to 96.

3.4. Results

3.4.1. Comparison with Other Systems

In this section, we compare the proposed Y-vector with other

recent speaker embedding networks using various features. The

results are listed in Table 3. It can be seen that Y-vector

significantly outperforms all other raw waveform-based sys-

tems and spectrogram-based systems on both VoxCeleb1-E

and VoxCeleb1-H. It is noted that one comparison method,

modified-wav2spk, is our implementation of wav2spk with the

proposed multi-scale encoder using the same number of in-

put channels; we also remove the original temproal gating be-

cause it already appears in tf -SE modules. Comparing with

an MFCC-based system [27] with a similar backbone neural

architecture, we can see that Y-vector also achieves better per-

formance. One might argue that this difference might be due

to the complexity of the 5-layer convolution waveform encoder

in Y-vector instead of the benefit of raw waveform input. To

verify this, we build another system (‘3 CNN + x-vector’) that

takes MFCC as input, and feeds it to the last three convolution

layers of the waveform encoder followed by the TDNN aggre-

gator. We used a 3-layer CNN because it has been shown in

[31] that standard mel-filterbanks can be approximated by two

convolution operations. However, as can be seen in Table 3,

the MFCC system still underperforms Y-vector systems signif-

icantly. It is worth to mention that this result does not sug-

gest that the proposed waveform-based system outperforms the

dominant spectrum-based systems in practice. More thorough

investigations are needed on experimental settings, model ar-

chitectures and optimization tricks are needed.

3.4.2. Ablation Study of the Y-vector Architecture

In this section, we compare five variants of the proposed Y-

vector system listed in Table 2. From Y-vector-1 to Y-vector-

2, we see improvement on both VoxCeleb1-E and VoxCeleb1-

H, showing the effectiveness of multi-level feature aggregation.

When increasing frequency resolution of filters (from Y-vector-

2 to Y-vector-3) and decreasing total decimation rate (from Y-

vector-3 to Y-vector-4), the performance both improves. Fi-

nally, when comparing Y-vector-4 with Y-vector-5, we see that

although the tf -SE block does not improve the performance

in VoxCeleb-E, it does improve on VoxCeleb-H, which is com-

prised of harder trials with more similar utterances in each trial.

3.4.3. Multi-scale Versus Single-scale

We also compare the multi-scale waveform encoder with three

different single-scale encoders. We use a filter size of 10, 20,

40 respectively in the three single-scale encoders with each con-

tains 96 channels. For the multi-scale encoder, we use the above

three filter sizes in parallel branches to model high, middle, and

low frequency information, respectively. For a fair comparison,

we use only 32 filters in each branch so that the total number of

filters is equal to that of the single-scale encoders, which means

that the number of parameters is nearly the same.

The evaluation results of the four encoders are shown

in Fig.2. We can see that the “low” encoder performs the
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