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ABSTRACT

In this work, we use a multiobjective genetic algorithm to evolve
agent response thresholds for a decentralized swarm and demon-
strate that swarms with evolved thresholds outperform swarms
with thresholds set using other methods. In addition, we provide
evidence that the effectiveness of evolved thresholds is due in part
to the evolutionary process being able to find, not just good distribu-
tions of thresholds for a given task across all agents, but also good
combinations of thresholds over all tasks for individual agents. Fi-
nally, we show that thresholds evolved for some problem instances
can effectively generalize to other problem instances with very
different task demands.
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Swarms are large scale decentralized multi-agent systems in which
the component agents work collectively towards one or more com-
mon goals. Division of labor in the absence of centralized control
of individual behaviors is a difficult problem and response thresh-
olds are one approach that is successful in achieving decentralized
coordination. In the response threshold model, individuals sense
external stimuli and act if the stimulus exceeds a threshold value.
Inter-individual variation, differences in when and how individuals
respond to task demands, is an important mechanism for effective
division of labor. In particular, variability in response thresholds
serves to desynchronize activations by individuals, preventing the
swarm from responding in lockstep.

Previous work finds that, when agent thresholds are static, a
basic uniform distribution of threshold values provides the best goal
achievement. Dynamic thresholds allow swarms to tailor threshold
distributions to specific problem demands but have, in practice, been
shown to have difficulty re-adapting to new task demands once
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converged. We explore a priori evolution of thresholds rather than
real-time adaptation. Genetic algorithms (GAs) are known for their
ability to find effective solutions to computationally expensive, high-
dimensional problems. We use a multi-objective genetic algorithm
to evolve agent response thresholds for a decentralized swarm.

Our testbed is a collective control problem in which a swarm
collectively tracks the movement of a target in a 2-D plane [? ].
Each agent in the swarm selects to push in one of the four compass
directions based on its observation of the positional difference
between the target and the tracker. Tracker movement is generated
by aggregating the actions of all active agents. In each timestep,
the position deviation in each direction represents a task demand,
and the tracker movement generated by agent actions represents
agent response to task demand. Performance is evaluated according
to three goals: (1) minimize the average position difference, per
time step, between the target location and the tracker location, (2)
minimize the difference between total distance traveled by target
and the total distance traveled by the tracker, and (3) minimize the
average number of task switches experienced by agents.

Our genetic algorithm is based on NSGA-II and uses three op-
timization objectives, each aligned with one of the criteria above.
Each individual in the GA population represents a complete swarm
consisting of 50 agents. The genome consists of 200 real-valued
numbers, 4 for each of the 50 agents represented by an individual.
The values for an agent represent the 4 task thresholds for that
agent, each a real value in [0, 1]. Thus, in aggregate the genome is:
[6;0], ¥ D € {NORTH, EAST, SOUTH, WEST}andV i € [0,49]. In-
dividuals are initialized with random values generated uniformly in
[0, 1]. Uniform crossover exchanges threshold values and mutation
alters each threshold value with a fixed probability. The fitness of a
GA individual is determined by running the tracking simulation
using a swarm with agents set to the encoded threshold values. For
deterministic paths, evaluation consists of a single simulation while
for random paths we run three simulations and average the results.

We evolve and test response thresholds for six target paths:
circle,diamond, random, s-curve, square, and zigzag [? ]. These
paths offer a wide range of balance of task demands and frequency
and magnitude of changes in task demands. For each target path, we
perform 32 runs of the genetic algorithm and choose one individual
from front 0 of each run. We use these individuals for testing on the
path used for evolution as well as all other paths. For each test, we
perform 30 runs of the simulation, averaging position difference,
path length difference and number of task switches across the runs.

1 RESULTS

Effect of Evolved Thresholds: Figure 1 compares the average
observed position difference and the average task switches across



https://doi.org/10.1145/3449726.3459522
https://doi.org/10.1145/3449726.3459522

GECCO 21 Companion, July 10-14, 2021, Lille, France

Test Path
uniform ® dynamic @ evolved rand-evo

Avg Positional Difference

@ shuffled

Average Difference
- N w S
e o
L
e s o
L
e
A
* SnRe
Yo ann*
* reBhice o

o
.
[
.
[]
.

circle diamond random  scurve square zigzag
Average Task Switches

il ;

2150 2

H

2 ! . :

% 100 ) . :

s Y 4 § I

g ' ) s b
s 0 ] N
E JE o

circle  diamond random  scurve square zigzag
Path

Figure 1: Comparison of uniform, dynamic, and evolved re-
sponse threshold performance by path.

different threshold types on the paths tested. The x-axis consists of
six groups, one for each target path. Within each group, we show
data points for uniform thresholds, dynamic thresholds, thresholds
evolved for that target path, thresholds evolved for random paths
but tested on the target path, and thresholds that are evolved then
shuffled among agents. In the group for random, we omit the fourth
data since they duplicate the third. The y-axis represents average
positional difference. Each data point represents 30 runs of the
simulation for one of the 32 runs of the genetic algorithm. Results
for tracker path length are similar.

The top plot shows that evolved thresholds significantly outper-
form both uniform thresholds and dynamic thresholds. Dynamism
is beneficial for some paths but not for others. This may be due
to the effects of the positive feedback loop on dynamic thresholds,
causing them to migrate to sink states. One possible advantage of
dynamic over evolved thresholds is that they adapt in real-time to
any path, perhaps making them more general. The rand-evo data
demonstrate that this is not the case. Using thresholds evolved for
random we find excellent performance for all paths suggesting that
evolved thresholds can generalize.

To gauge the importance of the relative threshold values each
agent possesses, we randomly shuffle the evolved threshold values
for all agents, maintaining the distribution of thesholds within each
task but disrupting the relative values across tasks for each agent.
The performance of the shuffled swarm is noticeably worse than
the evolved swarm but still better than a static uniform threshold
distribution. These results suggest that the relative threshold values
possessed by each agent are relevant and that specialization and
division of labor may be more subtle than individual agents simply
favoring one single task.

The bottom plot shows average task switches per agent for 30
runs with each of the 32 GA runs for all six paths. Improvement
ranges from modest for square, for which specialization is unneces-
sary due to demand for only one task in any timestep, to substantial
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Figure 2: Generalization of thresholds evolved for six paths.
circle and random provide the best generalization.

for diamond and zigzag, which share the properties of long periods
of unchanging task demand and demand for multiple tasks in all
timesteps. random is an outlier with an increase in task switches
for evolved thresholds, which we cannot yet explain.

Generalizing across paths: Figure 2 depicts the degree of gen-

eralization for evolved thresholds; how well do swarms evolved
for one problem perform on a different problem? The x-axis in-
dicates the problem on which a swarm is trained and the y-axis
indicates the average positional difference. Within each training
path, we show the data points for each test path in a different color.
These results show that circle and random generalize well to all
other paths. By comparison, the other paths do not generalize well,
with the exception of s-curve generalizing well to zigzag. We
note, however, that all of these generalization results are compara-
ble or better than the performance of static uniformly distributed
thresholds shown in the top plot of Figure 1. Closer examination
reveals that thresholds evolved for fitness determined by a single
revolution around a circular path is sufficient to generalize into
good performance on all other paths tested, consistently producing
average positional difference of less than 0.3.

These results suggest two necessary and sufficient features for
a universal training instance: sufficient demand for all tasks, and
a wide range of simultaneous demand levels to allow thresholds
to evolve to reasonably address any balance of demand between
multiple tasks. It is important to note that this does not require
that the training instance includes every possible turn or curve that
might be encountered in testing. A simple circle in which demand
changes in the same way, from one timestep to the next throughout
a run, is universal. There are no left turns, no sharp turns and
no straight lines. The number of timesteps during which there is
demand for only one task is extremely small as these occur only
when the target and tracker are at the same x or y location but
are not co-located. This result, provides hope that simple universal
training instances may exist for other problem domains.
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