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Abstract— Human-human collaboration is characterized by a
back-and-forth, where an action of one agent elicits the response
of the other. This interaction is inherently multimodal and
includes both high-level modalities such as language and low-
level ones such as force exchanges. In this work, we investigate
human collaborative manipulation: we show distinct patterns
that can be identified in low-level physical data and that can
be interpreted as primitives used by humans to negotiate about
various aspects of the motion and to execute the motion. These
primitives provide a high-level interpretation of the interaction
and can be used to connect low-level behavior to language.
We describe the human study used to collect the data, the data
analysis process, and discuss how the identified primitives could
be used by a robot’s interaction manager to mediate physical
Human-Robot Interaction (pHRI).

I. INTRODUCTION

When humans collaborate on a task, they use a mul-
titude of modalities to communicate and coordinate their
actions. Perhaps the most obvious communication modality
is language; it operates at a highly abstract (symbolic)
level and is mostly unique to humans. On the other hand,
physical collaboration typically involves low-level signals
such as forces (wrenches) and velocities (twists). Much of
the literature on physical Human-Robot Interaction (pHRI)
focuses on these low-level signals and how to control them.

The ultimate goal of this research is to bridge the gap
between the low-level signal domain and the high-level
symbolic domain to allow pHRI to approach the richness
of human-human collaboration. In particular, we want pHRI
to mimic the back-and-forth typical of human collaboration,
akin to taking turns in a dialogue. Such back-and-forth can
be observed when a spoken utterance is meant to modify
physical motion (like Slow down), or when the partners
negotiate what strategy to use for a task. Ultimately, our
goal is to implement an interaction manager that would
allow the robot to respond to a multimodal input from the
human partner with its own multimodal action. We build
on our work in [1] but focus specifically on how a robot
can respond at a symbolic level to low-level signals from
the human user by switching between discrete low-level
behaviors (primitives).
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In this paper, we study a human-human collaborative
manipulation task. In contrast to our previous work [2],
humans engage in deliberative rather than ballistic motion.
In particular, they need to negotiate how to avoid an ob-
stacle. We describe the experimental setup and the human
subject study that we conducted to collect the data. The
main contribution of our work is a data analysis that shows
that negotiation during deliberative collaborative manipula-
tion tasks involves discrete behaviors (primitives). We also
present the framework for extracting the primitives from the
collected data and show how they enable the back-and-forth
in physical interaction. The important implication of our
work is that such primitives can be subsequently used to
implement collaborative negotiation in pHRI. To the best of
our knowledge, we are the first to view physical interaction
as dialog and to identify the primitives that are used to build
such dialog. When adopted for pHRI, viewing the interaction
in this way lets the robot play an active role, allowing it
both to respond to the human and to initiate an action when
necessary at a fast time scale. This contrasts with existing
approaches where the robot mainly executes a previously
learned behavior in an open-loop fashion and is unable to
dynamically react to human action or take initiative.

The rest of the paper is organized as follows. Section
II reviews the existing related literature and Section III
describes our human study. In Section IV we introduce our
proposed framework for extracting the interaction primitives,
while Section V describes the analysis of the collected data.
Finally, Section VI concludes the paper.

II. RELATED WORK

One of the leading paradigms for pHRI is programming
by demonstration (PbD) [3], [4], often in conjunction with
impedance or admittance control [5], [6]. When it comes to
manipulation and handover, several works [7]–[9] build on
the seminal work in [10] where a minimum-jerk model is
proposed for ballistic reaching motions. In [11], the model
is used to compute interaction forces during collaborative
manipulation involving ballistic motions. Building on that
work, [12] describes a set of haptic features that are used
to accurately classify the interaction into conflicting or
harmonious, both for rotational and translational motions.
A probabilistic framework for learning task-level interaction
primitives from human demonstrations is proposed in [4].
The approach does not provide a mechanism for making
decisions during the execution of the primitive. A method
for learning robot impedance parameters that can be used
to define a virtual attractor for the end-effector is proposed



in [5]. Similar to the above, the approach assumes an
open-loop execution of the motion, in contrast to what is
observed when the agents need to negotiate during the task.
Several researchers studied how the roles of the leader and
the follower are assigned during collaborative manipulation.
In [13], the authors study how humans adapt to their partners.
They show that while humans initially rely on both visual
and haptic feedback to coordinate with the collaborator, as
the subjects get used to each other, they start relying on
perceived stiffness alone. In [14], a theoretical framework
is proposed to model how the collaborating humans switch
between the leader and the follower roles. And finally, [15]
shows that dyads modulate the forces applied on the object
they manipulate to generate a haptic information channel;
this allows them to match their performance during the joint
manipulation task to that of a single individual.

III. HUMAN STUDY

A. Experimental Setup

In order to study human-human collaborative decision-
making, an experiment was designed in which two people
were asked to collaborate and relocate a tray from one table
(table A) to another (table B) while avoiding the obstacle
located between the two. The layout of the environment is
shown in Fig. 1. The distance between the tables was 2.6 m,
which typically resulted in subjects requiring approximately
9 seconds to carry the tray from the start to the goal
location. We placed a water bottle on the tray and instructed
the subjects to prevent it from toppling to force them to
coordinate their actions. Subjects were explicitly instructed
to communicate only through physical actions which means
that talking or communicating with gestures was not allowed.
As can be seen in Fig. 1, subjects had the freedom to
either circumnavigate the obstacle to the left or the right.
The experimental task thus requires the subjects to engage
in physical negotiation at several points during the motion
and allows us to observe how such negotiation/collaborative
decision-making is achieved through physical actions.

Several sensors were used to capture the interaction be-
tween humans during the collaborative task. The force data
were collected by two RFT60 force-torque sensors (Robotous
Inc.), each installed between the handle and the tray (depicted
in Fig. 2 and 3). The force sensors were sampled at 1KHz and
interfaced with a desktop PC using serial communication. At
the center of the tray, a Raspberry Pi with an embedded 9-
DOF IMU sensor (LSM9DS1 from AdaFruit) was attached
to track the configuration (position and orientation) of the
tray. The IMU data was transmitted via a local wireless
network to the desktop PC. An online position tracking
algorithm was implemented using the ArUco library [16].
For this purpose, we affixed fiducial ArUco markers to the
surface and the sides of the tray (see Fig. 2). Three USB
cameras were placed in a triangular configuration to record
the movement of the subjects and the tray, allowing us to
deal with occlusions of the markers. The weight of the tray
was 2.3kg, and its dimensions were 61cm×31cm. The data

Fig. 1. Schematic of the environment. Subjects had to go around the
obstacle either on the right or the left side.

Fig. 2. Experimental setup and the tray used for this study.

collection was implemented in the Robot Operating System
(ROS) environment.

The collected force-torque and IMU signals were pre-
processed using a low-pass filter with the cutoff frequency
of 12.5Hz. The position data is obtained from three different
cameras and processed with the robust-Lowess smoothing
filter [17]. Then, all signals are re-sampled to 100Hz. As
an alternative to ArUco pose estimation, the IMU data was
used to track the orientation of the tray and processed using
the Kalman filter [18]. The body and spatial twists were
computed by differentiating the pose of the object over time.
All the signal processing was performed in MATLAB.

B. Data Analysis

Four subjects were recruited for this experiment and were
asked to form five dyads, resulting in 112 trials.1 In each trial,
the dyads chose between the left path and the right path (Fig.
1). The distribution of the right/left trajectories is 49/51%.
In addition to deciding between the left/right motions, the

1The experiment design and data collection was reviewed and approved
by the Institutional Review Board (IRB).



subjects were also negotiating whether the tray is placed
at the goal configuration in the same orientation as at the
beginning, or it is rotated by 180◦. We call these movements
parallel and serial motions, respectively.

The negotiation on whether to perform the parallel or the
serial motion can take place at any time during the motion.
Therefore, to simplify the problem, we decided to focus
on the right/left decision-making process, as it consistently
happens at the beginning of the trajectory. Moreover, to
narrow down the scope of the analysis to the period when
subjects actually negotiate whether to move left or right,
we have annotated the time when subjects leave the yellow
shaded area between table A and the obstacle (Fig. 1).

Fig. 3. Free body diagram from top view.

IV. FRAMEWORK

A. Background

In a collaborative manipulation task, each subject applies
a force to the manipulated object. In our experiment, F1 and
F2 are the forces applied to the handles of the tray by subject
1 and subject 2 respectively (shown in Fig. 3). The resulting
force, Fsum = F1 + F2, contributes to the linear movement
of the tray and is directly proportional to its acceleration
(Newton’s Second law). The equation of motion for the
center of mass, whose coordinates are described by a vector
x, is:

mẍ = F1 +F2 (1)

where m is the mass of the tray.
It is widely accepted that during collaborative manipula-

tion humans communicate via the interaction force [11], [15].
This force does not impact the motion of the manipulated
object, but it could stretch or compress it. Formally, we can
write: {

F1 = F∗1 +Fi

F2 = F∗2 −Fi
(2)

where, F∗1 and F∗2 are the effective forces that affect the
motion of the object, and Fi is the interaction force. The
above equation is underdetermined so the interaction force

Fig. 4. Possible tension-compression scenarios in Fstretch. x-axis in red is
body affixed frame.

can not be determined without additional assumptions. Sev-
eral alternatives have been proposed in the literature [11],
[19], [20].

Forces orthogonal to Fsum are one component of the
interaction force and are one way to communicate between
the dyads. Further, in this work, we exploit the stretching
force Fstretch which is defined as:

Fstretch = F1−F2 (3)

During the interaction, the total applied forces are usually
significantly larger than Fsum (i.e. |Fsum| << |F1| + |F2|)
[21]. This happens due to negotiation between the agents:
excessive components of applied forces cancel each other
and yield Fsum that is smaller in magnitude (refer to Fig. 5a).
Meanwhile, Fstretch magnifies the excessive components of
the applied forces and cancels the components contributing
to the motion. Therefore, Fstretch acts as an indicator for
determining the state of the interaction. This is in agreement
with the finding in [15]. Note that, in this work, we focus
on the Fstretch along the x-direction in the body affixed frame
that corresponds to the axis parallel to the handles. It is trivial
to conclude that Fstretch in the y-direction contributes to the
rotational motion (refer to Fig. 3).

Fig. 4 depicts the possible outcomes of Fstretch values.
The applied forces pointing against each other result in
high values of tension (aligned with x-axis) or compression
(opposite to x-axis) (Fig. 4a). This could be an obvious sign
of a conflicting situation. In contrast, smaller values of Fstretch
were observed when the dyad’s applied forces are aligned
causing it to bounce between tension/compression (Fig. 4b).
This can be translated into agreement or pause actions by
both subjects. A situation similar to the case in Fig. 4a may
also occur when one of the subjects aggressively dominates
the motion (Fig. 4c). However, in typical cooperative collab-
oration, this rarely happens. The presence of such alternation
in the values of the stretching force is the indication of back-
and-forth physical interaction.

These different outcomes of tension/compression scenarios
are reflected as “hump”-like shapes in the Fstretch signal (see
Fig. 5a). In general, these humps (peaks) could happen due
to several reasons:

• Conflicting scenario with clear disagreement between
the subjects. In this case, the tray stays almost at rest.

• Significant difference between the velocity of each
subject which makes the tray move.



Fig. 5. (a): F1, F2 applied forces and Fstretch, Fsum along x direction in body frame; (b): Detected Primitives (four shaded areas) in force-velocity signals.
Top plot: α1 and α2 correspond to an angle between ∠(F1,v) and ∠(F2,v) respectively; λ - leader-follower consistency measure. Middle plot: Fstretch.
Bottom plot: velocity in x, y directions.

• Haptic-interactive negotiation. Subjects engage in prob-
ing actions trying to reach an agreement on the strategy.

Therefore, relying only on the stretching force leaves ambi-
guity in determining the correct interaction state. An addi-
tional modality, such as velocity, helps to infer the accurate
interaction state during these peaks.

B. Event Detection Algorithm

We hypothesize that the humps in Fstretch (events) corre-
spond to the atomic parts of physical interaction. Depending
on the context, each of them could represent the symbolic
meaning behind the action of the agents. To interpret the data,
we implemented an algorithm that identifies the beginning
and end of each of these events. Furthermore, we argue that
these detected events describe the back and forth physical
interaction akin to dialog between humans.

The inputs to our event detection algorithm (inspired by
[22]) are Fstretch, α1, α2 (Fig. 5b); the outputs are the
start and the end time of the events. First, a possible set
of start/end times is computed considering: zero crossings
of Fstretch; local minima or maxima of Fstretch (extrema);
and zero crossings of α1 − α2. Then, a shortlist of event
candidates is formed by disregarding negligible extrema and
combining adjacent start/end times. Given that the fastest
simple human reaction time is approximately 0.25 secs
[23], we impose the additional constraint that no event can
be shorter than 0.4 sec. Thus, shorter events are merged
to satisfy the constraint. Moreover, outputs of our event
detection algorithm are manually checked and start/end times
are adjusted as needed.

V. RESULTS AND DISCUSSION

From 112 trials, 283 instances of events were detected. We
employed an unsupervised learning algorithm, K-medoids
[24], to find the clusters corresponding to the interaction

primitives. As the similarity measure, we used the dynamic
time warping algorithm (DTW) [25] for both Fstretch and
vy signals (in spatial frame). DTW is well-suited for our
application since it can measure the similarity between two
signals regardless of their duration. The relative distance
between the primitives is computed according to:

E(Pi,Pj) =
DTW (F i

stretch,F
j

stretch)

Fmax
stretch

+α
DTW (vi

y,v
j
y)

vmax
y

(4)

where, α is a blending coefficient and Fmax
stretch and vmax

y
are normalization factors (the maximum observed value for
Fstretch and vy in all trials).

The clustering process consists of two stages. We first
separate the execution primitives into one subset by applying
a simple threshold on mean, min, and max value of vy, and
the sequence number of the primitive. The execution primi-
tives always have to conclude the interaction as the subjects
leave the area of interest (yellow area on Fig. 1). After that,
we apply the K-medoids algorithm to each subset of the
data. This is done to improve the clustering results, as many
clusters overlap if K-medoids is applied to all the data. As
a result, we obtain 6 different clusters. Fig. 6 represents the
2D-histogram (heatmap), where each cluster is represented in
the Fstretch and vy plane. These 6 clusters represent different
stages of interaction in the task that involves collaborative
decision making: Negotiation with Tension (NT) – high ten-
sion in Fstretch, vy distribution centered around the horizontal
line; Negotiation with Compression (NC) – high compression
in Fstretch, vy distribution centered around a horizontal line;
Decision Making to the Left (DL) – high tension, but vy
sharply increases; Decision Making to the Right (DR) –
high tension, but vy sharply decreases; Execution to the Left
(EL) – tension and compression combined, vy sustains higher
positive velocity; Execution to the Right (ER) – tension and
compression combined, vy sustains higher negative velocity.



Fig. 6. Clusters grouped by Fstretch and vy shown in heatmaps. The color of each bin represents the percentage of the samples observed in that bin. Note:
Fstretch outliers are re-scaled to the [-20N, 20N] range for visualization purposes.

An example of a sequence of primitives in a trajectory is
shown in Fig. 5b (middle plot).

Each collaborative interaction can be translated into a
sequence of these primitives. We can learn these sequences
using a state transition diagram. Fig. 7 shows the back-and-
forth negotiation behaviors (i.e. primitives) that happened
during the decision-making process in our collected data.
As depicted in the figure, all the trajectories start from the
“Start” state and end at the “End” state, where a final decision
is made. Primitives that were the first in the interaction se-
quence are directly connected to “Start”; similarly, primitives
that were the last in the sequence connect to the “End”
state. Nearly half of the trajectory sequences start from NT
or NC. This portion of interactions corresponds to the ne-
gotiation phase, where subjects exchange pull/push actions.
In this phase, the decision is still unknown: the probability
of left/right agreement is comparable (see transitions from
NT → {DL, ER, EL} and NC → {DL, ER, EL}). The

other half of the trajectories immediately start with decision-
making primitives (Start → {DL, DR}), skipping physical
negotiation sequences (NT, NC). Whenever they reach this
state, the proposed left/right strategy does not change. This
can be explained by the fact that the subjects guess each
other’s intent by other clues (such as eye contact, body
posture) or one of the subjects takes on a follower role
so that they do not take initiative. Moreover, these clusters
could have negotiation patterns with pauses in acceleration
but still moving in the proposed direction; however, they are
too short to be detected. While our experiment design does
not consider learning effects, we note that when dyads have
multiple options to choose from, they start with a low success
rate of guessing intent, but it increases to 83% after a short
amount of practice [13].

Moreover, we argue that similar dynamic transitions can-
not be observed in a ballistic type of motion, where the dyads
are constrained to make the decision prior to the motion.



Fig. 7. Equivalent state machine from primitive sequences. Unlabelled
lines have probability less than 0.09.

In that case, PbD methods [3], [4] perform well, as the
distribution of the trajectories remains relatively constant.
In our approach, different kinds of initiative taken by the
dyad members are observed in the primitive sequence which
means that the interaction is much richer. Our approach thus
allows the agents to exhibit similar behaviors.

During the proposed primitives, subjects often engage in
a common maneuver, in which mostly one of them tends to
be the consistent leader in the context, except for pause or
conflicting states that are inherently leader-free. We introduce
a leader-follower consistency measure, defined by:

λ = 1+
T (α1(t),α2(t))

t f
prim− t0

prim

(5)

where, T (α1(t),α2(t)) ≤ t f
prim− t0

prim is the duration when
α1(t) ≥ α2(t) for t ∈ [t0

prim, t
f
prim]; t0

prim, t
f
prim are the start

and end time of the primitive. If λ = 1.5 no distinctive
leader is observed; the closer the value is to 1, subject
1 is leading and vice versa. From the distribution of λ

(Fig. 8) one can see that either subject 1 or subject 2 is
in a leader most of the time. The intermediate values of
λ capture pause or conflicting situations where no particular
role could be assigned. Analogous metrics exist in the natural
language literature [26]; they measure how collaborative the
dyads are when solving problems together ( Knowledge Co-
Construction dialogs).

To clarify, consider the top plot in Fig. 5b. One can notice
that in the first primitive, subject 1 started to go to the
right, hence he is the leader in that context (λ ≈ 1). But
subject 2 intervened and led the object to the left side in
two stages: opposing the initially proposed right direction
in the 2nd primitive (λ ≈ 1.5 – conflicting case); increasing
the velocity in the 3rd primitive to which subject 1 agreed

Fig. 8. Distribution of leader-follower consistency measure λ across all
primitives.

(λ ≈ 2). Finally, they finish the negotiation by executing the
decision (4th primitive).

VI. CONCLUSIONS AND FUTURE WORK

Given a relatively simple deliberative collaborative ma-
nipulation task, we observed that two people are capable to
negotiate about many aspects of the task such as the direction
of motion around an obstacle, the type of rotation of the
object during the motion, and the height and the speed of the
manipulated object. To simplify the analysis, we narrowed
the part of the motion we analyzed to the initial phase of
the object transfer when the two subjects make a decision
on whether to avoid the obstacle on the left or the right. We
propose a framework to identify the interaction primitives
during this part of the task. Specifically, we show that
the stretching force along the manipulated object provides
reliable information about the interaction state. Through
clustering, we identify a meaningful set of primitives that
describe how the subjects make a decision. Using these
interaction primitives, we argue that an interaction manager
can be designed for a physical human-robot interaction task
that can deal with the physical and linguistic communication
of the agents and that extends our previous work in [1].

Unlike the prevailing programming by demonstration ap-
proaches that often consider the entire trajectory as a single
primitive, we envision to create a more fine-grained con-
troller for the collaborative robot that enables it to negotiate
with the human partner and allows it to both respond to the
human multimodal inputs as well as take the initiative and
act. An interesting extension to this work would be to devise
a real-time event detection algorithm and verify the proposed
scheme on a more complex collaborative manipulation task.
We also plan to implement our proposed framework on
a real robot using impedance control [27] and show its
effectiveness through a more extensive human study.
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