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ABSTRACT

Classical model-based imaging methods for ultrasound elas-
ticity inverse problem require prior constraints about the
underlying elasticity patterns, while finding the appropriate
hand-crafted prior for each tissue type is a challenge. In
contrast, standard data-driven methods count solely on super-
vised learning on the training data pairs leading to massive
network parameters for unnecessary physical model relearn-
ing which might not be consistent with the governing physical
models of the imaging system. Fusing the physical forward
model and noise statistics with data-adaptive priors leads to a
united reconstruction framework that guarantees the learned
reconstruction agrees with the physical models while coping
with the limited training data. In this paper, we propose a new
methodology for estimating the elasticity image by solving
a regularized optimization problem which benefits from the
physics-based modeling via a data-fidelity term and adversar-
ially learned priors via a regularization term. In this method,
the regularizer is trained based on the Wasserstein Genera-
tive Adversarial Network (WGAN) objective function which
tries to distinguish the distribution of clean and noisy images.
Leveraging such an adversarial regularizer for parameterizing
the distribution of latent images and using gradient descent
(GD) for solving the corresponding regularized optimization
task leads to stability and convergence of the reconstruction
compared to pixel-wise supervised learning schemes. Our
simulation results verify the effectiveness and robustness of
the proposed methodology with limited training datasets.

Index Terms— Ultrasound elasticity imaging, generative
adversarial networks, Wasserstein distance, WGAN, compu-
tational imaging.

1. INTRODUCTION

Ultrasound elastography as a non-invasive tool for tissue
stiffness characterization offers great potential for reliable
clinical diagnosis. FElasticity image reconstruction can be
accomplished by solving an inverse problem formulated as
a constrained optimization problem under regularization.

This work has been partially supported by the National Science Founda-
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This optimization task consists of a forward model describ-
ing the physics of the imaging system and a regularization
term expressing any prior information about the latent im-
age. Considering medical imaging challenges including
time-efficient image reconstruction as well as reliable and
robust reconstructed elastic images, numerous advances have
been proposed. One major concern in existing model-based
approaches [1], [2] is how to capture the appropriate prior
information about the complex structure of the underlying
tissues and how to incorporate this prior knowledge into the
image reconstruction scheme. By the advent of deep neu-
ral networks (DNNs) [3], various end-to-end learning-based
methods [4-8] have been proposed which try to learn both
the physical model and the prior information about the un-
derlying tissues. These methods lead to many shortcomings
such as very large number of training pairs requirements
and no-guaranteed solutions consistent with the true physical
models. Moreover, these methods prevent a high level of gen-
eralizability which means that expensive network retraining
is required whenever the forward model, noise distribution,
or noise level changes. These limitations have been over-
come by combining forward models and learned priors in a
constrained optimization task, resulting in more accurate and
time-efficient imaging schemes [9—12]. Such approaches can
be split into two groups: unrolling-based methods and prior
learning methods.

Unrolling-based approaches integrate physical models into
the learning process by unfolding each iteration of the classi-
cal optimization problem as a layer of a neural network which
includes algorithms such as PINN [13], PI-GAN [14], [15]
and [16]. These approaches provide improved accuracy while
they are time-consuming as they require network retraining
for each iteration.

On the other hand, prior learning methods infuse learned pri-
ors as regularizers into physics-model based inversion which
includes two types of methods. First, supervised learning of
regularizers using training pairs is utilized in methods such
as Plug-and-Play (PnP) [17] and regularization by denoising
(RED) [18]. PnP methods use pixel-wise loss functions for
learning a denoiser which then acts as an implicit regularizer
within an iterative reconstruction approach such as alternat-
ing direction method of multipliers (ADMM) and proximal



gradient methods [19]. Second, unsupervised learning of
regularizers using an adversarial network can be used to
construct explicit regularizers that can be incorporated into
the optimization problem for imaging. These learning-based
priors estimate the distribution of the latent image using gen-
erative adversarial networks (GAN) [20], Wasserstein GAN
(WGAN) [21] or variational auto-encoders (VAE). WGAN
is an augmented GAN that replaces the discriminator (which
predicts the probability of fakeness or realness of generated
images) with a critic which tries to score the fakeness or
realness of the given images leading to a better approxima-
tion of the distribution of the observed data in the training
dataset [22]. Regarding some advantages of WGAN over
GAN, we can refer to more stability during network training
and less sensitivity to network design and hyperparameter
settings. Since adversarial regularizers are trained based
on image distribution loss, rather than image pixel loss, no
paired training data is necessary. This, in principle, allows for
some level of unsupervised training. In addition, the ability to
formulate the imaging problem with explicit priors provides
some interpretability. Finally, we can also benefit from the
theoretical stability and convergence results on the resulting
optimization problems for imaging [23].

In this article, we propose a new elasticity image reconstruc-
tion framework that incorporates an explicit adversarially
learned regularizer into an optimization formulation that also
involves a physics-based forward model and a noise model.
In this approach, the image prior is learned using an adver-
sarial critic network based on the WGAN objective function
which seeks to discriminate between the distributions of
regularization-free reconstructions and the ground-truth im-
ages. Once the regularizer is trained, it is plugged into the
constrained optimization task for solving the inverse prob-
lem using a gradient descent scheme. Our simulation results
verify the effectiveness of the proposed methodology for elas-
ticity image reconstruction with limited training datasets and
noisy displacement fields.

The remainder of this paper is organized as follows. In Sec-
tion 2, we describe the constrained optimization problem
for ultrasound elasticity imaging. The proposed adversarial
learning-based elasticity imaging approach is described in
Section 3. Section 4 presents the results of our preliminary
experimental analysis, and finally, concluding remarks are
available in Section 5.

2. OPTIMIZATION PROBLEM FORMULATION

The imaging system for ultrasound elastography of incom-
pressible tissues can be modeled using the quasi-static equi-
librium equation. This model also known as the global stiff-
ness equation reveals the relationship between the unknown
elasticity of tissue x with the observed deformation measure-
ments u in response to the applied force measurements f as
follows:

f=Kxu+w w~N(0,X,) (1)

Utilizing the finite-element-method (FEM) for medium dis-
cretization over N nodes of a mesh, f € R2V*1 stands for the
nodal force measurements constituting the medium boundary
condition, u € R2V*1 represents the true nodal displace-
ments in the lateral and axial dimensions and w € R?V>1 ex-
presses the nodal Gaussian noise. The main role of elasticity
x € RV*1 as the mechanical tissue characteristic is embed-
ded in K(x) € R2VN*2N which describes the force and defor-
mation field relationship. Estimating the elastic modulus x as
an inverse problem can be fulfilled by solving a constrained
optimization problem. In this regard, the forward model (1)
needs to be formulated as a linear representation with respect
to the unknown elasticity modulus [2]. To this end, we es-
tablish the matrix D(u) € R2V>*¥ which has the following

relation with K (x) using a 3D tensor ¥ € RV *2NX2N ¢op.
structed from the equilibrium equations:
D(u)x = K(x)u @)
D(u) = (Pu)? K(x) =9Tx

In practice, the deformation fields are measured by cross-
correlation of several B-mode ultrasound images which leads
to the noisy deformation field measurements u™ = u + n
where n ~ A (0, X,,). Substituting this relationship into the
forward model (1) yields:

f = Kxu+w=K(x)(u™—n)+w
= Kxu™ -Kx)n+w 3)
Letting w = —K(x)n+ w and utilizing (2) with noisy defor-

mations, D(u™)x = K(x)u™, the integrated forward model
can be represented as:

f=DuM)x+w w~N(0,T) “4)
where I' is given by:
r=%,+KxZ,K(x)” )

based on which we can interpret (4) as a linear observation
model involving signal dependent colored noise. This sta-
tistical forward model which incorporates the noise statistics
paves the way for formulating the elastic inverse problem us-
ing a regularized optimization problem [2] as follows:

X = argmin, % If — D(um)x||%,1 + AR(x)
st. x>0

where HA||?3 := (ATBA) and R(x) is the regularization
term. To leverage the potential of learning-based methods in
capturing prior information about the underlying scenes, we
learn the regularization term using an adversarial critic net-
work C,,(x) with learned weights w using ground-truth elas-
ticity modulus x as inputs.

After obtaining the learned regularizer C,,(x), we use a
fixed-point approach to solve (6), where I' will be fixed when
updating x, and then I" will be updated with the new x based

(6)
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Fig. 1: Training the adversarial regularizer using critic network optimization.
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Fig. 2: Elasticity image reconstruction using adversarially learned regularization.

on (5). For updating x in each step of the fixed-point ap-
proach, we use gradient descent (GD):

x  [x — eV (|f = D(™)x|2, +ACL ()]s (D)

where [|, stands for the positivity constraint on the recon-
structed elasticity modulus.

3. ADVERSARIAL LEARNING OF REGULARIZER

The core idea behind adversarial learning of regularizers is
that a good regularizer C,,(x) should be able to distinguish
the distribution of ground-truth elasticity images P, from
the distribution of the noisy images P,,. It should be men-
tioned that the noisy elasticity images are reconstructed by
maximum likelihood (ML) estimation in the unregularized
optimization problem given the noisy force measurements
f and forward operator D(u™); therefore, these images are
corrupted with the correlated noise with covariance I'. The
1-Wasserstein distance involves the minimum path length
to transport mass from one distribution to the other [24].
WGANSs approximate that mapping by training a convo-
lutional neural network as regularizer by minimizing the
following cost:

Exnp, [Cu (%)) = Exp, [Cu (%)) + HE[([[VxCu (x)[| - 1)(%1
The first two terms aim to ensure that the learned network will
be able to map the noisy image distribution to the ground-
truth distribution. The last term is added for the stability of
the critic network during training which constrains that the
learned network is Lipschitz continuous with constant 1 and
penalty coefficient p [23]. Using the loss function in (8) and
sampling ground-truth images x,. ~ P,. and noisy ones x,, ~
P,,, we introduce an intermediate sample x; for applying the

Lipschitz constraint as x; = vx, + (1 — v)x,,, where v €
UJ0, 1] is a uniformly-sampled scale in the range of [0,1]. By
employing this intermediate sample, the loss function in each
iteration of network training becomes:

Lw = Cw(xr) - Cw(xn) + M[(HVXLCU)(Xl)H - 1)3—] (9)

The training procedure of this adversarial regularizer is de-
picted in Fig 1. It is worth noting that the minimization of
the aforementioned loss function on image distributions al-
lows some level of unsupervised learning, as it can involve the
use of unpaired training. In particular, the ground truth and
noisy images can be independent (i.e., not necessarily paired)
samples from P, and P,,, respectively. Once the network is
trained, the learned explicit regularizer is plugged into (7) for
updating the elasticity modulus x. This reconstruction proce-
dure is illustrated in Fig. 2.

4. SIMULATIONS AND RESULTS
To evaluate the performance of the proposed approach for
solving the elasticity imaging problem, we train the adversar-
ial regularizer network using true ground-truth elasticity im-
ages and observed measurements of force f and noisy defor-
mations u™. We use a dataset of 541 B-mode images of the
real lesion in breast tissue provided in [25] to generate clean
elasticity images (synthetic x maps). To this end, we gener-
ate normalized lesion elasticities in the range 0.3-0.8 KPa and
normalized background elasticities in the range 0.1-0.15 KPa.
With these choices, the ratio of lesion elasticity to the back-
ground elasticity falls in the range of 2-8, which represents ex-
perimental scenarios well. Moreover, the deformation images
u™ are obtained for each elasticity image x by solving the
forward model in (1) and adding multivariate Gaussian noise
n [2] resulting in SN R = 35dB. While training the network,
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Fig. 3: (a) Ground-truth elasticity image. (b) Reconstructed elasticity image using unregularized optimization. (c) Recon-
structed image with post-processing approach using UNet. (d) Reconstructed image using PnP approach and DnCNN. (e)
Reconstructed elasticity image with the proposed adversarial learning-based regularization approach. The unit of the color bar

is 100 KPa.

elasticity ratio

imag::;ixe\s “ " o S —

(a) (b)
Fig. 4: (a) The cross section of reconstructed elasticity images
using different approaches marked by the red line in (b).

clean elasticity images with size 512x 512 are fed into the net-
work architecture and network parameters are learned using
the loss function minimization process described in Section
3. with RMSProp optimizer. The details of the implemented
network architecture for learning the adversarial regularizer
is provided in Table 1. Other network settings can be de-
scribed as batch-size=16, num-epochs=100, Lipschitz regu-
larizer scale © = b5, adversarial regularizer scale A = 10,
gradient step € = (.7, and the number of steps of gradient
descent taken on the loss function is set to 100. These hyper-
parameters are set by analyzing the reconstructed image qual-
ity. For reconstruction performance comparison, we also im-
plement two supervised learning approaches: post-processing
neural network (NN) [26] using a UNet architecture and PnP
paradigm using a DnCNN architecture [27]. For generating
noisy elasticity images, we map the noisy displacement fields
u™ to the image domain by solving the unregularized inverse
problem consisting of a data-fidelity term and a positivity con-
straint. The simulation results for reconstruction of elasticity
images using these different approaches are presented in Fig.
3. The UNet denoiser blurs the image to remove the artifacts
while the other learning-based methods preserve the edges
more efficiently. The cross-section details of each reconstruc-

method architecture
supervised UNet: 4 strided conv. (stride=2) + 4
reconstruction: | transposed conv., Leaky ReL.U and

Post-processing | skip connection after each layer,
NN Adam optimizer with Ir=1e-3
DnCNN : 1 strided conv. (stride=1)

:25;;\;::33&011. + 10 (conv. layer,BN) + I conv.,

PP " | ReLU after each layer excep the last
one, Adam optimizer with Ir=1e-3

unsupervised 2 conv. + 4 strided conv. (stride=2)

P . + 2 dense layers, Leaky ReL.U after
reconstruction: .

. each conv. layers, RMSProp opti-

adversarial

mizer with Ir=1e-4

Table 1: Details of implemented networks for elasticity re-
construction.

tion presented in Fig. 4 indicate that our proposed adversarial
approach has better reconstruction performance compared to
the other methods. For computation time comparison, since
PnP with DnCNN architecture uses an iterative scheme for
image reconstruction, its computation time is higher than the
post-processing method in the test time. Likewise, our adver-
sarial approach requires more computation time for network
training using the distribution-based loss and also image re-
construction in the test time.

5. CONCLUSION

This article proposes a new learning-based approach for ul-
trasound elasticity imaging by combining physical modeling
and adversarial regularizer learning. The powerful image reg-
ularizer is trained based on the Wasserstein distance loss for
estimating the distribution of latent elasticity images which
allows some level of unsupervised learning as well. Then,
the learned explicit regularizer is plugged into the optimiza-
tion task as the prior information to mitigate the noisy and



corrupted measurements. Finally, the resulting minimization
problem composed of a data-fidelity term and the learned ad-
versarial regularization term is solved using gradient descent
to reconstruct the estimates of latent elasticity images. Our
preliminary simulation results demonstrate the effectiveness
of the proposed method in elasticity image reconstruction in
terms of robustness and accuracy.
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