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ABSTRACT

Classical model-based imaging methods for ultrasound elas-

ticity inverse problem require prior constraints about the

underlying elasticity patterns, while finding the appropriate

hand-crafted prior for each tissue type is a challenge. In

contrast, standard data-driven methods count solely on super-

vised learning on the training data pairs leading to massive

network parameters for unnecessary physical model relearn-

ing which might not be consistent with the governing physical

models of the imaging system. Fusing the physical forward

model and noise statistics with data-adaptive priors leads to a

united reconstruction framework that guarantees the learned

reconstruction agrees with the physical models while coping

with the limited training data. In this paper, we propose a new

methodology for estimating the elasticity image by solving

a regularized optimization problem which benefits from the

physics-based modeling via a data-fidelity term and adversar-

ially learned priors via a regularization term. In this method,

the regularizer is trained based on the Wasserstein Genera-

tive Adversarial Network (WGAN) objective function which

tries to distinguish the distribution of clean and noisy images.

Leveraging such an adversarial regularizer for parameterizing

the distribution of latent images and using gradient descent

(GD) for solving the corresponding regularized optimization

task leads to stability and convergence of the reconstruction

compared to pixel-wise supervised learning schemes. Our

simulation results verify the effectiveness and robustness of

the proposed methodology with limited training datasets.

Index Terms— Ultrasound elasticity imaging, generative

adversarial networks, Wasserstein distance, WGAN, compu-

tational imaging.

1. INTRODUCTION

Ultrasound elastography as a non-invasive tool for tissue

stiffness characterization offers great potential for reliable

clinical diagnosis. Elasticity image reconstruction can be

accomplished by solving an inverse problem formulated as

a constrained optimization problem under regularization.

This work has been partially supported by the National Science Founda-

tion (NSF) under Grants CCF-1934962 and DGE-1922591.

This optimization task consists of a forward model describ-

ing the physics of the imaging system and a regularization

term expressing any prior information about the latent im-

age. Considering medical imaging challenges including

time-efficient image reconstruction as well as reliable and

robust reconstructed elastic images, numerous advances have

been proposed. One major concern in existing model-based

approaches [1], [2] is how to capture the appropriate prior

information about the complex structure of the underlying

tissues and how to incorporate this prior knowledge into the

image reconstruction scheme. By the advent of deep neu-

ral networks (DNNs) [3], various end-to-end learning-based

methods [4–8] have been proposed which try to learn both

the physical model and the prior information about the un-

derlying tissues. These methods lead to many shortcomings

such as very large number of training pairs requirements

and no-guaranteed solutions consistent with the true physical

models. Moreover, these methods prevent a high level of gen-

eralizability which means that expensive network retraining

is required whenever the forward model, noise distribution,

or noise level changes. These limitations have been over-

come by combining forward models and learned priors in a

constrained optimization task, resulting in more accurate and

time-efficient imaging schemes [9–12]. Such approaches can

be split into two groups: unrolling-based methods and prior

learning methods.

Unrolling-based approaches integrate physical models into

the learning process by unfolding each iteration of the classi-

cal optimization problem as a layer of a neural network which

includes algorithms such as PINN [13], PI-GAN [14], [15]

and [16]. These approaches provide improved accuracy while

they are time-consuming as they require network retraining

for each iteration.

On the other hand, prior learning methods infuse learned pri-

ors as regularizers into physics-model based inversion which

includes two types of methods. First, supervised learning of

regularizers using training pairs is utilized in methods such

as Plug-and-Play (PnP) [17] and regularization by denoising

(RED) [18]. PnP methods use pixel-wise loss functions for

learning a denoiser which then acts as an implicit regularizer

within an iterative reconstruction approach such as alternat-

ing direction method of multipliers (ADMM) and proximal
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gradient methods [19]. Second, unsupervised learning of

regularizers using an adversarial network can be used to

construct explicit regularizers that can be incorporated into

the optimization problem for imaging. These learning-based

priors estimate the distribution of the latent image using gen-

erative adversarial networks (GAN) [20], Wasserstein GAN

(WGAN) [21] or variational auto-encoders (VAE). WGAN

is an augmented GAN that replaces the discriminator (which

predicts the probability of fakeness or realness of generated

images) with a critic which tries to score the fakeness or

realness of the given images leading to a better approxima-

tion of the distribution of the observed data in the training

dataset [22]. Regarding some advantages of WGAN over

GAN, we can refer to more stability during network training

and less sensitivity to network design and hyperparameter

settings. Since adversarial regularizers are trained based

on image distribution loss, rather than image pixel loss, no

paired training data is necessary. This, in principle, allows for

some level of unsupervised training. In addition, the ability to

formulate the imaging problem with explicit priors provides

some interpretability. Finally, we can also benefit from the

theoretical stability and convergence results on the resulting

optimization problems for imaging [23].

In this article, we propose a new elasticity image reconstruc-

tion framework that incorporates an explicit adversarially

learned regularizer into an optimization formulation that also

involves a physics-based forward model and a noise model.

In this approach, the image prior is learned using an adver-

sarial critic network based on the WGAN objective function

which seeks to discriminate between the distributions of

regularization-free reconstructions and the ground-truth im-

ages. Once the regularizer is trained, it is plugged into the

constrained optimization task for solving the inverse prob-

lem using a gradient descent scheme. Our simulation results

verify the effectiveness of the proposed methodology for elas-

ticity image reconstruction with limited training datasets and

noisy displacement fields.

The remainder of this paper is organized as follows. In Sec-

tion 2, we describe the constrained optimization problem

for ultrasound elasticity imaging. The proposed adversarial

learning-based elasticity imaging approach is described in

Section 3. Section 4 presents the results of our preliminary

experimental analysis, and finally, concluding remarks are

available in Section 5.

2. OPTIMIZATION PROBLEM FORMULATION

The imaging system for ultrasound elastography of incom-

pressible tissues can be modeled using the quasi-static equi-

librium equation. This model also known as the global stiff-

ness equation reveals the relationship between the unknown

elasticity of tissue x with the observed deformation measure-

ments u in response to the applied force measurements f as

follows:
f = K(x)u+w w ∼ N (0, Σw) (1)

Utilizing the finite-element-method (FEM) for medium dis-

cretization over N nodes of a mesh, f ∈ R
2N×1 stands for the

nodal force measurements constituting the medium boundary

condition, u ∈ R
2N×1 represents the true nodal displace-

ments in the lateral and axial dimensions and w ∈ R
2N×1 ex-

presses the nodal Gaussian noise. The main role of elasticity

x ∈ R
N×1 as the mechanical tissue characteristic is embed-

ded in K(x) ∈ R
2N×2N which describes the force and defor-

mation field relationship. Estimating the elastic modulus x as

an inverse problem can be fulfilled by solving a constrained

optimization problem. In this regard, the forward model (1)

needs to be formulated as a linear representation with respect

to the unknown elasticity modulus [2]. To this end, we es-

tablish the matrix D(u) ∈ R
2N×N which has the following

relation with K(x) using a 3D tensor Ψ ∈ R
N×2N×2N con-

structed from the equilibrium equations:

D(u)x = K(x)u
D(u) = (Ψu)T K(x) = Ψ

T
x

(2)

In practice, the deformation fields are measured by cross-

correlation of several B-mode ultrasound images which leads

to the noisy deformation field measurements u
m = u + n

where n ∼ N (0, Σn). Substituting this relationship into the

forward model (1) yields:

f = K(x)u+w = K(x)(um − n) +w

= K(x)um −K(x)n+w (3)

Letting w̃ = −K(x)n+w and utilizing (2) with noisy defor-

mations, D(um)x = K(x)um, the integrated forward model

can be represented as:

f = D(um)x+ w̃ w̃ ∼ N (0, Γ) (4)

where Γ is given by:

Γ = Σw +K(x)ΣnK(x)T (5)

based on which we can interpret (4) as a linear observation

model involving signal dependent colored noise. This sta-

tistical forward model which incorporates the noise statistics

paves the way for formulating the elastic inverse problem us-

ing a regularized optimization problem [2] as follows:

x̂ = argmin
x

1

2
‖f −D(um)x‖2

Γ−1 + λR(x)
s.t. x > 0

(6)

where ‖A‖2
B

:= (AT
BA) and R(x) is the regularization

term. To leverage the potential of learning-based methods in

capturing prior information about the underlying scenes, we

learn the regularization term using an adversarial critic net-

work Cw(x) with learned weights w using ground-truth elas-

ticity modulus x as inputs.

After obtaining the learned regularizer Cw(x), we use a

fixed-point approach to solve (6), where Γ will be fixed when

updating x, and then Γ will be updated with the new x based
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Fig. 1: Training the adversarial regularizer using critic network optimization.
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Fig. 2: Elasticity image reconstruction using adversarially learned regularization.

on (5). For updating x in each step of the fixed-point ap-

proach, we use gradient descent (GD):

x←− [x− ε∇x(‖f −D(um)x‖2
Γ−1 + λCw(x))]+ (7)

where []+ stands for the positivity constraint on the recon-

structed elasticity modulus.

3. ADVERSARIAL LEARNING OF REGULARIZER

The core idea behind adversarial learning of regularizers is

that a good regularizer Cw(x) should be able to distinguish

the distribution of ground-truth elasticity images Pr from

the distribution of the noisy images Pn. It should be men-

tioned that the noisy elasticity images are reconstructed by

maximum likelihood (ML) estimation in the unregularized

optimization problem given the noisy force measurements

f and forward operator D(um); therefore, these images are

corrupted with the correlated noise with covariance Γ. The

1-Wasserstein distance involves the minimum path length

to transport mass from one distribution to the other [24].

WGANs approximate that mapping by training a convo-

lutional neural network as regularizer by minimizing the

following cost:

Ex∼Pr
[Cw(x)]−Ex∼Pn

[Cw(x)]+µE[(‖∇xCw(x)‖− 1)2+]
(8)

The first two terms aim to ensure that the learned network will

be able to map the noisy image distribution to the ground-

truth distribution. The last term is added for the stability of

the critic network during training which constrains that the

learned network is Lipschitz continuous with constant 1 and

penalty coefficient µ [23]. Using the loss function in (8) and

sampling ground-truth images xr ∼ Pr and noisy ones xn ∼
Pn, we introduce an intermediate sample xi for applying the

Lipschitz constraint as xi = νxr + (1 − ν)xn, where ν ∈
U [0, 1] is a uniformly-sampled scale in the range of [0,1]. By

employing this intermediate sample, the loss function in each

iteration of network training becomes:

Lw = Cw(xr)−Cw(xn) + µ[(‖∇xi
Cw(xi)‖ − 1)2+] (9)

The training procedure of this adversarial regularizer is de-

picted in Fig 1. It is worth noting that the minimization of

the aforementioned loss function on image distributions al-

lows some level of unsupervised learning, as it can involve the

use of unpaired training. In particular, the ground truth and

noisy images can be independent (i.e., not necessarily paired)

samples from Pr and Pn, respectively. Once the network is

trained, the learned explicit regularizer is plugged into (7) for

updating the elasticity modulus x. This reconstruction proce-

dure is illustrated in Fig. 2.

4. SIMULATIONS AND RESULTS
To evaluate the performance of the proposed approach for

solving the elasticity imaging problem, we train the adversar-

ial regularizer network using true ground-truth elasticity im-

ages and observed measurements of force f and noisy defor-

mations um. We use a dataset of 541 B-mode images of the

real lesion in breast tissue provided in [25] to generate clean

elasticity images (synthetic x maps). To this end, we gener-

ate normalized lesion elasticities in the range 0.3-0.8 KPa and

normalized background elasticities in the range 0.1-0.15 KPa.

With these choices, the ratio of lesion elasticity to the back-

ground elasticity falls in the range of 2-8, which represents ex-

perimental scenarios well. Moreover, the deformation images

u
m are obtained for each elasticity image x by solving the

forward model in (1) and adding multivariate Gaussian noise

n [2] resulting in SNR = 35dB. While training the network,





corrupted measurements. Finally, the resulting minimization

problem composed of a data-fidelity term and the learned ad-

versarial regularization term is solved using gradient descent

to reconstruct the estimates of latent elasticity images. Our

preliminary simulation results demonstrate the effectiveness

of the proposed method in elasticity image reconstruction in

terms of robustness and accuracy.
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[19] J. Adler and O. Öktem, “Learned primal-dual recon-

struction,” IEEE Trans. on Med. Imag., vol. 37, pp.

1322–1332, 2018.

[20] D. V. Patel and A. A. Oberai, “Quantifying uncertainty

with GAN-based priors,” ArXiv, vol. abs/2003.12597,

2020.

[21] M.Arjovsky, S. Chintala, and L. Bottou, “Wasserstein

generative adversarial networks,” in ICML, 2017.

[22] K. Lei, M. Mardani, and et al., “Wasserstein GANs for

MR imaging: From paired to unpaired training,” IEEE

Trans. on Med. Imag., vol. 40, no. 1, pp. 105–115, 2021.
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“Solving inverse problems using data-driven models,”

Acta Numerica, vol. 28, pp. 1 – 174, 2019.

[25] W. Al-Dhabyani, M. Gomaa, H. Khaled, and A. Fahmy,

“Dataset of breast ultrasound images,” Data in Brief,

vol. 28, pp. 104863, 2020.

[26] K. H. Jin, M. T. McCann, E. Froustey, and M. Unser,

“Deep convolutional neural network for inverse prob-

lems in imaging,” IEEE Trans. on Image Proc., vol. 26,

no. 9, pp. 4509–4522, 2017.
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