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Abstract

Spoofing countermeasure (CM) systems are critical in speaker

verification; they aim to discern spoofing attacks from bona fide

speech trials. In practice, however, acoustic condition variabil-

ity in speech utterances may significantly degrade the perfor-

mance of CM systems. In this paper, we conduct a cross-dataset

study on several state-of-the-art CM systems and observe sig-

nificant performance degradation compared with their single-

dataset performance. Observing differences of average mag-

nitude spectra of bona fide utterances across the datasets, we

hypothesize that channel mismatch among these datasets is one

important reason. We then verify it by demonstrating a simi-

lar degradation of CM systems trained on original but evaluated

on channel-shifted data. Finally, we propose several channel

robust strategies (data augmentation, multi-task learning, ad-

versarial learning) for CM systems, and observe a significant

performance improvement on cross-dataset experiments.

Index Terms: spoofing countermeasure, channel variation,

cross dataset, data augmentation, deep learning

1. Introduction

Automatic speaker verification (ASV) systems are vulnerable

to spoofing attacks, where attackers pretend to be the target

speaker by presenting false but similar-to-bona-fide speech tri-

als [1]. Spoofing countermeasure (CM) systems aim to detect

such attacks. Spoofing attacks are considered physical access

(PA) if they are utterances presented to the microphone of the

ASV system, and logical access (LA) if they bypass the mi-

crophone and feed to the verification algorithm directly. In a

common anti-spoofing setup as in ASVspoof2019 [2], the PA

scenario features replay attacks using various playback devices,

while the LA scenario features synthetic utterances generated

by text-to-speech (TTS) and voice conversion (VC) algorithms.

Recently, deep learning technologies have shown great suc-

cess in learning discriminative speaker embeddings to clas-

sify spoofing attacks from bona fide speech in the LA sce-

nario [3]. The CM community has been exploring the usage

of different input speech features [4, 5, 6, 7], model architec-

tures [8, 9, 10, 11, 12], and loss functions [13, 14, 15] to im-

prove the performance on detecting synthetic attacks.

However, several cross-dataset studies [16, 17, 18, 19] in

anti-spoofing show significant performance degradation from

single-dataset studies. For example, when systems are trained

on LA but tested on PA, performance degradation happens,

and suggested solutions include the usage of more general-

ized speech features [17, 19] and domain adaptation [18]. An-

other more surprising performance degradation happens when

a state-of-the-art CM system is trained and tested on differ-

ent LA datasets [20]. The authors suggested that it is because

some unseen attacks are more challenging. While we agree that

this can be an important reason, we also think that other differ-

ences, such as channel variation across datasets could be pos-

sible reasons. This motivates us to systematically conduct a

cross-dataset study on synthetic voice spoofing CM systems.

Such cross-dataset studies are important in the design of ro-

bust CM systems. Due to limited access of training data and its

channel variation, CM systems may be frail in practice. Here

channel effects refer to audio effects imposed onto the speech

signal throughout the entire recording and transmission pro-

cess, including reverberation of recording environments, fre-

quency responses of recording devices, and compression al-

gorithms in telecommunication. Without properly considering

and compensating for these effects, CM systems may overfit

to the limited channel effects presented in the training set and

fail to generalize to unseen channel variation. This issue has

been studied in replay attacks [21], but little attention is paid in

the LA scenario. For example, the bona fide speech utterances

in ASVspoof2019LA were all from the VCTK corpus, and the

TTS/VC systems used in generating LA attacks were all trained

on the VCTK corpus. This may introduce strong biases to CM

systems on the limited channel variation.

In this work, we first conduct a cross-dataset study of

three state-of-the-art CM systems between ASVspoof2019LA,

ASVspoof2015, and VCC2020. Observing significant perfor-

mance degradation on all CM systems, we hypothesize that

the channel effect mismatch between these datasets is one

important reason for the degradation. To test our hypothe-

sis, we first compare the average magnitude spectra across

all bona fide utterances among these three datasets and ob-

serve significant mismatches. We then conduct a controlled

cross-channel experiment by training the three CM systems on

ASVspoof2019LA and evaluating them on the evaluation set of

its channel-augmented version, ASVspoof2019LA-Sim, which

is generated by passing ASVspoof2019LA utterances through

an acoustic simulator [22]; our hypothesis is again verified by

consistent performance degradation across the three CM sys-

tems. Finally, we propose several strategies to improve chan-

nel robustness leveraging the channel-augmented data. Re-

sults show that these strategies successfully improve the cross-

dataset performance of all three CM systems.

As we conduct this study, we notice that the LA sub-

challenge of ASVspoof 2021 [23] also intends to consider chan-

nel robustness in its evaluation mechanism. We believe that our

study will provide useful insights into this research direction.

2. Cross-Dataset Studies

In this section, we take three state-of-the-art CM systems

and three commonly used anti-spoofing datasets to extensively

study the performance degradation issue in cross-dataset evalu-
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