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Abstract—With the increasing availability of sensory data,
inferring the existence of relevant events in the observations
is becoming a critical task for smart data service delivery
in applications that rely on such data sources. Yet, existing
solutions tend to fail when the events that are being inferred
are rare, for instance when one attempts to infer seizure
events in electroencephalogram (EEG) data. In this paper,
we note that multi-variate time series often carry robust
localized multi-variate temporal features that could, at least
in theory, help identify these events; however, the lack of
sufficient data to train for these events make it impossible
for neural architectures to identify and make use of these
features. To tackle this challenge, we propose an LSTM-based
neural architecture, M2N N, with an attention mechanism
that leverages robust multivariate temporal features that are
extracted a priori and fed into the NN as a side information.
In particular, multi-variate temporal features are extracted
by simultaneously considering, at multiple scales, temporal
characteristics of the time series along with external knowledge,
including variate relationships that are known a priori. We
then show that a single layer LSTM with dual-layer attention
that leverages these multi-scale, multi-variate features provides
significant gains in rare seizure detection on EEG data.
In addition, in order to illustrate the broader applicability
(and reproducibility) of M2N N, we also evaluate it in other
publicly available rare event detection tasks, such as anomaly
detection in manufacturing. We further show that the proposed
M2N N technique is beneficial in tackling more traditional
inference problems, such as travel-time prediction, where rare
accident events can cause congestions.

Keywords-Brain EEG analysis, Rare event inference, Multi-
variate time series, Multi-scale attention

I. INTRODUCTION

There are many applications generating and consuming
multivariate timeseries. With the increasing availability of
such data, inferring the existence of relevant events in the
observations is becoming a critical to effective delivery of
smart data services in critical domains, including healthcare,
manufacturing and logistics, and transportation.

A. Motivating Application: Post Traumatic Seizure Detec-
tion

Seizures occur as a result of various damaging events to
the brain like central nervous system infections, intracranial
hemorrhage, stroke, brain injury or cancer. Unfortunately,
seizures are more wide-spread in population than most
expects — about one percent of Americans have some form
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of epilepsy, and nearly four percent will develop epilepsy
at some point in their lives [1]. Furthermore, the cumulative
incidence of post-traumatic epilepsy (PTE) ranges widely,
from 2% to over 50% depending on injury severity [2].

EEG can be used as a brain computer interface to read
people’s brain signals (Figure 1). In [3], EEG activities
are transformed into sequence of topology-preserving multi-
spectral images, as opposed to standard EEG analysis
techniques that ignore such spatial information. A deep
recurrent-convolutional network is then used to learn ro-
bust representations from the sequence of images. In [4]
a convolutional neural network is used for detecting sharp
waveforms called ’spikes’ occurring between seizures.

A particular challenge in detecting post-traumatic
seizures, on the other hand, is that they are very diverse,
While seizure detection and prediction requires modeling of
complex non-linear spatio-temporal dynamics in electroen-
cephalogram (EEG) signals, most investigators consider a
single late post-traumatic seizure as being sufficient for
the diagnosis of post-traumatic epilepsy (PTE) [2] [5].
Since each trauma is unique, this implies that developing
sufficiently rich models of seizures is a very difficult task.
Recently, several machine learning based techniques, includ-
ing deep neural networks, have been proposed to tackle to
infer from EEG data. [6] studies the use of multi channel
“envelope” EEG trends that monitor waveforms within a
specific frequency range over a period of time. In [7],
authors propose an ICU seizure detection algorithm using
signal amplitude variation and fifth order Butterworth filter
to reduce unwanted detections caused by activity in very low
and high frequency ranges.

B. Contributions: M2N N for Rare Event Detection

Despite the above advances, existing smart data services
tend to fail when the events that are being inferred are rare,
for instance when one attempts to infer very rare seizure
events in highly personalized post-traumatic EEG data. In
this paper, we note that multi-variate time series often carry
robust localized multi-variate temporal features that could, at
least in theory, help identify these events; however, the lack
of sufficient data to train for these events make it impossible
for neural architectures to identify and make use of these
features. To tackle this challenge, we propose an LSTM-
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(a) EEG channels

(b) temporal data

Figure 1: EEG data for seizure detection — here, the Interna-
tional 10-20 system [8] is used to annotate the EEG channels
(C=central, T=temporal P=parietal F=frontal Fp=frontal po-
lar O=occipital)

based neural architecture, M2N N, with an attention mech-
anism that leverages robust multivariate temporal features
that are extracted a priori and fed into the NN as a side
information. In particular, multi-variate temporal features
are extracted by simultaneously considering, at multiple
scales, temporal characteristics of the time series along with
external knowledge, including variate relationships that are
known a priori. We then show that a single layer LSTM with
dual-layer attention that leverages these multi-scale, multi-
variate features provides significant gains in rare seizure
detection tasks. We also evaluate M2N N in other rare event
detection tasks, such as anomaly detection in manufacturing.
We further show that the proposed M 2N N technique is also
beneficial in tackling more traditional inference problems,
such as travel-time prediction, which can nevertheless be
afflicted with congestions due to rare accident events.

II. RELATED WORKS
A. EEG and other Brain Data

Focal EEG onset can be predicted using convolutional
networks as shown in [9]. The primary important finding
for diagnosis of epilepsy is the ’spike’ and ’wave’ pattern.
[10] utilize a subject independent convolutional recurrent
attention model (CRAM) that utilizes a convolutional neural
network to encode the high-level representation of EEG
signals and a recurrent attention mechanism to explore the
temporal dynamics of the EEG signals as well as to focus
on the most discriminative temporal periods.

Aside from detection or prediction of individual seizure
events from EEG signals as discussed in the Introduction,
machine learning techniques have also been useful in image
analysis [11] [12] in homologous brain regions on resting-
state functional Magnetic Resonance Imaging(fMRI). Post-
traumatic epilepsy is studied in [5] wherein an injury to
brain generates seizures after weeks, months, or years. A
k-NN classifier is used in [13] to predict epileptic seizures.

B. Zero-Shot Learning

Zero-shot Learning through cross modal transfer has been
studied in [14] to recognize objects in images when training
data are sparse; the necessary knowledge about the unseen
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categories comes only from unsupervised large text. Extreme
data imbalance is circumvented in [15] by feature generating
networks like generative adversarial networks. Zero-shot
learning and knowledge transfer in music classification and
speech is studied in [16] and [17], respectively. A classifier
learns to recognize new image classes given only few
examples from each in few-shot learning studied in [18].

C. Time Series Analysis and Rare Event Detection

Knowledge discovery in time series data has been stud-
ied from since the early 1990s. Berndt [19] proposed the
dynamic time warping (DTW) technique to detect patterns
in data streams or time series. DTW considers all possible
warping paths that can transform one timeseries to another
and picks the path that has the lowest cost. [20] proposed
Discrete Wavelet Transform (DWT) and Discrete Fourier
Transform (DFT) for studying temporal patterns. Lowe
proposed the Scale Invariant Feature Transform (SIFT) [21]
feature extraction technique in 2004.

More recently, deep learning [22] has been shown to
perform well in rare inference tasks compared to other
conventional methods in signal processing and other ap-
plications [23] [24]. One of the deep learning networks is
the recurrent neural network and a recurrent neural network
having long short term memory is usually referred to as
an LSTM network [25]. LSTM has been shown to be
more effective than the conventional feed-forward neural
networks and recurrent neural networks in terms of sequence
prediction. The LSTM network have the ability to selectively
remember important information for a longer period of time.
One difficulty with neural network based inference is the
large number of model parameters that need to be learned
from data. This is especially problematic for sparse and
noisy data sets where it is difficult to learn these model pa-
rameters for accurate inference. Recent research has shown
that attention mechanisms, that help the neural network to
focus on different aspects of the data at different stages
of inference, has the potential to alleviate this difficulty to
some degree. The challenge with such attention mechanisms,
however, is that the attention model itself needs to be
constructed carefully to ensure that the model focuses on
the most relevant parameters, without mistakenly ignoring
parameters critical for the inference task.

III. M2NN:LSTM WITH DUAL, MULTI-VARIATE,
MULTI-SCALE ATTENTION

As described in the introduction, in this section we
propose an LSTM-based neural architecture, M2N N, with
an attention mechanism that leverages robust multivariate
temporal features that are extracted a priori and fed into the
NN as a side information. In particular, M2N N leverages
available metadata to extract robust localized multi-variate
temporal features that help the neural architecture to focus
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Temporal length of multi-variate time series

Data matrix describing the multi-variate time series
Query vector in the attention model

Key vector in the attention model

Value vector in the attention model
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Table I: Key notations
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Figure 2: Localized temporal events and their scopes (red
boxes)

on aspects of the multi-variate data that are potentially rel-
evant for rare event inference. We therefore first present the
underlying multivariate time series model (Table I presents
the key notations used throughout this paper)

A. Meta-Data Enriched Multi-Variate Time Series Model

In this paper, we consider a metadata-enriched, multi-
variate timeseries model. In particular, a multi-variate time
series is defined as a triple Y = (V, ), M), where

o V={v1,...,v,} is a set of m variates;

e Y is an T x m data matrix where 7' is the temporal

length of multi-variate time series; and

e M is an application specific metadata graph that de-

scribes how the various variates in V are related to
each other.
Below we describe how the data matrix and metadata are
constructed for the EEG data.

B. EEG Time Series and Meta-data Graph

Brain seizures are (thankfully) rare — even in patients
with post-traumatic seizure. For the data set we use in our
studies, time steps with seizure labels is at most 7% of the
total, with seizure-positive labels forming < 1% in many
of the cases (the labels are provided by expert physicians;
see Section IV-B1 for dataset details). Therefore, as we
discussed in the introduction, our goal in this paper is to
tackle the rare event inference challenge.

In the case of the EEG data, the multi-variate time series
consists of the recorded signals from each of the sensors
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Figure 3: Scale-space generation through multi-variate
smoothing
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Figure 4: Three features, f;, f;, fr, and f; centered around
time instances, t;, ¢;, %, and ¢; respectively — note that the
scopes of the features are defined by the Gaussian smoothing
parameters (0;, 0;, 0y, and o; corresponding to each feature);
the time instance ¢ is within the scopes of the first three of
these four features, but since ¢ is closest to ¢; its contribution
is highest relative to the feature f;

shown in Figure 1 and is taken into consideration for anal-
ysis. Note that, depending on the system and configuration
target being used, there can be 15 to 26 sensors used for
different patients. The raw EEG data is segmented into eight
second windows and power spectral density of each time
window is computed by performing Fast Fourier transform
on each of the individual signal segments. The result is
a multi-variate EEG time series with a total of upto 520
variates. This series is accompanied with a metadata graph
that describe the frequency context as described in Section
IV-B1.

C. Robust Multi-Variate Temporal Features

Our key argument in this paper is that multi-variate time
series carry robust localized multi-variate temporal features
that could help identify critical events; however, the lack of
sufficient data to train for these events make it impossible
for neural architectures to identify and make use of these
features. We therefore, propose that these features are iden-
tified through a process external to the NN architecture and
then used as a side information to train the neural network.

1) Key Event Detection: In this paper, we rely on the
metadata supported robust multi-variate temporal (RMT)
feature extraction algorithm proposed in [26]. Intuitively, a
RMT feature is a fragment of a multi-variate time series
that is maximally different from its immediate neighborhood,
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both in time and across variate relationships specified by the
metadata (Figure 2).

The following process is used to identify RMT features:
(Step 1): Scale-space construction: Multi-variate temporal
features of interest can be of different lengths and may
cover different number of variates. In order to be able to
locate such features of different sizes, the RMT features are
extracted from a scale-space constructed for the given multi-
variate time series through iterative smoothing (Figure 3). As
shown in [26], the (Gaussian) smoothing process is guided
by a metadata graph, which captures the relationship of the
variates — and the scale space is obtained by smoothing both
the time-series and the metadata graph. This creates different
resolution versions of the input data and, thus, helps identify
features with different amount of details in time and in terms
of the number of variates involved. We denote the set of
scales, each corresponding to a different temporal; feature
size, created by this process with S. (Step 2): Identifying
feature candidates: Next, the process identifies candidate
features of interest across multiple scales of the given multi-
variate time series by searching over multiple scales and
variates of the given series. Each candidate RMT feature
has a temporal-scope (a beginning and an end in time) and
a variate-scope (a set of variates involved in the feature).
These candidate features of interest are those with the largest
variations with respect to their neighbors in time, variates,
and scale. (Step 3): Eliminating poor candidates: At the
following step, those candidate features that are poorly
localized (and hence are inappropriate to use as key events)
are eliminated.

2) RMT Features: The above process leads to a set, F,
of RMT features, where each feature, f; € F, extracted
from Y, is a pair of the form, f; <posi,(fi>: Here,
pos; = (v, t;,s;) is a VTS triple denoting the position of
the feature in the scale-space of the multi-variate time series,
where v; is the index of the variate at which the feature is
centered, t; is the time instant around which the duration of
the feature is centered, and s; € S is the temporal/variate
smoothing scale in which the feature is identified, and J;
is a descriptor vector, representing a gradient histogram
describing the temporal structure (in terms of the distribution
of local gradients) corresponding to the identified key event.

Note that the above approach to identify RMT features
has several advantages: First of all, the identified salient
features are robust against noise and common transforma-
tions, such as temporal shifts or dropped/missing variates.
Scale invariance enables the extracted salient features to
be robust against variations in speed and enables multi-
resolution analysis. Moreover the temporal and relationship
scales at which a multi-variate feature is located give an
indication about the scope (both in terms of duration and
the number of variates involved) of the multi-variate feature.
The value of s; is the temporal/variate scope of the key event
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Figure 5: M2N N with dual RMT-based regional attention

corresponding to the RMT feature. In particular, since we
use Gaussian smoothing to obtain the scale-space, each scale
s; has a corresponding smoothing parameter, o;, and the
temporal scope of the feature is 60; since 3o; from the center
point ¢;, in both directions, would cover approximately
99.73% of the contributions to the smoothing (Figure 4)

D. LSTM with Dual RMT-based Regional Attention

As shown in Figure 5, the proposed M2NN model
extends the conventional single-layer LSTM architecture,
with dual RMT-based regional attention layers. In particular,
a multi headed attention unit has been used in the model
inspired by the transformer from [27] to operate on input
data ), along with the RMT features extracted from this ).

Intuitively, the multi headed attention maps a query and
set of key-value pairs to an output. The query vector ¢
represents the inference question, the key k represents the
available context information, and a value vector @' specified
the values on which the attention is applied.

The attention matrix is constructed through the dot prod-
uct of all keys and queries, normalized via softmax, to create
a mapping of elements in the key sequence corresponding
to the data needed for each query. After taking softmax, the
normalized attention matrix is applied on the value vector.

More specifically, given query, key, and value vectors, ¢,
E, and v, respectively, we have

Attention(q, , ¥ omar( Ty
ention(q, k, V) = sof max(M)v,
where dj, is the length of the key vector k.

1) First RMT-based Attention Layer: Intuitively, the first
attention layer of M2N N helps the LSTM model to focus
on different parts of the data, as a function of the RMT

(1)
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features corresponding to each time step. Therefore, in
the first layer, the query vector, ¢ is the RMT descriptors
extracted from the input data. The key, E, and value, 7,
vectors both are set to be the input multi-variate time series.

As we see in Figure 4, a given time instance, ¢ can be
within the scopes of multiple RMT features. For example,
in the figure, the time instance ¢ is covered by three RMT
features. Nevertheless, as we also see in the figure, the
distance of ¢ to the centers of these features may be different,
therefore its contribution to these features may vary. To
account for this, for each feature f, that covers ¢ in its scope,
we compute a contribution value

tx —t\2
)

contrib(t, f.) = e 3

which captures the Gaussian nature of the smoothing
process applied to obtain the features. Note that, since
the contrib(t, f.) takes a value between 0 and 1, it can
be treated also as a probability of contribution. Therefore,
to identify a set of features, J;, that correspond to time
instance t, we randomly select n; RMT features based on the
individual contribution probabilities of the features covering
t. Let us denote the length of the RMT feature descriptor
vector with [ (in our experiments [ = 128). In M2N N, for
each time instance t, we stack the n; many RMT feature
descriptors corresponding to features in J;, constructing a
data structure (a matrix, M;) of size n; x [. This matrix M,
is then fed into M2N N to support attention at time .

2) Second RMT-based Attention Layer: The first attention
layer of helps M 2N N to focus on different latent semantics,
as a function of the RMT features. Therefore, the query
vector, ¢, is the output of the LSTM model combined with
the attention weights from first layer; whereas the key, E,
and value vectors, E, are the LSTM output sequences, each
with its own descriptive vector. For the second attention
layer, we are using a multihead attention unit as it allows
the model to jointly attend to information from the different
latent subspaces. Each attention head is of the form

headi = Attention(q‘WQ’i, EWK)Z‘, WV,i)7 (2)

where Wq ;,Wg ;, and Wy ; are the weights corresponding
to the query, key, and value vectors, respectively. Given these
an h-headed model is trained by considering

3

where Wy captures the weights for the overall output. In
our experiments, the number of heads is set to eight as in
the paper [27] in the second layer.

Note that, as we see in Figure 5, at the final step, the
output of the dual attention layer goes through a final
activation step to complete the inference process: sigmoid
activation is used for binary (‘“no-event”’, “event”) classifi-
cation, whereas for regression tasks, we have used mean
squared error metric.

MultiHead(q, k, ) = [heads; . . . ; heady|Wo,
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E. Noise Reduction in RMT Features used for Attention

The process for RMT feature extraction described in
Section III-D1 leads to a descriptor vector for each RMT
feature — the descriptor size! must be selected in a way
that reflects the temporal characteristics of the time se-
ries; if a series contains many similar features, it might
be more advantageous to use large descriptors that can
better discriminate: these large descriptors would not only
include information that describe the features, but would also
describe the temporal contexts in which they are located.

As described in the previous section, in M2NN, we
stack multiple RMT feature descriptors corresponding to
each time step, before feeding these into the attention
mechanism, leading to a data structure (matrix) M, for
each time instant ¢. While this structure can be fed as is
to the attention mechanism, we note that due to its size
and noise inherent in the feature extraction process, this
may be not be a very effective strategy. We instead consider
noise elimination and dimensionality reduction of the RMT
feature descriptors before they are fed into the attention
process. This is done for the entire series/data channel once,
before stacking operation. In particular, in this paper, we
consider principal component analysis (PCA), random forest
(RF), and nonnegative matrix factorization (NMF) based
latent semantic extraction techniques on the RMT feature
descriptors.

1) PCA-based Reduction: In PCA based approach, the
input is an a X b matrix M;, where a = n; is the number
RMT feature descriptors corresponding to time ¢ and b = [
the length of the RMT feature descriptor vector. We first
obtain the corresponding a X a covariance matrix Cy, which
is then decomposed into C; = UtEtUtT , where the a X ¢
matrix U; records the c eigenvectors and diagonal matrix
> records the corresponding eigenvalues of the matrix
C;. Given a target rank r < ¢, we then decompose Cj
as C; = U;Et’Ut/T where the @ X r matrix Ut/ records
the r eigenvectors and diagonal matrix X;’ records the
corresponding eigenvalues of the matrix Cy with target rank
r. The matrix U] is used as input instead of matrix M.

2) NMF-based Reduction : In NMF based approach, we
follow a similar strategy. Given the a x b matrix M; and
a target decomposition rank r, we seek a low rank non-
negative matrix decomposition Mt ~ H,V; where H; is of
size a X r and V4 is of size r x b. The matrix H; is used as
input instead of matrix M;.

3) RF-based Reduction: The RF feature importance value
is computed based on the impact of the feature descriptors
in the overall prediction using mean decrease in impurity or
GINI importance. Given the a x b matrix M; and the labels
corresponding to the RMT features, a random forest of p
trees is built for each data channel. RF feature importance

n Section III-D1, the descriptor vector length is 128.
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[ M2NN Hyperparameters(using Keras) [ Value ]

Batch size 60
Epochs for classification | <17
Epochs for regression 15
Learning rate(Adam optimizer) | 0.001
Hidden nodes of LSTM for EEG 100
Hidden nodes of LSTM for process mining 80
Hidden nodes of LSTM for traffic 15
Number of attention heads (h) 8
Number of trees (p) in RF 10

[ RMT Hyperparameters |

Smallest scope
Largest scope

Value ]

~ 60 time units
~ 420 time units

Number of scales (|S|) 12
Descriptor length (1) 128
Reduced descriptor length (r) 10

Table II: Default hyperparameters

metric is used to get the indices for the top-r features. This
process is repeated for all data channels.

F. Variate Reduction in the Input Data

We also consider an additional variate reduction strategy
to complement the learning process: we apply k-means
clustering to the input data to reduce the number of variates
from m to k. The clustering is applied on the variates in the
combined time series data of all the data channels. After the
clusters are obtained under the Euclidean distance model,
the resulting k cluster centroids are used to construct the
data matrix passed to the first layer of M2N N (note that
the RMT features used for attention are extracted directly
from the original data matrix before the variate reduction).

IV. EXPERIMENTS

In this section, we present experiment results to evaluate
the effectiveness of M2NN (a single layer LSTM with
dual-layer regional attention that leverages these multi-scale,
multi-variate features) in identifying rare events in multi-
variate time series. Since our motivating smart data service is
seizure detection, the first data set we use is EEG data, with
rare seizure events labeled by physicians. We also evaluate
M2NN in other rare event detection and prediction tasks,
including anomaly detection in manufacturing and travel-
time prediction, which can be afflicted with congestions
due to rare accident events.2 Unless specified otherwise, the
experiments are conducted using the default hyperparameter
values in Table II. Linux machines(Ubuntu 18.0) with GPU
16GB RAM were used for experiments.

2Since the healthcare data is HIPAA protected, we make the data and
code for process mining and traffic available at https://shorturl.at/btBHN .
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A. Data Preparation

Time series in all data sets are split into three (train;
validation; and ftest) regions. In order to ensure that each
region has similar distribution of positive and negative
labels, the time series are chunked and these chunks are
shuffled in a way that preserves the rate of positive labels
in each of the three regions.

B. Data Sets

Since the EEG data set cannot be released due to HIPAA
protections, in order illustrate the broader applicability and
reproducibility of M2NN, we also evaluate it in two
other publicly available rare event detection tasks, anomaly
detection in manufacturing and travel-time prediction under
congestion.

1) EEG Seizure Dataset: The first set of experiments
were performed on the EEG dataset provided by Phoenix
Children’s Hospital. The dataset records EEG time series and
seizure events, marked by physicians, for 6 patients. Three
of these six patients had intermittent seizures, whereas the
other three had one or more cluster of seizure events, each.

Overall the seizure events were very rare, with positive
labels being ~ 7% at the best case and < 1% in the worst
case. The data set contains EEG recordings of 8 second
windows upto 106,000 windows. The raw EEG data were
recorded from 26 channels with a sampling rate of 256
Hz, using both referential and bipolar montage. While the
sensor readings are used directly in referential montage,
in bipolar montage the signals are differenced according
to a spatial connectivity graph and the differenced data
are used instead of the original readings. The EEG time
series are segmented into eight second windows and, for
each window, the corresponding power spectral density,
with 20 frequency bands, is computed using Fast Fourier
transform. This leads to a time series with (26 x 20) = 520
variates and (216 x 10% + (256 x 8)) = 105944 time
steps. In these experiments, the metadata graph (represented
as a matrix) is used to capture the relationships among
neighboring frequencies. In other words, for each sensor
channel, a 20 x 20 matrix is created where if two frequencies
are neighbors, the corresponding pair has 1 in the metadata
matrix and the matrix contains 0 otherwise. The time series
were chunked into sequences of length 500 for training the
LSTM. The data set is then partitioned into a training set,
validation set, and test set, with 60%, 20%, and 20% of
the original data each, respectively. As described earlier, the
chunks were shuffled in such a way that each of these three
set have similar ratios of events.

2) Process Mining Dataset: As a second rare event de-
tection task, we considered anomaly (paper break) detection
in a pulp-and-paper manufacturing data set [28]. Paper
manufacturing is a continuous rolling process — when a break
happens, the entire process has to be stopped, the reel has
to be taken out, and the production is restarted only after
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the problem is fixed. The cost of this process is very high
and, therefore, a detection of a paper break event is very
critical. Sensors are placed in different parts of the machine
and record both the status of raw materials (e.g. amount of
pulp fiber and various chemicals) and process variables (e.g.
blade type, couch vacuum, and rotor speed). In particular,
the available data set contains 61 variates, each with 18398
time steps — each time unit corresponds to 2 minutes. Out
of these only 124 entries are marked with a breakage event.

Since we do not have a priori information about the rela-
tionships among the different process variables, the 61 x 61
metadata matrix is created to represent a clique (i.e., all
entries are 1 — indicating a potential relationship).

For this dataset, we consider anomaly detection, formu-
lated as binary classification problem. The time series were
chunked into sequences of length 500 for training and the
chunks were shuffled in such a way that each of these
three set have similar ratios of events. Since the anomalies
are exceptionally rare, to prevent this bias to negatively
impact accuracy, we further leverage a sampler unit that
performs undersampling of the negative labeled chunks (i.e.,
chunks that do not contain any anomaly). The undersampling
rate of negative labels is chosen in such a way to achieve
balanced positive and negative labels. As before, the data
set is partitioned into a training set, validation set, and test
set, with 60%, 20%, and 20% of the original data each.

3) Traffic Prediction Dataset: The two data sets described
above were used for classification tasks. Our third data set
focuses on a regression task for traffic prediction in road
networks, to predict the travel time for a given departure
time.

These experiments were performed on the dataset pro-
vided by Highways England [29]. This database provides
average travel/journey time for 15-min time periods since
April 2009 on all motorways and *A’ roads managed by the
Highways Agency, known as the Strategic Road Network, in
England. Along with average travel time within 15-min time
intervals, speed and traffic flow information on motorways
and ’A’ roads is also given. Each day contains 96 time
intervals — which means that there are 96 distinct potential
departure times. Travel times in the dataset are obtained
from real vehicle observations using GPS. In this section,
we consider 31 day period for the month of March 2011,
the length of the time series being 31 x 96 = 2976 time
steps. The time series were split into sequences of length 4
for training. The inputs to the LSTM model are the previous
travel times and departure times. There is an embedding
layer used for representing time for regression problem, this
is to learn traffic congestion similarities between previous
timestamps and the query timestamp. In the experiments
p = 4, we look at the previous 4 travel times (one hour
history) to predict the next travel time.

We have selected the highway *AL1165A’ for the travel
time study as it has congestions on the road. The majority of
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journey times recorded in the highway are between 100 and
200, whereas there are some significantly slower journeys,
indicating a rare event slowing the travel time. There are a
few outlier travel times as well greater than 400.

There are 5 variates in traffic dataset: travel time, day
type, total traffic flow, average speed, and quality index. As
in the case of the process mining application, since we do
not have a priori information about the relationships among
the different process variables, the 5 X 5 metadata matrix
is created to represent a clique (i.e., all entries are 1 —
indicating a potential relationship).The training set is 70%,
valid set 20%, test set 10% of the input data.

C. Accuracy Metrics

For the rare event detection tasks using the EEG and
manufacturing data, we assess the accuracy of different
models using the Fl-score metric (i.e., harmonic means of
recall and precision):

(2 x Recall x Precision)

F1S8 =
core (Recall + Precision)

“4)

Here, Recall is the ratio of the time steps with positive labels
that have been identified by the model and Precision is the
ratio of the time steps marked as positive by the model that
is, in fact, marked also positive by domain experts.

For the traffic prediction task (which requires a regression
model, rather than a classification model), we report root
mean squared error (RMSE), mean absolute error (MAE),
and mean absolute percentage error (MAPE). Each experi-
ment has been executed 5 times and we report averages.

D. Competitors

As competitors we consider the following techniques:
CNN (1D). We train a multi layer CNN with batch normal-
ization as a competitor. LSTM, Bidirectional LSTM [30].
We train both uni-directional and bi-directional LSTM’s as
competitors. LSTM is a specific form of RNN [31] [32] and
it works better at remembering long time steps of signal
data.

E. Results

Before we present the detailed results for the EEG,
process mining, and traffic data sets, we first investigate the
impact of various noise removal/dimensionality reduction
techniques — results are presented in Table III. As we see,
PCA based dimensionality reduction of RMT features used
for attention, along with k-means clustering based variate
reduction provide the best Fl-score; consequently, unless
specified otherwise, we use PCA and variate reduction.

1) Seizure Detection in EEG Data: Before we compare
M2N N against other competitors, in Table IV we evaluate
the impact of the proposed dual attention technique on the
accuracy of the LSTM. As we see in Table IV, basic LSTM
with no attention has high recall for the EEG data set, but

Authorized licensed use limited to: Texas A M University. Downloaded on August 31,2021 at 04:18:26 UTC from IEEE Xplore. Restrictions apply.



Mean Mean Mean Mean Mean Mean
Model Recall Precision F1 Score Model Recall Precision F1 Score
M2N N with Principal Component Anal- 0.83 0.56 0.65 Bi-LSTM  w/o variate clustering w/o 0.05 0.03 0.04
ysis attention
M2N N with Non-negative Matrix Factor- 0.72 0.45 0.54 Bi-LSTM with variate clustering(k = 200) 0.19 0.16 0.18
ization w/o attention
M2N N with Random Forest 0.83 0.32 043 CNN(1D) w/o variate clustering w/o at- 1.00 0.12 0.21
M2N N with PCA and variate clustering 0.96 0.94 0.95 tention
(k = 200) CNN(1D) with variate clustering(k = 200) 0.93 0.14 0.24
w/o attention
Table III: The impact of dimensionality and variate reduction Bi-LSTM w/o variate clustering with dual [ 0.90 053 0.63
. . RMT attention
techmques (EEG data set; the hlgher’ the better) CNN(1D) w/o variate clustering with dual 0.72 0.54 0.61
RMT attention
Mean Mean Mean M2NN W{o Varigte clusteripg 0.83 0.56 0.65
Model Recall Precision FI Score M2N N with variate clustering (k = 200) 0.96 0.94 0.95
LSTM with no attention 0.40 0.04 0.06 . . :
TSTM with single Tayer of RMT atention || 050 0TS 0% Table V: Comparison of dlf.ferent m.odels for EEG data (7%
to input w/o variate clustering rare events) — PCA reduction applied by default on RMT
LSTM with smgle‘ layer of RMT attention 0.74 0.48 0.56 attention (the hi gher, the better)
to output w/o variate clustering
M2N N w/o variate clustering 0.83 0.56 0.65
M2NN with variate clustering (k = 0.96 0.94 0.95 Moan Moan Mean
200) Model Recall Precision | F1 Score
Table IV: Comparison of different attention architectures for afénhiIM w/o variate clustering /o || 0.45 0.006 0.012
anomaly detection in EEG data (7% rare events) — PCA CNN(ID) w/o variate clustering w/o at- || 0.5 0.006 0.012
: : : : tention
reduction applied by default on RMT attention (the higher, LSTM with 1o attention 0.66 0,010 0.020
the better) M2ZNN wlo variate clustering 052 0.018 0.035
M2N N with variate clustering (k = 40) 0.44 0.024 0.050

has a rather low precision. Unfortunately, adding RMT-based
attention at the input or the output alone is not effective.
As observed the accuracy jumps significantly when we use
M2N N with dual RMT-based attention. This is because we
have two types of patients: patients who have intermittent
seizures (with patterns) and patients who have one or more
seizure clusters in the EEG data. For the first type of patients,
paying attention to the LSTM output tends to be effective;
for the second type of patients, on the other hand, it is
more effective to pay attention to the input data. Therefore
dual attention (i.e., attention to the input as well as the
output) serves well both types of patients. The results also
show that the accuracy further jumps when we complement
M?2N N with variate clustering, with Fl-score reaching 0.95
on average.

In Table V, we compare the proposed M2N N technique
against the various competitors. As we see in this table,
basic non-attentioned LSTM and bidirectional LSTM fails
in this rare-event detection problem. The 1D CNN is able to
learn a model that has high recall, but with low precision.
The proposed LSTM based M2N N technique with variate
clustering, however, is able to significantly boost both recall
and precision in rare event detection.

2) Anomaly Detection in Process Mining Data: Table VI
compares the accuracies of various competitors in the paper
breakage detection problem. As we see in this paper, all
models have difficulty in addressing this rare event inference
problem, having very low precision (requiring three digit
precision). The table also shows that, against its competitors,
M2N N is able to significantly boost precision. The highest
Fl-score is achieved using M2N N with variate clustering.
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Table VI: Comparison of different models for anomaly
detection in the process mining data (0.66 % extreme rare
event) — PCA reduction applied by default on RMT attention
(the higher, the better)

3) Travel Time Prediction in Traffic Data: Finally, in Ta-
ble VII, we present the results for the travel time prediction
problem in the traffic data set. As we discussed earlier,
for this experiments, we present RMSE results — i.e., the
lower the values, the better the results. As we see in the
table, we obtain the lowest error values using the proposed
M2N N model, with dual RMT-based regional attention. In
the table, we also see that the number of training epochs
needed to obtain these accuracies is also lower when using
RMT based attention, indicating that the side information
provided by the RMT features are rich in information and
support more effective learning.

V. CONCLUSIONS

Smart data solutions for post traumatic seizure detection
and prediction tasks are hampered by the rareness of such
events. Arguing that multi-variate EEG time series carry
robust localized multi-variate temporal features that could
help identify these rare seizure events, we proposed an
LSTM-based M2N N architecture which leverages robust
multivariate temporal features that are extracted a priori.
Experiments on EEG data (along with additional experi-
ments on manufacturing and travel data sets) show that the
proposed M2NN model is highly effective in improving
model accuracy for rare event detection and prediction tasks.
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Model

[[ RMSE | MAE [ MAPE |

Bi-LSTM with no attention(74 epochs) 9.00 6.38 4.67
LSTM with no attention(74 epochs) 9.06 6.38 4.67
LSTM with single layer attention to input 9.00 6.52 4.79
(20 epochs)

LSTM with single layer attention to out- 9.02 6.52 4.79
put(20 epochs)

M2N N (15 epochs) 8.63 6.24 4.63

Table VII: Comparison of different architectures for the
traffic data set — PCA reduction applied by default on RMT
attention (the lower, the better).
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