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Abstract: We articulate a framework for characterizing student learning trajectories as they
progress through a scientific modeling curriculum. By maintaining coherence between
modeling representations and leveraging key design principles including evidence-centered
design, we develop mechanisms to evaluate student science and computational thinking (CT)
proficiency as they transition from conceptual to computational modeling representations. We
have analyzed pre-post assessments and learning artifacts from 99 6th grade students and
present three contrasting vignettes to illustrate students’ learning trajectories as they work on
their modeling tasks. Our analysis indicates pathways that support the transition and identify
domain-specific support needs. Our findings will inform refinements to our curriculum and
scaffolding of students to further support the integrated learning of science and CT.

Introduction

The Next Generation Science Standards (NGSS; NGSS Lead States, 2013) identify modeling as one of the eight
science and engineering practices that prepare students for the 21st century workforce. Modeling enables students
to generate, integrate, and test theoretical ideas (Lehrer & Schauble, 2015), providing authentic experiences that
deepen students’ understanding of scientific phenomena. The practice of modeling is also central to the discipline
of computer science (CS) (e.g., K-12 CS Framework (2016)). Integrating science and CS has compelled
researchers to develop frameworks guiding their synergistic learning in K-12 classrooms (e.g., Sengupta et al.,
2013; Weintrop et al., 2016). While educational policy promotes the integration of CS practices as part of science
instruction, little guidance is provided on how teachers may support students in meeting these expectations across
disciplines (e.g., NGSS Lead States, 2013).

Technology-enhanced environments can scaffold students in computational modeling processes that
engage inquiry and problem solving (e.g., Jonassen, Strobel, & Gottdenker, 2005; Keating et al., 2002; Sengupta
etal., 2013; Weintrop et al., 2016). Computational modeling experiences need to be anchored to strong underlying
conceptual models of the phenomena being investigated in order to leverage the unique affordances of both
conceptual and computational model representations. Together, conceptual and computational representations
provide a more complete depiction of phenomena and support students in deriving linkages between model
representations (Frederiksen et al., 1999). Limited research describes how students make transitions and
connections among model representations and identifies the instructional supports they require.

In this paper, we focus on middle school students’ learning of science and computational thinking (CT)
as they engage in modeling tasks over the course of a 3-week curriculum unit integrating Earth science,
engineering design, and CT (Chiu et al., 2019). Our approach centers on understanding students' ability to model
the Earth science concept of water runoff by working through a sequence of representations from conceptual to
computational modeling. Our study addresses the following research questions: (1) How do we characterize
students' learning trajectories from conceptual to computational modeling? and (2) How do the different modeling
vignettes that students generate along this trajectory relate to one another and show students’ learning of relevant
science and CT concepts?

Theoretical and empirical foundations

Supporting scientific modeling using conceptual and computational representations

Scientific modeling enables students to delve deeper into understanding phenomena by explaining and predicting
system behavior (Schwarz & White, 2005). Examples of common conceptual models in K-12 science education
include models of food webs, planetary orbits, and the water cycle. Recently, there have been efforts to introduce
computational modeling methods to help students gain a better understanding of scientific phenomena (e.g.,
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Sengupta et al., 2013; Weintrop et al., 2016). Computational models provide explicit mechanisms for constructing
and visualizing phenomena, reasoning about scientific processes as a sequence of events (as opposed to creating
aggregated mathematical models), and providing explicit opportunities to study step-by-step changes in model
behavior (versus continuous dynamics). Moreover, computational models of scientific phenomena help to
contextualize complex CT concepts (e.g., conditional logic) to support CT learning.

However, research has identified that students may have significant difficulties with developing
computational models in science. For instance, students may struggle to understand the science concepts
underlying their computational models and to represent system variable relationships computational expressions
(Sengupta et al., 2013). These challenges may stem from students’ difficulty in identifying model components,
interactions among components, or the underlying scientific principles underlying the model (e.g., Forbes,
Zangori, & Schwarz, 2015). Students may have trouble generalizing or abstracting the scientific processes into
variables and expressions (Basu et al., 2016). These findings indicate a need to anchor the design of computational
modeling tasks to conceptual modeling activities and to examine the types of support students may need to make
the transition from conceptual to computational models.

For effective participation in this important STEM practice, students and teachers need support as they
grapple with the dual complexities of scientific and computational modeling. There is limited research that
examines how students’ science and CT knowledge evolves over the course of a computational modeling unit that
introduces science and CT concepts and practices. Additional research can advance understanding of the
synergistic relation between science and CT and how learning in each discipline supports and/or impedes learning
in the other. These insights will in turn help scaffold integrated learning of the underlying science and CT
concepts. In this paper, we analyze students’ learning artifacts as they develop a sequence of models of water
runoff to examine how instruction can help students transition from conceptual to computational models.

Design perspectives
We integrated three design perspectives in developing an integrated science + CT computational modeling unit:

e Evidence-centered design (ECD) - We use ECD (Mislevy & Haertel, 2006) to analyze the integrated
science + CT domain, systematically unpack the target science and computing concepts and practices,
and identify connections between the science and CT views of the modeling practice. ECD helps
designers link the features of instructional tasks and assessments to evidence of students’ proficiency
with the target knowledge and skills. In this case, we aim to promote both science and CT-oriented
modeling proficiency across evolving modeling representations.

e  Maintain coherence across system representations - In order to address novice students’ difficulties
in deriving links among the evolving representations, the conceptual coherence needs to be made explicit
(Ainsworth, 2006; Frederiksen et al., 1999). For instance, in this study, each of the evolving modeling
representations makes explicit the conservation relationship among rainfall, absorbed water, and water
runoff at different levels of abstraction and generality.

e Domain-specific modeling languages (DSMLs) - We have created a DSML to make it easier for
students to express their scientific understanding of the science concepts and relations into a set of
computational constructs that model the science phenomena (e.g., water runoff) (Hutchins et al., 2020).
DSMLs enable students to place greater focus on the science concepts and system variables without
having to attend to the details of program construction.

Overall, we hypothesize that the three design perspectives will support students as they work through the linked
modeling representations from conceptual to computational, thus reducing the difficulties they face in integrating
science and CT modeling concepts.

Curriculum description

The Water Runoff Challenge (WRC) is a three-week, NGSS-aligned unit that challenges students to redesign their
schoolyard using different surface materials to minimize the amount of water runoff after a storm while adhering
to a series of design constraints. These include the overall cost and accessibility, while providing for different
functionalities for the schoolyard (Chiu et al., 2019). The WRC targets NGSS performance expectations for upper
elementary Earth science and engineering design curricula, emphasizing the movement of surface water in a
system after heavy rainfall and the human impact of this runoff on the environment.

Figure 1 illustrates our designed learning trajectory and criteria from conceptual to computational model
construction. Initially, students were expected to apply the matter conservation principle (science concept): Total
rainfall = total absorption + total runoff, through the construction of paper-and-pencil conceptual models. Each
subsequent modeling form required application of additional CT concepts to specify the model in a more general
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form (see Figure 1). To support this, we implemented an intermediate paper-and-pencil Rule Creation task (Figure
2(b)) to elicit an additional representation of the science phenomenon enabling students to express the relation
between the science concepts: total rainfall, total absorption, absorption limit, and total runoff. Students are tasked
with expressing three scenarios (i.e., when rainfall is greater, less than, and equal to the surface absorption limit)
as semi-structured rules. These relations take into account the conservation laws while using conditional logic
expressions to specify when different situations apply (e.g., no runoff versus a certain amount of runoff). Students
then transfer their rules into a computational model using the given DSML blocks to create the model components
(i.e., the three rules). Translating the rules to the computational modeling activity requires additional knowledge
of variables and mathematical and relational operators. We detail each activity, below.

VARIABLES & OPERATORS

Variables set/calculated appropriately

RULE CONDITIONS RULE CONDITIONS
3 correct conditions established
R A LIONOF MATILR CONSERVATION OF MATTER CONSERVATION OF MATTER
total rainfall = total absorption + total runoff’
CONCEPTUAL MODEL —— RULE CREATION ———— COMPUTATIONAL MODEL

Figure 1. Learning trajectory from conceptual to computational model tasks.

In the WRC, students are introduced to the science concepts of matter conservation and the absorption
characteristics of different surface materials. Students then develop pencil-and-paper conceptual models that
express the amount of water runoff in terms of the total rainfall and water absorbed by the different materials. As
a first step to understanding runoff, students use paper and pencil to generate an input-output model that includes
rainfall, absorption, and runoff. Students can describe the conservation relation numerically, pictorially, and/or
through a descriptive written response. For instance, to complete Figure 2(a), students are tasked with predicting
the amount of absorption and runoff for 3 inches of rainfall and a 1-inch absorption limit of the surface material.
As a second step in the model evolution process, the students then create a more precise conceptual model on
paper, where they create rules to describe the three different runoff conditions.

After additional scaffolding, where students practiced writing conditional constructs in an unplugged
activity (the Rule Creation task, Figure 2(b), described above), the students created their computational runoff
model in the computational modeling environment using DSML constructs (Figure 2(c)) that facilitate the
translation of the runoff rules into the computational model (Chiu et al., 2019). Example student models appear
in the Findings section (Figure 3). The DSML blocks help students assign variables to specific values, and
translate their runoff rules to “if” constructs (e.g., “if total rainfall is greater than the absorption limit”, then “set
total runoff to [total rainfall - absorption limit]”). Students also needed to assign the value of total rainfall and the
absorption limit before the conditional block statements. After students constructed a working computational
runoff model, they could study the effects of different surface materials on runoff from the schoolyard to the
surrounding area.

In designing each of the model building activities, we maintained coherence across the three
representations, and gradually introduced students to CT concepts and practices. This approach provides a
framework for evaluating students’ modeling artifacts across different representations and how these
representations support students’ learning trajectories.

~ Py ~ Before you program your computer model, think about the instructions you want to give — Wiz equaita |
Q L,)’ LD to the computer. In English language, write out your inputs, outputs, and rules for r’:t l to . —_
‘ ! . <N is greater than i
calculating the outputs using the inputs. (1 total rainfail (inch) & @ =
is less than
Input variables < total runoff (inch) & =N
(W total absorption (inch) % ﬁ =

Output variables: —_—
— Stream (__ absorption limit
. L EY |

. current material 7/
Rules for calculating the outputs given the inputs: —— ¢ B B w=n
Rule #1 | Set absorption limit of the selected material

(a) (b) (c)
Figure 2. Task examples for paper-and-pencil conceptual modeling (a) and rule creation (b), and the DSML
used for the computational modeling task (c).

Methods
We conducted a three-week classroom study with 99 sixth-grade students in the U.S. using the WRC. All
participating students had some prior programming experience with block-structured programming using Scratch
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(Maloney et al., 2004). The participating teachers were experienced science teachers and received four days of
professional development before the study. Three researchers provided additional support but mostly acted as
observers during the study. Students worked for 45 min per day, three days a week during their regular science
classes, and 75 min, twice a week with additional personalized-learning time.

Data sources, scoring, and analysis
We examined three primary types of student data: paper-based artifacts, students’ final computational models,
and a pre-post assessment. All tasks evaluated for this paper were completed in class.

Students’ paper-based Conceptual Models were coded based on whether their representation of the
conservation of matter principle (see Figure 1) was mechanistic (and correct), numeric (and correct), or
developing. In order to achieve a mechanistic score, students were required to show or use text (via pictorial or
descriptive representation) the causal relations resulting in the division of the total rainfall into absorption of water
and the amount of runoff using a correct algebraic or numerical expression. A numerical score indicated the
representations showed all of the required elements and correct values, without describing the causal relations. A
developing score reflected misunderstandings or errors in students’ application of the conservation of matter
principle. Students’ numerical, pictorial, and written descriptions were coded separately, and students’
understanding was represented by the highest score they received on a single part.

For the Rule Creation task, each rule that students developed was scored separately. For Rule Conditions
(see Figure 1), students received scores for expressing the correct conditional relation between total rainfall and
absorption limit (e.g., if total rainfall is greater than the absorption limit). The conservation relation was scored
for a correct expression of the values for each required output: total absorption and total runoff.

Students’ Computational Models were scored using a predefined rubric targeting the application of the
conservation of matter rules, the conditional statements for the different rules, and the variable assignments (for
rainfall, absorption, runoff). The maximum score possible is 15. To achieve that, students had to assign appropriate
values to total rainfall and absorption limit, generate the code for the three conditional statements based on a
comparison of variables (total rainfall and absorption limit) and update the absorption and runoff variables for
each of the three conditions. Students were given points for generalizability only if they used expressions
comprising variables and operators to express variable values (e.g., setting total runoff to “total rainfall -
absorption limit” in the overflow condition) as opposed to just assigning numeric values to variables.

Students completed a paper-and-pencil pre-post assessment that was split into a science and engineering
component and a CT component. Our science and engineering pre-post assessment aligns with a number of NGSS
Performance Expectations (PEs). Students could get a maximum score of 23 points. The CT assessment tasks
were aligned with the concepts and practices addressed in the modeling activities (e.g., variables, operations,
conditionals, program development) and had a maximum score of 13 points. The rubrics used for coding and
scoring these assessments were updated from our previous work (McElhaney et al., 2019). Two researchers
received 5 hours of training on the rubrics, graded 5% of the test submissions (randomly selected) together to
establish initial grading consistency, and then graded another 20% to establish inter-rater reliability (Cohen’s k at
> 0.8 level on all items). All differences in the coding were discussed and resolved before the remaining 75% of
test submissions were graded by a single researcher.

To answer our research questions, we summarize class learning trajectories through correlation analysis
and present three contrasting student vignettes (with pseudonyms Alex, Marley, and Taylor). Where appropriate,
we position the performance of these three students relative to the range of student performances we observed.

Findings

Summary of student performance on modeling artifacts and pre-post assessments

Students successfully completed the WRC as intended. Pre-post assessment scores were determined to be
normally distributed and a paired t-test analysis showed significant learning gains in science and engineering (p
<0.0001, Cohen’s d=10.82) and CT (p < 0.0001, Cohen’s d = 0.83). We classified 32 students' Conceptual Models
as mechanistic, 59 as numerical, and 7 as developing (1 student packet missing). For the Rules Creation task’s
Rule Condition component, 57 students correctly described the three conditions while 35 had errors in at least one
rule condition (remaining responses were either illegible or missing). For the conservation of matter component,
35 students correctly calculated both absorption and runoff for each rule with 63 students incorrectly calculating
or missing elements (1 student packet missing). The main issue with the conservation of matter performance
during rule creation were missing variable assignments for either runoff or total absorption in each condition (e.g.,
students would only describe the resulting runoff when describing what happens when total rainfall is greater than
the absorption limit). The Computational Model mean score for the class (we could retrieve 62 student models)
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was 13.75 (stdev = 2.42), which we will use as reference during the case studies. Spearman’s Rho Correlation
analysis indicated a moderate but significant correlation between the pictorial representation and Rule-based
conceptual model scores (» = 0.35, p = 0.0007, n = 90), but a small non-significant correlation between Rule-
based model and Computational Model scores (= 0.19, p =0.13, n = 62), implying the relation may not be linear.
We observed that 68% of the students had correctly working computational models and 92% implemented the
three conditions correctly. These results suggest that students’ understanding of the runoff system improved upon
constructing their computational models (though some students received help from the teachers or the researchers
when constructing their models). For a deeper evaluation of students’ modeling processes over time, we present
contrasting vignettes for three students. Each student’s final computational model is shown in Figure 3.
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Figure 3. Final code for Alex (a), Marley (b), and Taylor (c).

Student 1: Strongly integrated science and CT

We selected Alex (name altered) for their strong performance on the pre-post assessment and curricular activities.
On the pre-post assessment, Alex’s score improved from 17.5 to 20 on the science and engineering assessment
and from 10 to 13 and on the CT assessment.

During the conceptual modeling task, Alex correctly modeled each rule and demonstrated mechanistic
understanding of conservation of matter. In response to the prompt to model water flow for 3 inches of rainfall
and a linch absorption limit, Alex wrote: “/ inch of that gets absorbed into the ground and since that’s the
absorption limit, the rest of the two inches becomes runoff.” This response indicated that Alex correctly calculated
the runoff and total absorption based on the absorption limit and total rainfall and correctly described the process
and mechanistic causal relations.

Alex’s conservation of matter knowledge transferred to the Rule Creation task, where they could
correctly define each rule (both the conditions and the output) via descriptive written responses. For example, in
describing the “greater than” rule, Alex wrote: “If the total rainfall is greater than absorption limit, set absorption
to absorption limit, set total runoff to total rainfall - absorption.” This also translated to their building the correct
computational model for a score of 15 out of 15. As shown in Figure 3(a), Alex correctly built each condition
(lines 4, 7 and 10) and set each variable in the correct location and in a generalizable form (e.g., for the greater
than condition (lines 4-6), the student calculated total runoff using the subtraction operator and used the variables
total rainfall and total absorption, after setting total absorption to the absorption limit). Using our conceptual
framework (Figure 1), Alex’s learning trajectory is illustrated in Figure 4.
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Figure 4. Alex’s learning trajectory.

Student 2: Conservation of matter difficulties, high CT proficiency

Marley demonstrated pre-post CT learning gains (improving from a score of 6 to 8), but Marley’s science and
engineering scores decreased from pre-to-post (from 14 to 11). These results are consistent with Marley’s
trajectory from conceptual to computational model as described below.

Marley appeared to have difficulties implementing the conservation relation during the conceptual
modeling task. For instance, when illustrating what happens when rainfall is less than the absorption limit, Marley
indicated an absorption total greater than the total rainfall and stated “it absorbs more rainfall than actual rain”
indicating a potential confusion about total absorption and absorption limit. During the Rule Creation task, Marley
showed knowledge of conditional logic, providing a written response addressing each condition (e.g., “If total
rain = absorption [limit]”’); however, they did not correctly define the outputs for each rule indicating they did
not fully understand the conservation law. Marley’s ability to apply conditional logic translated to the
computational modeling task. Their final computational model (Figure 3b) shows that Marley eventually built
correct conditional blocks for two rules (lines 4-6 and 7-9), but struggled with the condition where rainfall exceeds
the absorption limit (lines 10-12), thus receiving a score of 12 out of 15.

These results indicate that Marley leveraged conditional logic understanding to support the translation
of the conservation of matter concepts into computational form (e.g., decomposing the code into conditional parts
and then constructing blocks needed for each output). However, difficulties in the science domain may have
limited their ability to correctly build and debug the model. Marley’s learning trajectory is illustrated in Figure 5.
While they demonstrated CT proficiency, the persistence of their struggles with the conservation law affected
their ability to construct the correct computational model.

VARIABLES & OPERATORS

1
: [ Correctly set variable values }
I
1

CONSERVATION OF MATTER :
Mechanisic |/ 77 CONSERVATION OFMATTER (""" "CONSERVATION OF MATTER

Numeric ] { Absorption and runoff correctly calculated ]

Developing

COMPUTATIONAL MODEL

CONCEPTUAL MODEL RULE CREATION
Figure 5. Marley’s learning trajectory.

Student 3: Conservation of matter progress, but difficulties with CT integration

Taylor earned a relatively low score on the pre-assessment, but did achieve pre-post gains in both science and
engineering (improving from 11.5 to 14.5) and CT (improving from 5 to 8). During the conceptual modeling task,
Taylor demonstrated a numerical understanding of the conservation of matter rules. Taylor correctly determined
the total absorption and calculated the runoff based on a prompt of a total rainfall of 3 inches and an absorption
limit of 1 inch. In their description, Taylor wrote “the cloud rained 3 inches and the ground absorbed 1 and others
become runoff.” This description does indeed include all needed variables, but does not describe the mechanistic
reasoning behind why or how to calculate the runoff. However, for the Rules Creation task, Taylor was able to
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correctly define each rule condition and successfully calculate absorption and runoff for each rule, demonstrating
an improved ability to apply the central matter conservation relationship.
The computational modeling task appeared to be difficult for Taylor. Although the science task indicated
their ability to correctly apply domain knowledge, Taylor had difficulties translating that knowledge to a
computational form. As illustrated in Figure 3(c), Taylor tried multiple arrangements of conditional blocks,
including an if-block in which the expression was set to a “fotal absorption - total rainfall” expression (line 7)
inside of the if-block for the greater than condition (line 6). Taylor’s computational model received a score of 5
out of 15. these code snippets indicate that Taylor understood how to create if-blocks for each rule condition (e.g.,
total rainfall is greater than absorption limit); however, they seemed unable to translate their domain knowledge
to correctly assign variables (e.g., total runoff), debug, or correct their code.
| VARIABLES & OPERATORS :
: { Correctly set variable values ] :
I I
I I

RULE CONDITIONS
3 Correct Conditions

CONSERVATION OF MATTER :
Mechanistic

< 3 Correct Conditions

[ CONSERVATION OF MATTER

)i

: [ Absorption and runoff correctly calculated
1

Absorption and runeff incorrectly calculated| |

CONCEPTUAL MODEL RULE CREATION COMPUTATIONAL MODEL
Figure 6. Taylor’s learning trajectory.

Interestingly, after being shown the expert computational model and completing the remainder of the
tasks, Taylor demonstrated learning gains in both the science and engineering and CT components, illustrating
the potential for computational science modeling to help contextualize difficult CT concepts (e.g., conditional
logic). Although they were not able to achieve a working computational model on their own, Taylor’s successes
in prior domain-knowledge application and usage of the model to problem-solve suggest improvements in their
CT knowledge and skill. Taylor’s final learning trajectory is shown in Figure 6.

Discussion and future implications
The overarching goal of our analysis is to develop linked model representations to scaffold students’
computational models in science and understand how students transition across model representations to identify
situations where they may have difficulties. This is especially critical in the context of integrated science and CT
instruction and serves to disentangle the contributions of each domain and determine how students apply science
and CT knowledge across model representations. Leveraging our conceptual framework (Figure 1), our analysis
examines the impact of science domain knowledge on CT applications (and vice versa). Overall results showed
that while there was a strong correlation between the conceptual model and the rule-based model, there was not a
strong correlation between the rule-based model and the computational model, indicating additional personalized
support may be needed for the more complex computational modeling task. For instance, although Marley was
unable to correctly apply the conservation of matter rules during the conceptual modeling and rule creation tasks,
their CT abilities guided them to an almost complete computational model and a high CT posttest score.
Alternatively, Taylor indicated improvements in science, but demonstrated difficulties in translating that
knowledge to a computational form. In these cases, using the curriculum design and student performance, we can
identify the science and CT specific supports needed by the student in the computational modeling environment,
and help students develop successful learning-by-modeling trajectories. In addition, these results align with other
research findings that CT can serve as a vehicle for learning STEM concepts, but limitations in domain
understanding may also impede computational model construction (cf. Sengupta et al., 2013). In terms of
curriculum design, the majority of students indicated some proficiency in developing if-blocks in the
computational model corresponding to the rules created in the Rules task. We believe this finding highlights a
successful implementation of our coherence principle to support the transition from conceptual to computational
modeling.

As schools move toward increased integration of computation in K-12 STEM classrooms, the learning
sciences community must advance its understanding of the learning processes and support needs of students. Our
analysis provides an exploratory step in identifying such cases, deepening understanding of how students integrate
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domain and CT knowledge for the development of multiple modeling representations. The identification of
domain-specific instances of support along the learning trajectory may be supportive of more personalized
(individual or group) feedback by the system or teacher. In addition, to promote student learning, our curriculum
design approach and the coherence among modeling representations provide a systematic framework for
evaluating applications of science and CT concepts over time. We believe this approach can inform curriculum
design and scaffolding approaches that deepen understanding of how the domains are integrated, how students
translate that knowledge to new representations, and where students may need additional support. Further research
in applying our approach to other domains may support generalizability.
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