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Abstract—The promise of Deep Neural Network (DNN) pow-
ered Internet of Thing (IoT) devices has motivated a tremendous
demand for automated solutions to enable fast development and
deployment of efficient (1) DNNs equipped with instantaneous
accuracy-efficiency trade-off capability to accommodate the time-
varying resources at IoT devices and (2) dataflows to optimize
DNNs’ execution efficiency on different devices. Therefore, we
propose InstantNet to automatically generate and deploy instan-
taneously switchable-precision networks which operate at vari-
able bit-widths. Extensive experiments show that the proposed
InstantNet consistently outperforms state-of-the-art designs. Our
codes are available at: https://github.com/RICE-EIC/InstantNet.

Index Terms—switchable-precision networks, NAS, dataflow

I. INTRODUCTION

Powerful deep neural networks (DNNs)’ prohibitive complex-
ity calls for hardware efficient DNN solutions [1]-[3]. When
it comes to DNNs’ hardware efficiency in IoT devices, the
model complexity (e.g., bit-widths), dataflows, and hardware
architectures are major performance determinators. Early works
mostly provide static solutions, i.e., once developed, the
algorithm/dataflow/hardware are fixed, whereas IoT applica-
tions often have dynamic time/energy constraints over time.
Recognizing this gap, recent works [4], [5] have attempted
to develop efficient DNNs with instantaneous accuracy-cost
trade-off capability. For example, switchable-precision networks
(SP-Nets) [4], [5] can maintain a competitive accuracy under
different bit-widths without fine-tuning under each bit-width,
making it possible to allocate bit-widths on the fly for adapting
IoT devices’ instant resources over time.

Despite SP-Nets’ great promise [4], [5], there are still major
challenges in enabling their deployment into numerous IoT
devices. First, existing SP-Nets are manually designed, largely
limiting their extensive adoption as each application would
require a different SP-Net. Second, while the best dataflow for
SP-Nets under different bit-widths can be different and is an
important determinator for their on-device efficiency [6], there
is still a lack of a generic and publicly available framework that
can be used to suggest optimal dataflows for SP-Nets under
each of their bit-widths on different IoT devices. Both of the
aforementioned hinder the fast development and deployment of
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SP-Nets powered DNN solutions for diverse hardware platforms
of 10T devices. To tackle the aforementioned challenges, we
make the following contributions:

« We propose InstantNet, an end-to-end framework that
automates the development (i.e., the generation of SP-Nets
given a dataset and target accuracy) and deployment (i.e.,
the generation of the optimal dataflows) of SP-Nets. To our
best knowledge, InstantNet is the first to simultaneously
target both development and deployment of SP-Nets.

« We develop switchable-precision neural architecture search
(SP-NAS) that integrates an novel cascade distillation
training to ensure that the generated SP-Nets under all
bit-widths achieve the same or better accuracy than both
NAS generated DNNs optimized for individual bit-widths
and SOTA expert-designed SP-Nets.

o We propose AutoMapper, which integrates a generic
dataflow space and an evolutionary algorithm to navigate
over the discrete and large mapping-method space and
automatically search for optimal dataflows given a DNN
(e.g., SP-Nets under a selected bit-width) and target device.

« Extensive experiments based on real-device measurements
and hardware synthesis validate InstantNet’s effective-
ness in consistently outperforming SOTA designs, e.g.,
achieving 84.68% real-device Energy-Delay-Product im-
provement while boosting the accuracy by 1.44%, over
the most competitive competitor under the same settings.

II. RELATED WORKS

Static and switchable-precision DNNs. DNN quantization
aims to compress DNNs at the most fine-grained bit-level [7],
[8]. To accommodate constrained and time-varying resources
on IoT devices, SP-Nets [4], [5] aim for instantaneously switch-
able accuracy-efficiency trade-offs at the bit-level. However,
designing such DNNs and the corresponding mapping methods
for every scenario can be engineering-expensive and time
consuming, considering the ever-increasing loT devices with
diverse hardware platforms and application requirements. As
such, techniques that enable fast development and deployment
of SP-Nets are highly desirable for expediting the deployment
of affordable DNNs into numerous IoT devices.
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Fig. 1: Overview of InstantNet, which first generates SP-Nets
with high accuracy under all bit-widths, and then suggests
dataflows to maximize the generated SP-Nets’ execution
efficiency under different bit-widths on the target device.

Deployment

5

Neural Architecture Search for efficient DNNs. To release
human efforts from laborious manual design, NAS [9], [10]
have been introduced to enable the automatic search for efficient
DNNs with both competitive accuracy and hardware efficiency
given the datasets. [11]-[13] incorporate quantization bit-widths
into their search space and search for mixed-precision networks.
However, all these NAS methods search for quantized DNNs
with only one fixed bit-width, lacking the capability to instantly
adapt to other bit-widths without fine-tuning.

Mapping DNNs to devices/hardware. When deploying
DNNs into IoT devices with diverse hardware architectures,
one major factor that determines hardware efficiency is the
dataflow [6]. For devices with application-specific integrated
circuit (ASIC) or FPGA hardware, various innovative dataflows
[1], [14]-[16] have been developed to maximize the reuse
opportunities. Recently, MAGNet has been proposed to auto-
matically identify optimal dataflows and design parameters of
a tiled architecture. However, its highly template-based design
space, e.g., a pre-defined set of nested loop-orders, can restrict
the generality and result in sub-optimal performance. Despite
its promising performance, the exploration to automatically
identify optimal mapping methods for DNNs with different
bit-widths has not yet been considered.

ITI. THE PROPOSED INSTANTNET FRAMEWORK
Here we present our InstantNet framework, starting from an

overview and then its key enablers including cascade distillation
training (CDT), SP-NAS, and AutoMapper.

A. InstantNet overview

Fig. 1 shows an overview of InstantNet. Specifically, given
the target application and device, it automates the development
and deployment of SP-Nets. Specifically, InstantNet integrates
two key enablers: (1) SP-NAS and (2) AutoMapper. SP-NAS
incorporates an innovative cascade distillation to search for
SP-Nets, providing IoT devices’ desired instantaneous accuracy-
efficiency trade-off capability. AutoMapper adopts a generic
dataflow design space and an evolution-based algorithm to
automatically search for optimal dataflows of SP-Nets under
different bit-widths on the target device.

B. InstantNet training: Bit-Wise Cascade Distillation
Unlike generic quantized DNNs optimized to maximize
accuracy under one individual bit-width, InstantNet aims to

generate SP-Nets of which the accuracy under all bit-widths
are the same or even higher than that of DNNs customized
for individual bit-widths. The key challenge is to ensure high
accuracy for lower bit-widths, which is particularly difficult
for compact DNN models whose accuracy is more sensitive to
quantization. For example, SOTA SP-Nets [5] fails to work
on lower bit-widths when being applied to MobileNetV2 [17].
The above challenge has motivated InstantNet’s CDT method,
which takes advantage of the fact that the quantization noises
of SP-Nets under adjacent or closer bit-widths are smaller.
Our hypothesis is that distillation between adjacent and closer
bit-widths will help to more smoothly enforce the accuracy
(or activation distribution) of SP-Nets under low bit-widths to
approach their full-precision counterparts. In this way, CDT can
simultaneously boost accuracy of SP-Nets under all bit-widths
by enforcing SP-Nets under each bit-width to have distillation
from all higher bit-widths:
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where L;,;,; 18 SP-Nets’ average loss under all the IV candidate
bit-widths, L. and L,, . are the cross-entropy and mean square
error losses, respectively, Q;(w) is the SP-Net characterized
with weights w under the i-th bit-width, S is a trade-off
parameter, and SG is the stopping gradient function, i.e.,
gradient backpropagation from higher bit-widths is prohibited
when calculating the distillation loss [5].

To verify the effectiveness of CDT, we visualize the
prediction distribution (classification probability after softmax)
of MobileNetV2 on CIFAR-100 under the bit-width set of 4,
8, 12, 16, 32 (quantized by SBM [18]) trained using different
strategies in Fig. 2. We show the prediction distribution of
the following three cases using a random sampled image from
the test dataset to verify and visualize the effectiveness of
our CDT: (1) 4-bit trained using vanilla distillation, i.e., only
consider the distillation with 32-bit width, (2) 4-bit trained
using our CDT technique and (3) the 32-bit trained network.
We can observe that vanilla distillation fails to narrow the gap
between 32-bit and the lowest 4-bit due to the large quantization
error gap. This is actually a common phenomenon among
efficient models with depthwise layers which are sensitive
to low precision on all the considered test datasets, e.g., we
observe that the validation accuracy of the 4-bit network with
only the aforementioned vanilla distillation is around 1%,
indicating the failure of vanilla distillation for tackling the
bit-width set with a large dynamic range. In contrast, our CDT
notably helps the prediction distribution of the 4-bit network
smoothly evolve to that of the 32-bit one, and also boost its
accuracy to 71.21%, verifying CDT’s effectiveness.

C. InstantNet search: Switchable-Precision NAS

Here we introduce another key enabler of InstantNet, SP-

NAS. To our best knowledge, InstantNet is the first to address

)



Prediction of 4-bit MobileNetV2
with vanilla distillation

Prediction of 4-bit MobileNetV2
with Cascade Distillation Trainin

Prediction of 32-bit MobileNetV2

o
S

o

o
=
w

Probability
o
e

o
N
Probability
o
N

o
-

0.0 It

0.6

o
>

Probability
)
N

00 b I

0.0

0 20 40

Class ID

60 80 100 0 20 40

Class ID

!
60 80 100 0 20 40 60

Class ID

80 100

Fig. 2: Visualizing the prediction distribution of MobileNetV2 on CIFAR-100 under (left): 4-bit training with vanilla distillation,
(middle) 4-bit training with the proposed CDT, and (right) 32-bit training.

how to automatically generate networks which naturally favor
working under various bit-widths. In addition, to resolve the
performance bottleneck in SOTA SP-Nets (manually designed)
[4], [5], i.e., large accuracy degradation under the lowest bit-
width, we develop a heterogeneous scheme for updating the
weights and architecture parameters. Specifically, we update
the weights based on our CDT method (see Eq. 1) which
explicitly incorporates switchable-bit property into the training
process; and for updating the architecture parameters of SP-
Net, we adopt only the weights under the lowest bit-width,
for generating networks forced to inherently tackle SP-Nets’
bottleneck of high accuracy loss under the lowest bit-width:
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where w and « are the supernet’s weights [19] and architecture
parameters, respectively, Ly is an efficiency loss (e.g., energy
cost), and Qy(w) is the SP-Net under the lowest bit-width.
Without loss of generality, here we adopt SOTA differentiable
NAS [19] and search space [20].

D. InstantNet deploy: Evolution-based AutoMapper

This subsection introduces InstantNet’s AutoMapper, of
which an overview is shown in Fig. 3. Motivated by the fact
that different mapping methods can have orders-of-magnitude
difference in hardware efficiency [6], AutoMapper aims to
accept (1) DNNs (e.g., SP-Nets generated by our SP-NAS),
(2) the target device, and (3) target hardware efficiency, and
then generate mapping methods that maximize both the task
accuracy and hardware efficiency of the given SP-Nets under
all bit-widths when being executed on the target device.

Generic Dataflow Design Space. A generic dataflow design
space is a prerequisite for effective algorithmic exploration
and optimization of on-device dataflows, yet is challenging to
develop. There are numerous choices for how to temporally
and spatially schedule all the DNN’s operations to be executed
in the target accelerators. Specifically, as there are many
more operations in DNNs than the number of operations (e.g.,
19.6 £ +9 [21] vs. 900 MACs [22] assuming a 16-bit precision)
an IoT device can execute in each clock cycle, numerous
possible dataflows exist for running DNNs on a device.

To tackle the aforementioned challenge, we propose a
generic design space for on-device dataflows, which (1)
covers all design choices for generalization and (2) is easy to
understand for ease of adoption. Our proposed space leverages

2)

commonly used nested for-loop descriptions [1], [23]. For
better illustration, here we describe the high-level principles.
From a nested for-loop description, our dataflow space extracts
all possible choices characterized by the following factors:

loop-order: the processing order of each dimension within
each memory hierarchy, and can be derived from all possible
permuted choices without overlap.

loop-size: the no. of operations in one iteration of a specific
dimension, which can not be easily determined. We design a
simple analytical algorithm to derive all possible choices.

Pipeline/multi-cycle: use pipeline or multi-cycle. The former
processes a small chunk of each layer in a pipeline manner,
while the latter processes all the layers sequentially.

Considering AlexNet [24] and six layers of nested loops,
there are over 10°7 total number of discrete mapping-
method choices, posing a great need for developing efficient
and effective search algorithms.

Evolutionary Search Algorithm. To navigate the large and
discrete space of mapping methods, we adopt an evolutionary
based search algorithm, considering that evolutionary algo-
rithms have more exploitation than random search and are
better suited for the highly discrete space [25], [26]. Specifically,
we will keep track of the hardware efficiency ranking of the
current sampled mapping methods at each iteration. Afterwards,
if the pool size of current samples is smaller than a specified
value, we select a few of the best performing sampled mapping
methods and randomly perturb a small number of their features
associated with the aforementioned design factors to generate
new mapping methods to be evaluated in the next iteration;
otherwise, new mapping methods with completely randomly
selected design factors will be generated. We summarize our
Evolutionary AutoMapper in Alg.1.

IV. EXPERIMENT RESULTS

We first describe our experiment setup and then evaluate each
enabler of InstantNet, i.e., CDT, SP-NAS, and AutoMapper.
After that, we benchmark InstantNet over SOTA SP-Nets on
SOTA accelerators [1], [15], [27].

A. Experiment setup

1) Algorithm experiment setup: Datasets & Baselines. We
consider three datasets (CIFAR-10/CIFAR-100/ImageNet), and
evaluate InstantNet over (1) all currently published SP-Nets
(AdaBits [4] and SP [5]) with the DoReFa [28] quantizer and
(2) a SOTA quantized DNN method SBM [18] to train a SOTA
compact DNN MobileNetV2 [17] under individual bits.
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Fig. 3: Overview of the goal, generic dataflow space, and InstantNet’s AutoMapper, where TBS denotes “to be searched”.

TABLE I: InstantNet’s CDT over SBM [18] (SOTA training for
quantized DNNs) and SOTA SP-Nets (SP [5] and AdaBits [4])
on MobileNetV2 and CIFAR-100 in terms of test accuracy
(%), where the values in the bracket represent the accuracy
drop of the baseline methods compared to our CDT.

Bit-widths SBM [18] SP [5] AdaBits [4] CDT (Proposed)
4 70.55 (-0.60)  66.75 (-4.40)  68.07 (-3.08) 71.15
8 74.40 (-0.72)  71.69 (-3.43) 73.86 (-1.26) 75.12
12 74.87 (-0.16)  74.16 (-0.87)  73.65 (-1.38) 75.03
16 75.03 (-0.19)  74.23 (-0.99)  73.87 (-1.35) 75.22
32 7523 (+0.25)  74.11 (-0.87)  74.51 (-0.47) 74.98
4 70.55 (-0.53)  67.63 (-3.45)  68.37 (-2.71) 71.08
5 74.13 (-0.32) 7295 (-1.50)  73.52 (-0.93) 74.45
6 74.69 (-0.33)  74.15 (-0.87)  74.60 (-0.42) 75.02
8 74.40 (-0.64)  74.99 (-0.05)  75.02 (-0.02) 75.04

Search and training on CIFAR-10/100 and ImageNet.
Search space: we adopt the same search space as [20] except
the stride settings for each group to adapt to the resolution
of the input images in CIFAR-10/100. Search settings. On
CIFAR-10/100, we search for 50 epochs with batch size 64.
In particular, we (1) update the supernet weights with our
cascade distillation technique as in Eq.(2) on half of the training
dataset using an SGD optimizer with a momentum of 0.9 and
an initial learning rate (LR) 0.025 at a cosine decay, and (2)
update network architecture parameters with the lowest bit-
width as in Eq.(2) on the other half of the training dataset
using an Adam optimizer with a momentum of 0.9 and a
fixed LR 3e-4. We apply gumbel softmax on the architecture
parameters as the contributing coefficients of each option to

Algorithm 1: Evolutionary AutoMapper
Input: Efficiency Goal, DNN, Design Space (DS)
Output: Optimal algorithm-to-device mapping
Build a pool with n random samples from DS
while Efficiency Goal not met do
if size(pool) < n then
for m iterations do
Random Pick p € pool
Random Perturb £ features of p

Add p to pool
end

else
Rank the samples in pool with the given DNN
Remove the worst m samples from pool

end
end
return optimal mapping in pool

the supernet (following [20]), where the initial temperature
is 3 and then decayed by 0.94 at each epoch. On ImageNet,
we follow the same hyper-parameter settings for the network
search as [20]. Evaluate the derived networks: for training the
derived networks from scratch using our CDT, on CIFAR-
10/100 we adopt an SGD optimizer with a momentum of 0.9
and an initial LR 0.025 at a cosine decay. Each network is
trained for 200 epochs with batch size 128. On ImageNet, we
follow [20].

2) Hardware experiment setup: Implementation method-
ology. We consider two commonly used IoT hardware plat-
forms, i.e., ASIC and FPGA, for evaluating our AutoMapper.
Specifically, for FPGA, we adopt the Vivado HLx design tool-
flow where we first synthesize the mapping-method design in
C++ via Vivado HLS, and then plug the HLS exported IPs
into a Vivado IP integrator to generate the corresponding bit
streams, which are programmed into the FPGA board for on-
board execution and measurements; for ASIC, we synthesize
the Verilog designs based on the generated dataflows using a
Synopsys Design Compiler on a commercial CMOS technology,
and then place and route using a Synopsys IC Compiler for
obtaining the resulting design’s actual area.

Baselines. We evaluate AutoMapper over expert/tool gen-
erated SOTA dataflows for both FPGA and ASIC platforms,
including DNNBuilder [15] and CHaiDNN [27] for FPGA, and
Eyeriss [1] and MAGNet [6] for ASIC. For DNNBuilder [15],
MAGNet [6] and CHaiDNN [27], we use their reported results;
For Eyeriss [1], we use their own published and verified
simulator [29] to obtain their results.

B. Ablation study of InstantNet: CDT

Experiment settings. For evaluating InstantNet’s CDT, we
benchmark it over an SOTA quantized DNN training method
(independently train DNNs at each bit-width) and two SP-
Nets (AdaBits [4] and SP [5]). In light of our IoT application
goal, we consider MobileNetV2 [17] (an SOTA efficient model
balancing task accuracy and hardware efficiency) with CIFAR-
100, and adopt two different bit-width sets with both large and
narrow bit-width dynamic ranges. Without losing generality,
our CDT is designed with SOTA quantizer SBM [18] and
switchable batch normalization as in SP [5].

Results and analysis. From Tab. I, we have three observa-
tions: (1) our CDT consistently outperforms the two SP-Net
baselines under all the bit-widths, verifying CDT’s effectiveness
and our hypothesis that progressively distilling from all higher
bit-widths can help more smoothly approach accuracy of the
full-precision; (2) CDT is particularly capable of boosting



TABLE II: CDT over independently trained SBM [18] on
ResNet-38, where the values in the bracket represent CDT’s
accuracy gain over SBM (the higher, the better)

Dataset CIFAR-10 CIFAR-100
Bit-widths SBM  CDT (Proposed) \ SBM  CDT (Proposed)
4 90.91 91.45 (+0.54) 63.82 64.18 (+0.36)
8 92.78 93.03 (+0.25) 66.71 67.45 (+0.74)
12 92.75 93.06 (+0.31) 67.13 67.42 (+0.29)
16 92.90 93.09 (+0.19) 67.17 67.50 (+0.33)
32 92.5 93.08 (+0.58) 67.18 67.47 (+0.29)
4 90.91 91.88 (+0.97) 63.82 64.12 (+0.30)
5 9235 92.56 (+0.21) 66.20 66.68 (+0.48)
6 92.80 92.93 (+0.13) 66.48 66.55 (+0.07)
8 92.78 93.02 (+0.24) 66.71 66.88 (+0.17)

TABLE III: CDT over independently trained SBM [18] on
ResNet-74, where the values in the bracket represent CDT’s
accuracy gain over SBM (the higher, the better).

Dataset CIFAR-10 CIFAR-100
Bit-widths SBM  CDT (Proposed) SBM  CDT (Proposed)
4 91.82 92.34 (+0.52) 66.31 67.35 (+1.04)
8 93.22 93.56 (+0.34) 69.85 69.98 (+0.13)
12 93.26 93.53 (+0.27) 69.97 69.99 (+0.02)
16 93.40 93.51 (+0.11) 69.92 70.01 (+0.09)
32 93.38 93.49 (+0.11) 69.46 69.98 (+0.52)
4 91.82 92.51 (+0.69) 66.31 67.34 (+1.03)
5 92.98 93.54 (+0.56) 68.66 69.49 (+0.83)
6 93.19 93.47 (+0.28) 69.42 69.65 (+0.23)
8 93.22 93.72 (+0.50) 69.85 70.02 (+0.17)

accuracy in low bit-widths which has been shown to be the
bottleneck in exiting SP-Nets [4], e.g., a 2.71%~4.4% higher
accuracy on the lowest 4-bit over the two SP-Net baselines;
and (3) CDT always achieves a higher or comparable accuracy
over the SOTA quantized DNN training method SBM that
independently trains and optimizes each individual bit-width:
for bit-widths ranging from 4-bit to 8-bit, CDT achieves
0.32%~0.72% improvement in accuracy over SBM, indicating
the effectiveness of our CDT in boosting DNNs’ accuracies
under lower bit-widths.

We also benchmark CDT on ResNet-38/74 [30] with CIFAR-
10/CIFAR-100 over independently trained SBM [18]. As
shown in Tab. II and Tab. III for ResNet-38 and ResNet-74,
respectively, CDT consistently achieves a better/comparable
accuracy (0.02%~1.04%) over the independently trained ones
under all the models/datasets/bit-widths, and notably boosts
the accuracy of the lowest bit-width (4-bit) by 0.30%~1.04%.

To evaluate CDT’s performance when involving extremely
low bit-width (2-bit), we further benchmark CDT on ResNet-
18 [31] and TinyImageNet [32] over the SP [18] baseline. The
results are shown in Tab. IV. It can be observed that the CDT

TABLE IV: CDT over SP [18] on ResNet-18 and TinylmageNet
in terms of test accuracy, where the values in the bracket
represent CDT’s accuracy gain over SBM.

Bit-widths Methods
Weight  Activation \ SP CDT (Proposed)
2 2 47.8 52.3 (+4.5)
2 32 50.5 51.3 (+0.8)
32 2 51.8 53.4 (+1.6)
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is particularly effective in boosting the accuracy in lower bit-
widths. Specifically, when the weights and activations both
adopt 2-bit, the proposed CDT achieves a 4.5% higher accuracy
than that of the baseline SP method.

C. Ablation study of InstantNet: SP-NAS

From Fig. 4, we can see that: (1) SP-NAS consistently
outperforms the baselines at the lowest bit-width, which
is the bottleneck in SOTA SP-Nets [4], while offering a
higher/comparable accuracy at higher bit-widths. Specifically,
SP-NAS achieves a 0.71%~1.16% higher accuracy over the
strongest baseline at the lowest bit-width on both bit-width sets
under the three FLOPs constraints; and (2) SP-NAS shows a
notable superiority on the bit-width set with a larger dynamic
range which is more favorable for IoT applications as larger
bit-width dynamic ranges provide more flexible instantaneous
accuracy-efficiency trade-offs. Specifically, compared with the
strongest baseline, SP-NAS achieves a 1.16% higher accuracy
at the lowest bit-width and a 0.25%~0.61% higher accuracy at
other bit-widths, while offering a 24.9% reduction in FLOPs on
the bit-width set [4, 8, 12, 16, 32]. This experiment validates
that SP-NAS can indeed effectively tackle SP-Nets’ bottleneck
and improve its scalability over previous search methods which
fail to guarantee accuracy at lower bit-widths.

D. Ablation study of InstantNet: AutoMapper

As shown in Fig. 5, we can see that (1) the dataflows
suggested by AutoMapper (taking less than 10 minutes of
search time) even outperforms SOTA expert-crafted designs:
the mapping generated by AutoMapper achieves 65.76% and
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85.74% EDP reduction on AlexNet [24] and VGGI16 [21]
compared with Eyeriss [1], respectively; (2) AutoMapper
achieves a higher cost savings on ASIC than that of FPGA.
This is because ASIC designs are more flexible than FPGA in
their dataflows and thus achieve superior performance when
exploring using effective automated search tools; and (3) when
comparing with MAGNet, we have roughly 9.3% reduction
in terms of the energy cost. MAGNet only used a pre-defined
set of loop-orders to cover different dataflow scenarios, which
may not generically fit network’s diverse layer structures, thus
resulting in inferior performance.

E. InstantNet over SOTA systems

Results and analysis on

CIFAR-10/100. As shown ?74 +1__¢;_,.,

in Fig. 6, we can see that (1) 272 {E

InstantNet generated sys- 870 116 %

tems consistently outper- § ' 186 x
forms the SOTA basclines  <** [TER0NG
in terms of the trade-off be- 66 Y -

100 150 200
FPS

Fig. 7: InstantNet and SOTA IoT
metric for ASIC) by achiev- systems on ImageNet with bit-
ing a higher or comparable widths of [4, 5,6, 8].

accuracy and better EDP under lower bit-widths over the
baselines. In particular, InstantNet can achieve up to 84.67%
reduction in EDP with a 1.44% higher accuracy on CIFAR-100
and the bit-width set of [4,8,12,16,32]; and (2) InstantNet
always surpasses the SOTA baselines under the bottleneck bit-
width, i.e., the lowest one, with a 62.5%~73.68% reduction in
EDP and a 0.91%~5.25% higher accuracy, which is notably
more practical for real-world IoT deployment.

Results and analysis on ImageNet. As shown in Fig. 7,
InstantNet generated system achieves a 1.86X improvement in
Frame-Per-Second (FPS) while having a comparable accuracy
(-0.05%) over the SOTA FPGA based IoT system.

V. CONCLUSION

tween accuracy and EDP (a
commonly-used hardware

We propose an automated framework termed InstantNet to
automatically search for SP-Nets (i.e., capable of operating at
variable bit-widths) that can achieve the same or even better
accuracy than DNNs optimized for individual bit-widths, and to
generate optimal dataflows to maximize efficiency when DNNs
are executed under various bit-widths on different devices.
Extensive experiments show that InstantNet has promised an
effective automated framework for expediting development and
deployment of efficient DNNs for numerous IoT applications
with diverse specifications.
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