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Abstract—The promise of Deep Neural Network (DNN) pow-
ered Internet of Thing (IoT) devices has motivated a tremendous
demand for automated solutions to enable fast development and
deployment of efficient (1) DNNs equipped with instantaneous
accuracy-efficiency trade-off capability to accommodate the time-
varying resources at IoT devices and (2) dataflows to optimize
DNNs’ execution efficiency on different devices. Therefore, we
propose InstantNet to automatically generate and deploy instan-
taneously switchable-precision networks which operate at vari-
able bit-widths. Extensive experiments show that the proposed
InstantNet consistently outperforms state-of-the-art designs. Our
codes are available at: https://github.com/RICE-EIC/InstantNet.

Index Terms—switchable-precision networks, NAS, dataflow

I. INTRODUCTION

Powerful deep neural networks (DNNs)’ prohibitive complex-

ity calls for hardware efficient DNN solutions [1]–[3]. When

it comes to DNNs’ hardware efficiency in IoT devices, the

model complexity (e.g., bit-widths), dataflows, and hardware

architectures are major performance determinators. Early works

mostly provide static solutions, i.e., once developed, the

algorithm/dataflow/hardware are fixed, whereas IoT applica-

tions often have dynamic time/energy constraints over time.

Recognizing this gap, recent works [4], [5] have attempted

to develop efficient DNNs with instantaneous accuracy-cost

trade-off capability. For example, switchable-precision networks

(SP-Nets) [4], [5] can maintain a competitive accuracy under

different bit-widths without fine-tuning under each bit-width,

making it possible to allocate bit-widths on the fly for adapting

IoT devices’ instant resources over time.

Despite SP-Nets’ great promise [4], [5], there are still major

challenges in enabling their deployment into numerous IoT

devices. First, existing SP-Nets are manually designed, largely

limiting their extensive adoption as each application would

require a different SP-Net. Second, while the best dataflow for

SP-Nets under different bit-widths can be different and is an

important determinator for their on-device efficiency [6], there

is still a lack of a generic and publicly available framework that

can be used to suggest optimal dataflows for SP-Nets under

each of their bit-widths on different IoT devices. Both of the

aforementioned hinder the fast development and deployment of

SP-Nets powered DNN solutions for diverse hardware platforms

of IoT devices. To tackle the aforementioned challenges, we

make the following contributions:
• We propose InstantNet, an end-to-end framework that

automates the development (i.e., the generation of SP-Nets

given a dataset and target accuracy) and deployment (i.e.,

the generation of the optimal dataflows) of SP-Nets. To our

best knowledge, InstantNet is the first to simultaneously

target both development and deployment of SP-Nets.

• We develop switchable-precision neural architecture search

(SP-NAS) that integrates an novel cascade distillation

training to ensure that the generated SP-Nets under all

bit-widths achieve the same or better accuracy than both

NAS generated DNNs optimized for individual bit-widths

and SOTA expert-designed SP-Nets.

• We propose AutoMapper, which integrates a generic

dataflow space and an evolutionary algorithm to navigate

over the discrete and large mapping-method space and

automatically search for optimal dataflows given a DNN

(e.g., SP-Nets under a selected bit-width) and target device.

• Extensive experiments based on real-device measurements

and hardware synthesis validate InstantNet’s effective-

ness in consistently outperforming SOTA designs, e.g.,

achieving 84.68% real-device Energy-Delay-Product im-

provement while boosting the accuracy by 1.44%, over

the most competitive competitor under the same settings.

II. RELATED WORKS

Static and switchable-precision DNNs. DNN quantization

aims to compress DNNs at the most fine-grained bit-level [7],

[8]. To accommodate constrained and time-varying resources

on IoT devices, SP-Nets [4], [5] aim for instantaneously switch-

able accuracy-efficiency trade-offs at the bit-level. However,

designing such DNNs and the corresponding mapping methods

for every scenario can be engineering-expensive and time

consuming, considering the ever-increasing IoT devices with

diverse hardware platforms and application requirements. As

such, techniques that enable fast development and deployment

of SP-Nets are highly desirable for expediting the deployment

of affordable DNNs into numerous IoT devices.978-1-6654-3274-0/21/$31.00 ©2021 IEEE









TABLE II: CDT over independently trained SBM [18] on

ResNet-38, where the values in the bracket represent CDT’s

accuracy gain over SBM (the higher, the better)

.

Dataset CIFAR-10 CIFAR-100

Bit-widths SBM CDT (Proposed) SBM CDT (Proposed)

4 90.91 91.45 (+0.54) 63.82 64.18 (+0.36)
8 92.78 93.03 (+0.25) 66.71 67.45 (+0.74)

12 92.75 93.06 (+0.31) 67.13 67.42 (+0.29)

16 92.90 93.09 (+0.19) 67.17 67.50 (+0.33)
32 92.5 93.08 (+0.58) 67.18 67.47 (+0.29)

4 90.91 91.88 (+0.97) 63.82 64.12 (+0.30)
5 92.35 92.56 (+0.21) 66.20 66.68 (+0.48)
6 92.80 92.93 (+0.13) 66.48 66.55 (+0.07)

8 92.78 93.02 (+0.24) 66.71 66.88 (+0.17)

TABLE III: CDT over independently trained SBM [18] on

ResNet-74, where the values in the bracket represent CDT’s

accuracy gain over SBM (the higher, the better).

Dataset CIFAR-10 CIFAR-100

Bit-widths SBM CDT (Proposed) SBM CDT (Proposed)

4 91.82 92.34 (+0.52) 66.31 67.35 (+1.04)
8 93.22 93.56 (+0.34) 69.85 69.98 (+0.13)
12 93.26 93.53 (+0.27) 69.97 69.99 (+0.02)

16 93.40 93.51 (+0.11) 69.92 70.01 (+0.09)
32 93.38 93.49 (+0.11) 69.46 69.98 (+0.52)

4 91.82 92.51 (+0.69) 66.31 67.34 (+1.03)
5 92.98 93.54 (+0.56) 68.66 69.49 (+0.83)
6 93.19 93.47 (+0.28) 69.42 69.65 (+0.23)
8 93.22 93.72 (+0.50) 69.85 70.02 (+0.17)

accuracy in low bit-widths which has been shown to be the

bottleneck in exiting SP-Nets [4], e.g., a 2.71%∼4.4% higher

accuracy on the lowest 4-bit over the two SP-Net baselines;

and (3) CDT always achieves a higher or comparable accuracy

over the SOTA quantized DNN training method SBM that

independently trains and optimizes each individual bit-width:

for bit-widths ranging from 4-bit to 8-bit, CDT achieves

0.32%∼0.72% improvement in accuracy over SBM, indicating

the effectiveness of our CDT in boosting DNNs’ accuracies

under lower bit-widths.

We also benchmark CDT on ResNet-38/74 [30] with CIFAR-

10/CIFAR-100 over independently trained SBM [18]. As

shown in Tab. II and Tab. III for ResNet-38 and ResNet-74,

respectively, CDT consistently achieves a better/comparable

accuracy (0.02%∼1.04%) over the independently trained ones

under all the models/datasets/bit-widths, and notably boosts

the accuracy of the lowest bit-width (4-bit) by 0.30%∼1.04%.

To evaluate CDT’s performance when involving extremely

low bit-width (2-bit), we further benchmark CDT on ResNet-

18 [31] and TinyImageNet [32] over the SP [18] baseline. The

results are shown in Tab. IV. It can be observed that the CDT

TABLE IV: CDT over SP [18] on ResNet-18 and TinyImageNet

in terms of test accuracy, where the values in the bracket

represent CDT’s accuracy gain over SBM.

Bit-widths Methods

Weight Activation SP CDT (Proposed)

2 2 47.8 52.3 (+4.5)

2 32 50.5 51.3 (+0.8)

32 2 51.8 53.4 (+1.6)
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Fig. 4: InstantNet’s SP-NAS over Full-Precision-NAS (FP-

NAS) and Low-Precision-NAS (LP-NAS) on CIFAR-100 under

large, middle, and small FLOPs constraints trained for two

bit-width sets: (a) [4, 8, 12, 16, 32], and (b) [4, 5, 6, 8].
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Fig. 5: AutoMapper over SOTA expert-crafted and tool gener-

ated dataflows on FPGA/ASIC.

is particularly effective in boosting the accuracy in lower bit-

widths. Specifically, when the weights and activations both

adopt 2-bit, the proposed CDT achieves a 4.5% higher accuracy

than that of the baseline SP method.

C. Ablation study of InstantNet: SP-NAS

From Fig. 4, we can see that: (1) SP-NAS consistently

outperforms the baselines at the lowest bit-width, which

is the bottleneck in SOTA SP-Nets [4], while offering a

higher/comparable accuracy at higher bit-widths. Specifically,

SP-NAS achieves a 0.71%∼1.16% higher accuracy over the

strongest baseline at the lowest bit-width on both bit-width sets

under the three FLOPs constraints; and (2) SP-NAS shows a

notable superiority on the bit-width set with a larger dynamic

range which is more favorable for IoT applications as larger

bit-width dynamic ranges provide more flexible instantaneous

accuracy-efficiency trade-offs. Specifically, compared with the

strongest baseline, SP-NAS achieves a 1.16% higher accuracy

at the lowest bit-width and a 0.25%∼0.61% higher accuracy at

other bit-widths, while offering a 24.9% reduction in FLOPs on

the bit-width set [4, 8, 12, 16, 32]. This experiment validates

that SP-NAS can indeed effectively tackle SP-Nets’ bottleneck

and improve its scalability over previous search methods which

fail to guarantee accuracy at lower bit-widths.

D. Ablation study of InstantNet: AutoMapper

As shown in Fig. 5, we can see that (1) the dataflows

suggested by AutoMapper (taking less than 10 minutes of

search time) even outperforms SOTA expert-crafted designs:

the mapping generated by AutoMapper achieves 65.76% and
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