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Abstract

There has been a booming demand for integrating Con-

volutional Neural Networks (CNNs) powered functionali-

ties into Internet-of-Thing (IoT) devices to enable ubiqui-

tous intelligent “IoT cameras”. However, more extensive

applications of such IoT systems are still limited by two

challenges. First, some applications, especially medicine-

and wearable-related ones, impose stringent requirements

on the camera form factor. Second, powerful CNNs of-

ten require considerable storage and energy cost, whereas

IoT devices often suffer from limited resources. PhlatCam,

with its form factor potentially reduced by orders of magni-

tude, has emerged as a promising solution to the first afore-

mentioned challenge, while the second one remains a bot-

tleneck. Existing compression techniques, which can po-

tentially tackle the second challenge, are far from realiz-

ing the full potential in storage and energy reduction, be-

cause they mostly focus on the CNN algorithm itself. To this

end, this work proposes SACoD, a Sensor Algorithm Co-

Design framework to develop more efficient CNN-powered

PhlatCam. In particular, the mask coded in the Phlat-

Cam sensor and the backend CNN model are jointly op-

timized in terms of both model parameters and architec-

tures via differential neural architecture search. Extensive

experiments including both simulation and physical mea-

surement on manufactured masks show that the proposed

SACoD framework achieves aggressive model compression

and energy savings while maintaining or even boosting the

task accuracy, when benchmarking over two state-of-the-

art (SOTA) designs with six datasets across four different

vision tasks including classification, segmentation, image

translation, and face recognition. Our codes are available

at: https://github.com/RICE-EIC/SACoD.

1. Introduction

Recent CNN breakthroughs trigger a growing demand

for intelligent IoT devices, such as wearables and biology

devices (e.g., swallowed endoscopes). However, two ma-

jor challenges are hampering more extensive applications

of CNN-powered IoT devices. First, some applications, es-

pecially medicine- and biology-related ones, impose strict

requirements on the form factor, especially the thickness,

which are often too stringent for existing lens-based imag-

ing systems. Second, powerful CNNs often come at a con-

siderable cost, whereas IoT devices are subject to limited

resources [?, ?, ?, ?, ?].

For the first challenge, lensless imaging systems [?, ?,

?, ?, ?] have emerged as a promising rescue. For exam-

ple, PhlatCam [?] replaces the focal lenses with a set of

phase masks, which encodes the incoming light instead of

directly focusing it. The encoded information can be either

computationally decoded to reconstruct the images or pro-

cessed specifically for different applications. Such lensless

imaging systems can be made much smaller and thinner, be-

cause the phase masks are smaller than the focal lens, and

they can be placed much closer to the sensors and fabricated

with much lower costs. For the second challenge, many re-

cent works focus on designing CNNs with improved hard-

ware efficiency, i.e., by applying generic neural architecture

search (NAS) to find efficient CNNs.

As such, a naive way to address the two aforementioned

challenges simultaneously is to introduce lensless cameras

as the signal acquisition frontend and then apply NAS to op-

timize the backend CNN. However, such approaches would

result in disjoint optimization that can be far from optimal.

A generic NAS would treat the camera as given, and only

optimize the CNN. Likewise, existing phase mask designs

for lensless cameras treat the CNNs as given, and only opti-

mize the masks. Such disjoint optimization fails to (1) take

advantage of the masks’ potential computational capacity,

with which the NAS optimization can be fundamentally im-

proved, and (2) perform an end-to-end optimization.

[?] shows that, under some assumptions, the phase

masks in PhlatCam essentially perform 2D convolutions on

the incoming lights, and the convolution kernel is encoded

in the masks. Moreover, unlike other convolutional layers,







architecture α, and the neural network’s weights w. For-

mally, SACoD aims to solve:

min
α

Lval (m
∗(α),w∗(α),α) + λLe(α), (3)

m
∗(α),w∗(α) = argmin

{m,w}
Ltr(m,w,α). (4)

Ltr and Lval are task-specific performance losses evaluated

on the training and validation set, respectively, Le is the ef-

ficiency loss (e.g. model size, computational cost, or energy

consumption), and λ is the tuning parameter trading-off the

accuracy and efficiency. Following the same parameteriza-

tion scheme in DARTS [?], α denotes the weights of differ-

ent candidate operations.

Modifications over DARTS. SACoD integrates two ma-

jor modifications as compared to the original DARTS [?]

framework. The first difference is that the efficiency loss

Le, measured by the sum of each layer’s computational

cost weighted by the network parameter α, is introduced.

More importantly, the second and major difference is that

the phase mask m is optimized jointly in the framework.

It is worth pointing out that although mathematically simi-

lar, m
∗

and w
∗

have different degrees of dependencies on

α. Specifically, w
∗

is directly impacted by α because α

governs which subset of the w is ultimately used, while m
∗

is only indirectly influenced by α. Therefore, incorporat-

ing m will largely improve the tradeoff between the model

performance and model complexity. Note that SACoD is

naturally compatible with other NAS methods. We adopt

differential NAS for the fast generation of the optical mask

and network. When using other NAS methods, e.g., RL-

based NAS [?], we still observe similar system performance

(within 0.3% accuracy on CIFAR-100), but the search time

increases to 8 GPU-days from 0.5 GPU-days.

Two-stage workflow. The whole co-design process can

be divided into two stages: a searching stage and a training

stage. In the searching stage, we apply the alternate gra-

dient descent of Eq. (3) and Eq. (4) to search for the opti-

mal network architecture α
∗

. In the training stage, the opti-

mal mask and weights are determined by optimizing Eq. (4)

conditioning on the optimal network architecture α
∗

.

3.4. SACoD: Discussions

Specificity of SACoD generated masks. As formulated

in Eq. (3), α controls the searched network structure, which

favors different distributions of phase masks m
∗

. To val-

idate the influence of α on m
∗

, we fabricate the physical

masks under various settings and observe that the optimal

masks for different searched networks are quite different,

which are visualized in the Appendix. In addition, we eval-

uate SACoD generated masks against the transferred masks

from other tasks in Sec. 4.6 to show the necessity of specif-

ically customizing the masks for each target task.

Generality of SACoD generated masks. Considering

(1) the captured features of the first several layers in CNNs

are general and can be transferred among tasks [?], and (2)

the masks are jointly optimized with both the network struc-

ture and the network weights in SACoD, it can be expected

that SACoD’s generated masks are able to learn to adapt

to the general features of CNNs and thus can achieve better

generality and transferability among vision tasks, compared

with the masks based on fixed filters like Gabor-mask [?].

This advantage of SACoD is validated in Sec. 4.6.

Generality vs. specificity. There always exists a trade-

off between the achieved performance and the manufacture

cost in practical uses of intelligent sensors, i.e., the bene-

fits of higher accuracy and lower energy of specifically de-

signed masks for the target task versus their higher manu-

facture cost compared with one-for-all fixed mask (such as

Gabor-mask [?]). Fortunately, one key highlight of SACoD

is that it achieves such high specificity at extremely low

manufacture costs, as each mask costs one order of magni-

tude lower than lens-based cameras [?] in addition to Phlat-

Cam’s advantageous thin feature, indicating SACoD’s gen-

eral applicability on IoT applications.

4. Experiments results

This section presents evaluation results of SACoD ap-

plied on PhlatCam. We first describe the experiment set-

tings in Sec. 4.1, and then benchmark SACoD over SOTA

lensless imaging systems on classification tasks, IoT appli-

cations, and other vision tasks in Sec. 4.2, 4.3, 4.4, respec-

tively. We next show the effectiveness of the physically fab-

ricated masks generated by SACoD in Sec. 4.5 and provide

various ablation studies of SACoD in Sec. 4.6.

4.1. Experiment setup

Optical layer constraints. As mentioned, the optical

layer first performs convolutional operations on the input

scene optically, the outputs of which are then processed by

the backend neural network. The physical device construc-

tion imposes design constraints on the optical layer design.

Specifically, since the phase mask is placed closer to the

sensor, the optically achievable kernel size cannot be arbi-

trarily small [?]. Here, we adopt kernel sizes that are not

smaller than 7x7. Additionally, since all the designed masks

are sharing the same sensor area, the number of masks can-

not be large due to the limited sensor area. Here, we con-

strain the number of masks to be no more than six. We

adopt simulated masks in Sec. 4.2∼ Sec.4.4 and evaluate on

physically fabricated masks in Sec. 4.5.

Algorithm setting. Datasets: we evaluate SACoD on a

total of four vision tasks with six datasets: two classi-

fication datasets CIFAR-10/100, two IoT datasets includ-

ing FlatCam Face [?] and Head Pose [?], one segmentation

dataset Cityscapes [?], and one unpaired image translation

dataset horse2zebra [?]. The same and standard data aug-

mentation (e.g., random crop and normalization) is adopted
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Figure 9: Visualizing the captured images by physically

fabricated masks on CIFAR-10/Flatcam Face.

Table 4: Accuracy when using Gabor-mask, SACoD’s gen-

erated masks transferred from those dedicated for the Flat-

Cam Face dataset, and SACoD’s generated masks cus-

tomized for the target tasks on the CIFAR-10/100 dataset.

Method CIFAR-10 Acc (%) CIFAR-100 Acc (%)

Gabor-mask 91.71 68.85

SACoD (from FlatCam Face) 93.10 72.50

SACoD (customized) 94.41 76.67

4.6. Ablation studies of SACoD

Generality vs. specificity. To evaluate the generality

and specificity of SACoD, we benchmark SACoD trans-

ferred from the FlatCam Face dataset against (1) SACoD

customized for each target task and (2) the Gabor-mask

baseline which is a general mask based on fixed filters, on

the CIFAR-10/100 dataset. All the backend models have

similar FLOPs (those corresponding to the rightmost points

in Fig. 3). As shown in Tab. 4, SACoD with masks trans-

ferred from those dedicated for the FlatCam Face dataset

achieves a +1.39% and +3.65% higher accuracy on CIFAR-

10/100, respectively, over that of Gabor-mask, while suffer-

ing from a -1.31%/4.17% accuracy drop on CIFAR-10/100,

as compared to SACoD customized for the target task. This

validates the assumption in Sec. 3.4 that SACoD’s gener-

ated masks show a better generality and transferability over

masks based on fixed filters like Gabor-mask, while speci-

ficity, i.e., customization for each target task, of SACoD

masks can further improve the achieved accuracy. One key

highlight is that SACoD achieves specificity at extremely

low manufacture costs, as each mask costs one order of

magnitude lower than lens-based cameras [?].

Feature extraction of SACoD. To further explore the

reason behind SACoD’s success, we compare the discrimi-

native power of the features captured by the optical layers of

SACoD and the Gabor-mask baseline. Specifically, follow-

ing [?], we average the optical layer’s activations over the

output channels to obtain a vector and use the corresponding

softmax value as the feature distribution for each input im-

age. We then calculate the KL divergence between the fea-

ture distribution from different classes to see how discrim-

inative the features are. Fig. 10 visualizes the average KL

divergence (over 100 randomly selected images) between

every two classes on the test dataset of CIFAR-10. We

can see that the feature distribution difference of SACoD

between different classes is notably and consistently larger

Figure 10: KL divergence of the output distribution between

different classes captured by the searched optical layer of

SACoD and Gabor-mask on CIFAR-10, where the x-axis

and y-axis are the class id, and the heatmap value denotes

the magnitude of KL divergence.

than that of the Gabor-mask baseline, further verifying that

the optical layer of SACoD can more effectively extract the

discriminative information from the input and thus reduce

the required computations of the backend CNN.

SACoD vs. lens-based systems. To fairly benchmark

against lens-based systems, we remove the optical layer and

its associated constraints, and search for the optimal net-

work within the same the search space [?]. We find that

under a slightly reduced FLOPs (154M FLOPs vs. 158M

FLOPs), SACoD achieves a 0.39% and 0.62% lower accu-

racy on CIFAR-10 and CIFAR-100, respectively, while re-

ducing the thickness of the imaging systems by 10× which

makes it possible to be integrated into more IoT applica-

tions. This set of experiments shows that our proposed

SACoD can offer similar task performance and hardware

efficiency as compared to lens-based systems, while being

able to shrink the thickness of the system by one order.

5. Conclusion

We propose SACoD, a sensor algorithm co-design

framework, to enable more energy-efficient and robust

CNN-powered IoT systems, and validate it in the context

of PhlatCam. A novel end-to-end co-search algorithm is

presented to jointly optimize the coded mask of PhlatCam

in the sensor and the backend CNN. Extensive experiments

and ablation studies validate the superiority of SACoD in

terms of both task performance and hardware efficiency

as well as the its general applicability, when evaluated

over SOTA lensless imaging systems on various tasks and

datasets. The success demonstration of the sensor algorithm

co-design principle in SACoD can positively impact many

real-world IoT applications demanding intelligent sensors.
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