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2-in-1 Accelerator: Enabling Random Precision Switch for
Winning Both Adversarial Robustness and Efficiency

ABSTRACT

The recent breakthroughs of deep neural networks (DNN5s)
and the advent of billions of Internet of Things (IoT) de-
vices have excited an explosive demand for intelligent IoT
devices equipped with domain-specific DNN accelerators.
However, the deployment of DNN accelerator enabled intel-
ligent functionality into real-world IoT devices still remains
particularly challenging. First, powerful DNNs often come
at a prohibitive complexity, whereas IoT devices often suffer
from stringent resource constraints. Second, while DNNs
are vulnerable to adversarial attacks especially on [oT de-
vices exposed to complex real-world environments, many
IoT applications require strict security. Existing DNN ac-
celerators mostly tackle only one of the two aforementioned
challenges (i.e., efficiency or adversarial robustness) while
neglecting or even sacrificing the other. To this end, we pro-
pose a 2-in-1 Accelerator, an integrated algorithm-accelerator
co-design framework aiming at winning both the adversarial
robustness and efficiency of DNN accelerators. Specifically,
we first propose a Random Precision Switch (RPS) algo-
rithm that can effectively defend DNNs against adversarial
attacks by enabling random DNN quantization as an in-situ
model switch during training and inference. Furthermore, we
propose a new precision-scalable accelerator featuring (1) a
new precision-scalable MAC unit architecture which spatially
tiles the temporal MAC units to boost both the achievable
efficiency and flexibility and (2) a systematically optimized
dataflow that is searched by our generic accelerator optimizer.
Extensive experiments and ablation studies validate that our
2-in-1 Accelerator can not only aggressively boost both the
adversarial robustness and efficiency of DNN accelerators un-
der various attacks, but also naturally support instantaneous
robustness-efficiency trade-offs adapting to varied resources
without the necessity of DNN retraining. We believe our
2-in-1 Accelerator has opened up an exciting perspective of
robust and efficient accelerator design.

1. INTRODUCTION

Deep neural networks’ (DNNs) performance breakthroughs
and the advent of billions of Internet of Things (IoT) devices
have triggered an increased demand for DNN-powered in-
telligent IoT devices. However, DNNs’ deployments into
real-world IoT devices still remain challenging. First, pow-
erful DNNs’ prohibitive complexity stands at odd with the
stringent resource constraints of IoT devices. Second, while
DNNSs are vulnerable to adversarial attacks, many IoT appli-
cations require strict security under dynamic and complex

real-world environments. Therefore, techniques boosting
both DNNs’ efficiency and robustness are highly desired.

To tackle the first challenge above, various domain-specific
DNN accelerators [11,31] have been developed to customize
their algorithm-to-mapping methods (i.e., dataflows) and
micro-architecture towards the workloads of DNNs to achieve
orders-of-magnitude acceleration efficiency improvement
over general computing platforms. In parallel, various tech-
niques have been proposed to defend DNNs against adver-
sarial attacks showing promising performance to address the
aforementioned robustness challenge. Among them, adver-
sarial training [40,57,66,68], which augments the training set
with adversarial samples generated on-the-fly during train-
ing, is currently the most effective method. Furthermore,
recognizing that both efficiency and robustness are critical to
many DNN-powered intelligent applications, pioneering ef-
forts [19, 54, 67] attempt to defend against adversarial attacks
within DNN accelerators. Nevertheless, the art of robustness-
aware DNN accelerators is still in its infancy, and existing
defensive accelerators against adversarial attacks rely on addi-
tional detection networks/modules to detect/defend adversar-
ial samples during inference, thus inevitably compromising
their accelerator efficiency.

Considering that quantized DNNs are very promising as
efficient DNN solutions and also highly desirable in many
IoT applications, we first ask an intriguing question: “Is
it possible to leverage quantization to boost DNNs’ robust-
ness?", despite the fact that quantized DNNs have been shown
to degrade the models’ adversarial robustness unless be-
ing equipped with sophisticated regularization schemes [61].
This is inspired by (1) [12,36,69] showed that random per-
mutations on the inputs can certifiably defend DNNs against
adversarial attacks, and (2) [69] found that weight perturba-
tions are a good complement for input perturbations, because
they can narrow the robust generalization gap as weights
globally influence the losses of all examples. We thus hy-
pothesize that quantization noise can be leveraged to provide
similar effects as permutations to the weights/activations and
thus enhance DNNs’ robustness, motivating our random pre-
cision switch (RPS) algorithm that wins both efficiency and
robustness of quantized DNNs. Furthermore, motivated by
the bottlenecks of existing precision-scalable accelerators, we
further develop a new accelerator to enhance the acceleration
efficiency of RPS equipped DNNSs. Specifically, we make the
following contributions:

e We propose an integrated algorithm-accelerator co-design
framework dubbed 2-in-1 Accelerator, aiming at win-
ning both the adversarial robustness and acceleration



efficiency of DNN accelerators.

e 2-in-1 Accelerator’s algorithm: We provide a new per-
spective regarding the role of quantization in DNN5s’
robustness, and propose a Random Precision Switch
(RPS) algorithm that can effectively defend DNNs against
adversarial attacks by enabling random DNN quantiza-
tion as an in-situ model switch during training and infer-
ence. RPS equipped DNNs with fixed-point precisions
even outperform the full-precision models’ robustness.

e 2-in-1 Accelerator’s architecture: We develop a new
precision-scalable accelerator highlighting (1) a new
multiply-accumulate (MAC) unit architecture which
spatially tiles the temporal MAC units to boost both the
achievable efficiency and precision-scalable flexibility
and (2) a systematically optimized dataflow searched by
our generic accelerator optimizer, largely outperform-
ing existing precision-scalable accelerators.

We perform a thorough evaluation of 2-in-1 Accel-
erator on six DNN models and three datasets under
various adversarial attacks, and find that our 2-in-/
Accelerator achieves up to 7.58x better energy effi-
ciency, 4.59%/36.5x higher throughput over precision-
scalable/robustness-aware accelerators, and 24.48% im-
provement in robust accuracy. We believe that our 2-in-
1 Accelerator framework has not only demonstrated an
appealing and effective real-world DNN solution, but
also opened up an exciting perspective for winning both
robustness and efficiency in DNN accelerators

2. 2-IN-1 ACCELERATOR: ALGORITHM

In this section, we present our RPS algorithm that can
simultaneously boost DNNs’ robustness and efficiency and
thus serve as the algorithmic enabler of our 2-in-1 accelerator.

2.1 Preliminaries of adversarial robustness

[20] finds that DNNs are vulnerable to adversarial attacks,
i.e., applying a small permutation § within a norm ball (||5|| <
€) to the inputs can mislead DNNs’ decisions. For example,
the adversarial permutation ¢ under the ¢, attack [20] is
generated by maximizing the objective:

max {(fg(x+0),y) (1)
6llc<e

where ¢ is the loss function, 6 is the weights of a DNN f, x
and y are the input and the corresponding label, respectively.
To boost DNNs’ robustness against adversarial attacks, ad-
versarial training optimizing the following minimax problem

is currently the strongest defense method [4]:
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2.2 Inspirations from previous works

Previous works show that random smoothing or transfor-
mations [12,24,36,71] on the inputs help robustify DNNs
and [69] shows that weight perturbations are good comple-
ments for input perturbations as they globally influence the
learning loss of all inputs. Following this spirit, [15,26,69] ex-
plicitly introduce randomness and permutations in the models’
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Figure 1: Visualizing the transferability of adversarial attacks
between different precisions, where the robust accuracy under
different training methods (PGD-7 [40] and FGSM-RS [68])
and attacks (PGD-20 [40] and CW-Inf [8]) is annotated.

weights or activations. On the other hand, [39, 64, 66] show
that model ensemble can help improve robustness at a cost
of efficiency due to the required multiple models. These two
aspects inspire us to rethink the connection between quanti-
zation’s role in the permutations of DNN weights/activations
and model robustness and to view a DNN model under differ-
ent precisions as an in-situ ensemble to boost both robustness
and efficiency. As introduced in Sec. 2.4, the proposed RPS
algorithm can be seen as an in-situ model switch among
different precision choices.

2.3 Poor transferability between precisions

To validate our above hypothesis that a DNN model un-
der different precisions can be seen as an in-situ ensemble,
we empirically check the robustness of such an ensemble by
evaluating the transferability of adversarial attacks between
different precisions. As elaborated below, we find that the ad-
versarial attacks transfer poorly between different precisions
of an adversarially trained model, regardless of its adversarial
training methods.

Experiment settings. We conduct experiments that adopt
adversarial attacks generated under one precision to attack
the same adversarially trained model quantized to another
precision. In particular, we apply PGD-20 [40] and CW-
Inf [8] attacks, to PreActResNet-18 (following [68]) which is
adversarially trained using different adversarial training meth-
ods [40,68] using an 8-bit linear quantizer [29] under training
settings introduced in Sec. 4.1. We annotate the robust accu-
racy evaluated on adversarial examples in Fig. 1 where the
attack precision denotes the precision for generating attacks
which are adopted to attack the same model quantized to
another inference precision. The diagonal elements denote
the robust accuracy with the same attack/inference precision
and the non-diagonal elements denote the robust accuracy
under transferred attacks from different precisions.



Observations. As observed from Fig. 1 (a)~(c), we can
find that (1) training and attacking at the same low precisions
indeed notably degrades the robust accuracy, as shown in
the diagonals of Fig. 1, aligning with observations in [38];
(2) it’s more difficult for adversarial attacks generated under
one precision to fool the same adversarially trained model
quantized to a different precision, regardless of the relative
difference between the two precisions; (3) the poor trans-
ferability is consistent across different adversarial training
methods of the model and attacks; and (4) the average ro-
bust accuracies of all precisions under white-box attacks are
consistently higher than the full-precision models trained
with the corresponding adversarial training methods, indi-
cating that randomly selecting an inference precision can
potentially provide effective defense.The full-precision accu-
racies of PreActResNet-18 trained with PGD-7/FGSM-RS
are 51.2%/47.1%, respectively.

Analysis. The key conclusion is that for white-box attacks,
adversarial attacks generated at one precision transfer poorly
to another precision. We hypothesize that this poor transfer-
ability is because adversarial perturbations are shielded by
the quantization noise between the two precisions, which can
not be effectively learned by gradient-based attacks. In par-
ticular, for a k-bit linear quantizer, the quantized activation
A, (the same for weights) can be formulated as A, = Si L%L

. . . A A
where [ -] is the rounding operation and S = =24—mi s

the scale factor. For standard quantization, gradient-based
attacks can effectively learn the rounding effect via straight-

through estimation [74], i.e. OL -, OL where L is the loss

* 9A T 9A,°
function. However, the quantization noise S, L%T - Sul SA”'I
between two different precisions m-bit and n-bit cannot be ef-
fectively learned in a gradient-based manner, thus adversarial
perturbations can be shielded by the quantization noise.

2.4 RPS towards robust DNNs

Motivated by the poor transferability between different
precisions of an adversarially trained model, we propose an
RPS algorithm to boost both model robustness and efficiency
via enabling random DNN quantization as an in-situ model
switch during training and inference.

RPS training. We propose an RPS training pipeline to
(1) maintain a decent natural accuracy when the model is
directly quantized to different precisions during inference,
and (2) further increase the difficulty of transferring adver-
sarial examples between different precisions. To this end,
we adversarially train a model from scratch via (1) randomly
selecting a precision from a candidate set in each iteration
for generating adversarial examples and updating the model
with the selected precision, and (2) equipping the model with
switchable batch normalization (SBN) [21, 30] to indepen-
dently record the statistics of different precisions given their
corresponding adversarial examples. In particular, randomly
selecting a training precision improves the capability of in-
stant precision switch during inference and SBN enlarges
the gap between different inference/attack precisions inspired
by [21,30,70] which separately handles the statistics of dif-
ferent inputs. As shown in Fig. 1 (d), the same adversarially
trained model equipped with RPT shows larger robust gaps
between different inference/attack precisions, especially un-

der larger precision, as compared to the corresponding ones
in Fig. 1 (c). Note that during inference, the multiplication
and addition operations of SBN can be fused into the scale
factors of linear quantizers [29] and the model bias, respec-
tively, thus does not require additional modules over existing
low precision accelerators.

RPS inference. Given a model adversarially trained via
our RPS training method termed RPT, the proposed RPS
inference method dubbed RPI randomly selects one preci-
sion from an inference precision set to quantize the model’s
weights and activations during inference. Based on the anal-
ysis in Sec. 2.3, randomly selecting an inference precision
can greatly degrade the effectiveness of adversarial attacks as
long as the attacks are not generated under the same precision,
as consistently observed in Figs. 1.

The RPS training and inference algorithms (i.e., RPT and
RPI) on top of PGD-7 [40] adversarial training are summa-
rized in Alg. 1, which is similar when applying on top of
other adversarial training methods.

2.5 Instant trade-offs between robustness and
efficiency

In addition to win both robustness and efficiency, another
benefit of our RPS algorithm is the instant trade-off capability
between DNNs’ robustness and efficiency during run-time to
adapt to (1) the safety conditions of the external environments
and (2) the remaining resource (e.g., battery power) on the
device. Specifically, our RPS achieves this via (1) switching
to lower precisions when enabling random precision infer-
ence to trade robustness in less dangerous environments for
a higher average efficiency, or (2) directly adopting a static
low precision training under safe environments to pursue
merely high efficiency. This property can be highly desir-
able in real world applications especially intelligent IoT ones.
We will next discuss the proposed accelerator that can not
only improve the hardware execution efficiency of DNNs
resulting from our RPS algorithm but also set a new record
of precision-scalable acceleration.

3. 2-IN-1 ACCELERATOR: ARCHITECTURE

In this section, we introduce our proposed accelerator ar-
chitecture dedicated for variable-precision DNNs (e.g., RPS
equipped DNNSs in Sec. 2) to achieve much improved accel-
eration efficiency. In particular, we first identify and analyze
the bottlenecks of existing precision-scalable accelerators in
Sec. 3.1, and present a new MAC unit architecture in Sec. 3.2
and an automated accelerator optimizer in Sec. 3.3 that to-
gether tackles the aforementioned bottlenecks.

3.1 Bottlenecks of SOTA precision-scalable ac-
celerators

Despite the impressive performance achieved by SOTA
precision-scalable accelerators [32,35,44,45,55,56,58,59],
they are still limited in their achievable acceleration perfor-
mance especially when accelerating more complex variable-
precision DNNss, e.g., RPS equipped DNNs in which all the
layers may switch their precision to any possible precision in
a candidate set during inference. The bottlenecks of SOTA
precision-scalable accelerators are described below.

3.1.1 Dilemma between flexibility and performance



Algorithm 1 The RPS Algorithm (i.e., RPT and RPI)

Require: Training dataset D;,4;,, model fy, precision set
Setg, total training epochs T, step size a, adversarial
dataset D .4, generated on fy by attackers

1: === RPS Training ===

2: Equip fp with SBN

3: for epoch e [1,T] do

4: for (x,y) € Dyyqin do

5 Randomly select a precision ¢ from Setp
6: Obtain f,/ by quantizing fp to g-bit

7: 6 =0 or random initialized

8: forr € [1,7] do

9: 6:clip6{6+a/-sign(V(;{’(fg(x+6),y))}
10: end for
11: Q:O—Vgt’(fg(x+6),y)
12: end for
13: end for
14: === RPS Inference ===
15: for x,4, € D44, do

_.
a

Randomly select a precision g from Setgp
Obtain f,] by quantizing fy to g-bit
Evaluate 9 = f (xqav)

: end for

return {y}
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~

—_—
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Bottleneck. While various-precision DNNs have gained
growing interest thanks to their advantages of enabling instan-
taneous energy-accuracy trade-off which is highly desirable
in many DNN applications such as DNN-powered IoT ones,
existing precision-scalable accelerators still struggle in the
dilemma between their favored flexibility (i.e., support a large
set of precisions) and achieved acceleration performance.

Analysis. SOTA precision-scalable accelerators can be cat-
egorized into two classes, i.e., temporal and spatial designs.
The temporal designs [32, 58] adopt bit-serial MAC units to
execute a part of the bit operations between two operands
during each cycle and then accumulate the results temporally
via additional shift logic circuits to support variable precision
inference; while the spatial architectures [44,59] first split the
execution of high precision multiplications into several 2-bit
multipliers, and then exploit combinational logic circuits to
dynamically compose and decompose the 2-bit multipliers to
construct variable-precision MAC units. Both designs have
their advantages and disadvantages:

On the one hand, temporal designs are inferior in their
achieved throughput under lower precisions (<8-bit) com-
pared with spatial designs as validated in [7], since the area
of their required shifters and accumulators are determined by
their supported highest precision and thus can dominate the
area cost, limiting their efficiency normalized over area [59].
On the other hand, spatial designs can only support a limited
set of predefined precisions, e.g., 2-/4-/8-/16-bit for Bit Fu-
sion [59], if considering an affordable cost for their required
configurability logic circuits due to the spatial constraints of
their MAC units, while the precision choices in temporal de-
signs are more flexible as higher precisions can naturally be
supported by using more temporal cycles. Therefore, there ex-
ists a dilemma between the achieved flexibility and efficiency
in SOTA precision-scalable accelerators.
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Validation. To validate the above analysis, we show the
throughput under different precisions (the same for weights
and inputs) of two representative spatial and temporal precision-
scalable accelerators (i.e., Bit Fusion [59] and Stripes [32])
in Fig. 2, when accelerating ResNet-50 on ImageNet. The
detailed simulation settings can be found in Sec. 4.1. We
can observe that the spatial design, Bit Fusion, (1) achieves
a higher throughput compared with Stripes under its sup-
ported precisions (i.e., <8-bit, the most commonly adopted
precisions in quantized DNNs [5, 16,33,51]; (2) Bit Fusion
leads to under-utilization of the hardware resources under
its unsupported precisions where it has to adopt the closest
supported but higher precision; (3) Bit Fusion shows inferior
throughput under precisions larger than 8-bit since it has to
execute each Bit Bricks four times when the operands’ pre-
cision is higher than 8-bit. In contrast, while the temporal
design, Stripes, is inferior to Bit Fusion under Bit Fusion’s
supported low precisions, it scales well with the precision,
e.g., a consistent improvement in throughput as the execution
precision decreases. This set of experiments demonstrates
that SOTA precision-scalable accelerators inevitably suffer
from the dilemma to trade-off between their achieved flexibil-
ity and efficiency, motivating our proposed new accelerator.

3.1.2  Heavy shift-add overhead for scalable-precision

Bottleneck. To support variable-precision configurabil-
ity, existing precision-scalable accelerators require a heavy
shift-add overhead, e.g., the shifters in the bit-serial units
of the temporal designs [32] and the shifters for composing
various 2-bit multipliers in the spatial designs [59] introduce
significant or even dominant area and energy costs.

Analysis from related works. The size of the required
shifters and accumulators in the femporal designs are de-
termined by its highest supported precision and thus can
dominate the area cost [59], e.g., the shifter and the accu-
mulator use up around 90% of the total area in a temporal
design supporting up to 16-bit, greatly limiting their achiev-
able benefits and leading to inferior normalized efficiency per
area. Similar observations have been drawn in [7] that com-
pared with spatial designs, temporal designs have a worse
normalized performance, i.e., throughput/area. On the other
hand, for spatial designs, [7] shows that their MAC unit can
require up to 4.4x the area of a standard MAC unit due to
the overhead of their scalable units using sub-computation
parallelism, and [55] also finds that the shift-add logic circuit
in Bit Fusion for supporting precision-scalable configuration
occupies a surprisingly large area (67%) and consumes a
majority of power consumption (79%). These observations
motivate us to explore a new precision-salable accelerator to
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reduce the shift-add logic overhead and thus to better allocate
the limited area for more MAC units.

Validation. In Fig. 3, we show the area breakdown of the
MAC units in Bit Fusion [59], a temporal design reported
by Bit Fusion, as well as our proposed architecture intro-
duced in Sec. 3. We can see that the shift-add logic occupies
60.9%/67.0% of the total area in the MAC units of the tem-
poral/spatial designs. In contrast, our design reduces the area
of shift-add logic to 39.7% via the techniques proposed in
Sec. 3, thus leading to a better performance/area.

3.1.3  Fixed or Limited dataflow optimization

Bottleneck. The dataflow of DNN accelerators can largely
impact their acceleration efficiency [41]. For variable-precision
DNNs (e.g., RPS equipped ones), each layer might be exe-
cuted at any precision of the candidate precision set, making
it more challenging to find an optimal dataflow for all the
cases. For example, a 20-layer DNN with 5 precision choices
can require up to a total of 100 different dataflows for achiev-
ing the best average efficiency, in contrast to only 20 for a
static layer-wise mixed-precision DNN.

Analysis. As analyzed in Eyeriss [11], dataflows can be
described as the tiling strategies, including the loop order and
tiling factors, across each memory hierarchy. Most of existing
precision-scalable accelerators adopt a fixed dataflow within
their memory hierarchies or only conduct a limited dataflow
optimization. In particular, [32,55, 58] all use a fixed NoC
(Network-on-Chip as defined in [11]) design, i.e., fixing the
tiling strategies along both the two dimensions of the MAC
array; and Bit Fusion [59] provides a dataflow optimization
tool which only considers the loop order optimization for
the global buffer and thus lacks flexible dataflow support for
other memory hierarchies. Considering that different net-
works/layers with different precisions might favor a different
dataflow, a more comprehensive optimizer is necessary to
find the optimal dataflow for further boosting improving the
efficiency of precision-scalable accelerators.

3.2 The proposed MAC unit architecture

In this subsection, we introduce the proposed MAC unit
architecture. Specifically, we show how a vanilla spatial-
temporal MAC unit architecture in Sec. 3.2.1 is evolved into
our proposed MAC unit architecture step by step through
the optimization methods in Sec. 3.2.2 ~ 3.2.3, and finally
present the overall accelerator architecture in Sec. 3.2.4.

3.2.1 A spatial-temporal design

Key idea. As analyzed in Sec. 3.1.1, there exists an in-
evitable trade-off between bit-level flexibility and acceler-
ation efficiency in temporal and spatial designs. As both
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Figure 4: The MAC unit of the temporal design, spatial
design, and our spatial-temporal design which spatially tiles
the temporal units to marry the advantages of both temporal
and spatial designs for variable precision execution. For 8-bit
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cycles for the temporal, spatial, and our design, respectively.
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flexibility and efficiency are critical for real applications, we
propose a new spatial-temporal MAC unit architecture which
spatially tiles the temporal units to combining the advantages
of both temporal and spatial designs. In Fig. 4, we show an
overview of the MAC unit in the (a) temporal, (b) spatial,
and (c¢) our proposed spatial-temporal designs. We tile the
temporal units, i.e., bit-serial units, in the same manner as the
Bit Bricks in Bit Fusion [59] so that they can be dynamically
composed to support variable precisions, e.g., each of the
four bit-serial units takes four cycles to calculate a 2-bit X
2-bit partial product, the results of which are then fused via
shift and accumulation to obtain the final 4-bit X 4-bit results.

Advantages of the spatial-temporal design. First, our
spatial-temporal design maintains a high flexibility in the
execution precision choices. Spatial designs [59] can only
support limited precision choices (like 2-/4-/8-/16-bit) while
our design can flexibly support more commonly used pre-
cision, e.g, each of the four bit-serial units can take three
cycles to calculate a total of four 3-bit X 3-bit products, or
one 6-bit 6-bit product via dynamic composition. Second,
the smaller size (i.e., the supported maximal precision) of
the bit-serial units in our spatial-temporal design will help
mitigate the area bottleneck caused by the shift-add logic for
precision configuration. In particular, one major bottleneck of
temporal designs when supporting a high bit-level flexibility
is that their shifters and accumulators within each bit-serial
module are determined by their highest supported precision,
e.g., dominating a 90% of the area in a 16-bit bit-serial unit,
as pointed out by [59]. Our spatial-temporal design tack-
les this bottleneck via spatially composing bit-serial units of
smaller sizes, i.e., each bit-serial unit can support up to 4-bit
X 4-bit to constrain the maximal size required by the shifters.
More importantly, the number of the required shift-add logic

within the bit-serial unit and between different units for dy-
namic composition can be aggressively reduced with further
optimization as introduced in Sec. 3.2.2 and Sec. 3.2.3.
Note that Bit Fusion also adopts a temporal-spatial manner
for 16-bit inference by temporally executing 8-bit inference
with their spatial unit for four cycles to compose a 16-bit re-
sult to avoid more complex logic for precision configurability,
e.g., shifters of larger sizes. However, their temporal execu-
tion of the spatial units cannot benefit the bit-level flexibility
like our design which spatially tiles the temporal units.
Spatial-temporal scheduling for different precisions. In
our design, each bit-serial unit supports up to 4-bit x 4-bit cal-
culation and each MAC unit adopts up to four bit-serial units
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Figure 5: Reorganizing the bit-level split and allocation re-
duces the number of shifters by 1/n (n=4 in this case, denoting
the of partial sums) when handling the inputs and weights of
2m-bit. Here aX/b’ is the first m-bit LSB of inputs/weights

and af/b¥ is the remaining MSBs of the i-th partial sum.

for calculating one partial sum, i.e., supporting up to 8-bit x
8-bit calculation. For dealing with the precision higher than
8-bit, we follow Bit Fusion to temporally execute the whole
MAC unit and then accumulate their results, considering that
(1) the cost of more complex precision configurability under
higher precisions will be higher and (2) 8-bit or lower preci-
sions are sufficient for most DNN inference without accuracy
degradation [5, 16,33,51].

Next, we introduce the detailed schedule of our MAC
unit that is conducted spatially across the bit-serial units and
temporally across cycles under each precision. Specifically,
for operands with precisions no more than 4-bit, each bit-
serial unit will independently calculate one partial sum of the
final output; For operands with up to 6-bit X 6-bit / 8-bit X §-
bit, each of the four bit-serial units calculates a partial product
with up to 3-bit X 3-bit / 4-bit X 4-bit, and then all the partial
products will be composed to the final result via shift and
accumulation; For operands with more irregular precisions
like 5-bit x 5-bit, we split it into (3-bit+2-bit)x(3-bit+2-bit),
i.e., four bit-serial units will take the computation of 3-bit X
3-bit, 2-bit X 2-bit, and two 3-bit X 2-bit, respectively, and
similarly, operands with 7-bit can be split into (4-bit+3-bit);
and for operands higher than 8-bit, the calculation will be split
to no more than 8-bit and temporally executed by the whole
MAC unit as mentioned above, e.g., 12-bit X 12-bit can be
split into four 6-bit X 6-bit, each of which will be sequentially
executed by the MAC unit and then accumulated. The above
analysis also works for asymmetrical precisions, e.g., 4-bit X
2-bit which takes only two cycles for each bit-serial units to
complete the execution.

3.2.2  Opt-1: Reorganize bit-level split/allocation

Motivation. It’s important to improve bit-level split and al-
location of the inputs/weights for the MAC units in precision-
scalable accelerators, considering that the overhead of the
shifters and accumulators for precision configurability is cou-
pled with the workload patterns [7]. For example, if each
bit-serial unit in a MAC unit processes one bit-level partial
product of different outputs, their outputs need to be accumu-
lated by different accumulators, thus requiring a large area
overhead. Therefore, we aim to reorganize the workloads,

more specifically, the bit-level split and allocation strategy to
reduce the required shifters and accumulators in a MAC unit.

Calculating multiple partial sums in one MAC unit.
We increase the number of bit-serial units in each MAC unit
to simultaneously calculate multiple partial sums of the same
output pixel as shown in Fig. 5 (a), which implies that the
weights come from different kernel rows (R) and columns (S)
while the inputs come from different input channels (C) for
calculating the partial sums. Therefore, all the partial sums
can be directly accumulated in one accumulator regardless
of the execution precision. From a tiling strategy perspec-
tive, we explicitly tile the R, S, or C dimension in the MAC
unit for further improving the area/energy efficiency while
freeing up the used dataflow in the NoC (i.e., MAC array)
and global buffer levels for layerwise optimization as intro-
duced in Sec. 3.3. Such a flexibility is necessary for dataflow
optimization towards reducing the data movement cost of
each layer. More importantly, simultaneously calculating

multiple partial sums also bring out another opportunity to
aggressively reduce the required shifters as introduced below.

Reorganize the bit-level split and allocation. The num-
ber of shifters for the dynamic composition of bit-serial units
can be reduced via reorganizing the bit-level split and alloca-
tion strategy. Suppose that calculating the i-th partial sum of
an operand a; can be formulated as a; = a? x2™ +ak x2°
where a’ is the first m-bit LSB and a!’ is the remaining
MSBs, then the final result of one MAC unit can be formu-
lated as the sum of the totally n partial sums:

n-1
a2 s aloxa0)y pH x4 bl xal) ©)
i=0

- nil (aH bl x22m o Hplsam s ol pH s al bl x20) )
i=0
= "Z_:l(u{*bﬁ ) x22m +y§l(u{1b[’~) x2M +nz_:l(u{~b{1)x2’" +"Z_:l(ul!‘bil‘) x20 (5
i=0 i=0 i=0 i=0

The original design in Fig. 5 (a) corresponds to Eq. 4 where
totally 4n shifters are required for combining the outputs from
different temporal units, whereas the reformulation in Eq. 5
only requires 4 shifters. Inspired by this, instead of accumu-
lating different partial sums, we adopt a first-reduce-then-shift
strategy for the partial products of the same magnitude (i.e.,
requiring the same number of shifts) from different partial
sums are organized as a group which is mapped into a set of
bit-serial units as shown in Fig. 5 (b). In this way, the outputs
of the bit-serial units in a group can be directly summed to-
gether without any shifters and the final result of one MAC
unit is the combination of the outputs from different groups
via a group-wise shift-add logic. This is equivalent to accu-
mulate different partial sums in Fig. 5 (a) as formulated in
Eq. 4 but the number of shifters cross the bit-serial units for
precision configurability is reduced by 1/a as shown in Eq. 5.

3.2.3 Opt-2: Fuse the shift-add logic of bit-serial
units in one group

As introduced in Sec. 3.2.2, the outputs from each group
of the bit-serial units can be directly accumulated without
any shifter between the bit-serial units. This property brings
another significant benefit in that all the shift-add logic of the
bit-serial units in one group can be fused into one shift-add
logic, named group shift-add, as shown in Fig. 6 (the leftmost
zoom-in of one group). In particular, since the total number
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Figure 6: The overall architecture of the proposed 2-in-1 Accelerator.

of shifts is the same for all the bit-serial units in one group,
in each cycle the partial products of all the bit-serial units in
one group can be directly summed together and the fed into
the group shift-add module. Such an optimization reduces
the required number of shifters within the bit-serial units
by 1/n. The synthesized results show that our final MAC unit
design in Fig. 6 achieves 2.3x and 4.88Xx improvement in
throughput/area and energy-efficiency/operation, respectively,
compared with Bit Fusion under 8-bitx8-bit.

Note that (1) this optimization is specific to our design that
organizes the bit-serial units into groups without the necessity
of having unit-wise shifters and such opportunities do not
exist in previous temporal/spatial designs; and (2) although
the group shift-add can be potentially further combined with
the group-wise shift-add, this will also increase the critical
path and limit the system frequency. Thus, we keep them as
two separate parts in our design.

3.2.4 Overall architecture

The overall 2-in-1 Accelerator architecture is shown in
Fig. 6, where the data is packed by a dispatcher which is
implemented by a multiplexer to enable different granularities
(i.e., 1/2/4/8-bit) for accessing the data buffer, and then passed
to the MAC array as described in Sec. 3.2.1~ 3.2.3 for further
processing. To this end, our 2-in-1 Accelerator can (1) fully
achieve the “win-win” in robustness and efficiency on top of
the proposed RPS algorithm, and (2) support instantaneous
robustness-efficiency trade-offs as validated in Sec. 4.4.

3.3 The proposed automated optimizer

It is well-known that both the dataflow and micro-architecture
of a DNN accelerator is critical to its achievable efficiency.
For example, [41] shows that different dataflows can result in
a 10x difference in the accelerators’ efficiency. Meanwhile,
the number of all possible dataflows and micro-architectures
for an accelerator can easily explode [72], which can be time
consuming and might not even be practical to manually iden-
tify, and it can be greatly useful to have a generic accelerator
optimizer that can automatically search for both the optimal
dataflow and micro-architecture given the target acceleration
efficiency and hardware resource (e.g., area). To this end,
we propose an automated optimizer with two modes, i.e.,
(1) search for merely dataflows and (2) search for both the
dataflows and micro-architectures given an area budget.

Searching for merely dataflows. For this mode, we adopt
an evolutionary algorithm [43]. Specifically, the searchable
factors include the tiling factors for each data dimension and
the loop order for each memory hierarchy. Note that the op-

timal refresh location, which is the one occupying the most
memory size without causing overflow, can be automatically
derived since all the memory sizes are fixed in this mode.
If all possible refresh locations cause overflows, the corre-
sponding design is invalid and discarded. As shown in Alg. 2,
we start from a population of randomly initialized for-loop
descriptions and in each cycle, select the top 30% designs in
terms of efficiency as a new population, and then conduct (1)
crossover (i.e., generate a new design via randomly selecting
two designs from the population and inserting one design’s
loop order in one memory hierarchy or tiling factors of one
data dimension to the other design) and (2) mutation (i.e.,
generate a new design from a randomly selected dataflow via
randomly permuting its loop order in one memory hierarchy
or tiling factors of one data dimension to another choice).
After enlarging the pool to the original population size, we
will start a new cycle and iterate this process until reaching a
predefined maximal cycle number. Note that in both modes,
we adopt an open-sourced generic performance predictor of
DNN accelerators [75] to obtain the efficiency for a given
dataflow and micro-architecture pair.

Searching for both dataflows and micro-architectures.
The search engine under this mode can be built on top of that
for the above mode. Specifically, we predefine a design space
with a set of available choices for the MAC array size and
memory sizes in each memory hierarchy which are then syn-
thesized to acquire the unit energy and area; and then adopt
another evolutionary algorithm similar to Alg. 2 to explore the
design space, where the efficiency of an micro-architecture is
measured by calculating its average energy/throughput under
different precisions after optimizing the dataflow via Alg. 2.

Note that for a fair comparison with the baselines, in this
work we only optimize the dataflow of each workload and
adopt the same memory/MAC array area with our baselines.

4. EXPERIMENT RESULTS
4.1 Experiment Setup

4.1.1 Algorithm Setup

Networks & datasets. We evaluate our RPS algorithm on
three networks and three datasets which are the most com-
monly used ones in the robustness literature [40,57,68], i.e.,
PreActResNet-18 and WideResNet-32 on CIFAR-10/100 and
ResNet-50 on ImageNet. We use a linear quantizer [29] for
quantizing weights/activations to the same precision.

Training settings. We adopt four SOTA adversarial train-
ing methods, including FGSM [20], FGSM-RS [68], PGD-
7 [40], and Free [57] and apply our RPS algorithm on top of




Algorithm 2 Evolutionary Search for Dataflows

Require: Architecture arch, Workload (layer informa-
tion and execution precision), Total cycle number
Total_Cycle, Population size Psize

1: Initialize a population of data flow with different loop
orders and tiling factors according to the workload

2: for cycle € [1,Total_Cycle] do

3: Select the top 30% data flow from the population
based on the predicted efficiency of the workload

4: while size(population) < Psize do

5: Randomly select two dataflow, do crossover,
append to population if valid

6: Randomly select one data flow, do mutation, ap-

pend to population if valid
7: end while
8: end for
return The best data flow in the population

them. We follow their original papers for the adversarial train-
ing hyper-parameter settings and follow the model training
settings in [40] and [57] for CIFAF-10/100 and ImageNet.
Attack settings. We consider the strong attacks includ-
ing three white-box attacks PGD [40], AutoAttack [13],
CW [8] and one gradient-free attack Bandits [28], with differ-
ent numbers of iterations/restarts and permutation strengths
€ =8,12,16. We assume the adversary adopts random preci-
sion from the same inference precision set as our RPS without
losing generality since (1) any attack precision out of RPS’s
inference precision set will merely increase RPS’s robust ac-
curacy according to Fig. 1, and (2) while the adversary may
select precisions with better attacking success rates, our RPS
can also increase the probability of sampling more robust
precisions for stronger defense, here we assume both the
adversary and RPS adopt random precision for simplicity.

4.1.2  Accelerator Setup

Accelerator development and synthesis. In order to eval-
uate our proposed accelerator, we implement a custom cycle-
accurate simulator, aiming to model the behavior of the syn-
thesized circuits. The design parameters in the simulator are
obtained from gate-level netlist and SRAM which are gen-
erated based on a commercial 28nm technology using the
Synopsys Design Compiler and Memory compiler provided
by the foundry. Specifically, proper activity factor are set
at the input ports of the memory/computation units, and the
energy is calculated using PrimeTime [65].

Baselines. We benchmark with two SOTA precision-scalable

accelerators Bit Fusion [59] and Stripes [32], and one robustness-

aware accelerator DNNGuard [67]. For a fair comparison,
we adopt the same memory area and MAC array area with
Bit Fusion, and we modify the unit energy of Bit Fusion’s
official simulator to scale it from 45nm to 28nm following
the rule in [1]. For Stripes, thanks to the clear description of
the design in the paper and the easy representation, we build
a cycle-accurate simulator for it with the same memory/MAC
array area with Bit Fusion and our design, and optimize the
dataflow for its workloads with our automated optimizer.
Workloads. We adopt six networks (WideResNet-32 and
ResNet-18 on CIFAR-10 with 32x32 inputs and AlexNet,
VGG-16, ResNet-18/50 on ImageNet with 224224 inputs)

Table 1: Evaluating RPS on two networks and three adver-
sarial training methods FGSM [20], FGSM-RS [68], and
PGD-7 [40] on CIFAR-10 under different PGD attacks.

PreActResNet-18

WideResNet-32

Adversarial Natural PGD-20 PGD-100 Natural PGD-20 PGD-100
Training Method (%) (%) (%) (%) (%) (%)
FGSM 67.04 4148 41.37 66.76 40.78 40.55
FGSM + RPS 80.58 64.08 63.56 64.09 50.70 48.72
FGSM-RS 86.08 41.76 41.13 89.95 45.33 4477
FGSM-RS + RPS 82.11 59.33 59.32 87.87 60.07 59.12
PGD-7 82.02 51.17 50.93 85.25 54.61 54.36

PGD-7 + RPS 82.16 65.15 64.88 81.52 66.75 66.28

Table 2: Evaluating RPS on two networks trained with FGSM-
RS [68] and PGD-7 [40] on CIFAR-100.

PreActResNet-18 WideResNet-32
Natural PGD-20 PGD-100 Natural PGD-20 PGD-100

Adversarial

Training Method (%) (%) (%) Acc (%) (%) (%)
FGSM-RS 57.6 26.14 25.88 67.29 25.35 2478
FGSM-RS + RPS  51.09 36.75 37.18 64.95 39.18 38.36
PGD-7 56.31 27.97 27.77 60.36 31.06 30.86
PGD-7 + RPS 56.2 41.74 42.1 58.41 40.45 40.5

under 1~16-bit as our workloads.

4.2 [Evaluate 2-in-1 Accelerator’s algorithm

We evaluate the improvement in robustness via applying
the proposed RPS on top of SOTA adversarial training meth-
ods. Note that all the baselines are SOTA adversarial training
methods with full precision, i.e., no quantization is applied.
Our RPS adopts a precision set of 4~16-bit if not specifically
stated and we provide an ablation study of different choices
of precision sets in Sec. 4.2.4.

4.2.1 Benchmark on CIFAR-10/100/ImageNet

Benchmark on CIFAR-10. As summarized in Tab. 1, we
can observe that (1) RPS consistently enhances the robust
accuracy under PGD attacks, largely outperforming SOTA
adversarial training methods with full precision. In particular,
RPS achieves a 13.98%/12.14% higher robust accuracy under
PGD-20 attacks on PreActResNet-18 and WideResNet-32,
respectively, while notably improving the efficiency due to
the low precision execution as evaluated in Sec. 4.3; (2) RPS
also enhances the robust accuracy by 13.57%~22.60% under
PGD-20 attacks on top of FGSM/FGSM-RS. It is noteworthy
that although FGSM adversarial training can be easily inef-
fective against iteration-based attacks [34], our RPS can still
significantly improve its robust accuracy by 22.6%. In addi-
tion, we also benchmark with SOTA methods for improving
the robustness of quantized networks [38] and find that under
PGD-20 attack on CIFAR-10, our RPS achieves a 14.6% and
22.5% higher robust accuracy for € = 8 and 16, respectively,
on the same PGD-7 trained network as compared to the best
reported robust accuracy among all the settings in [38].

Benchmark on CIFAR-100. The observations on CIFAR-
100 are consistent with CIFAR-10. In particular, RPS achieves
10.61%/13.77% and 13.83%/9.39% higher robust accuracy
on top of FGSM-RS/PGD-7 training under PGD-20 attacks
on PreActResNet-18 and WideResNet-32, respectively.

Benchmark on ImageNet. We further evaluate RPS on
a larger scale dataset, i.e, ImageNet, as shown in Tab. 3.
We can observe that RPS achieves a triple-win in terms of
the natural accuracy, robust accuracy, and model efficiency
on top of both adversarial training methods. In particular,
RPS achieves a 7.65%/10.11% higher robust accuracy over



Table 3: Evaluating RPS on top of two adversarial training
methods (FGSM-RS [68] and Free [57]) on ResNet-50 under
PGD-10 and PGD-50 attacks with € =4 on ImageNet.

Adversarial Natural PGD-10 PGD-50
Training Method (%) (%) (%)
FGSM-RS 55.45 30.28 30.18
FGSM-RS + RPS  63.21 37.93 37.12
Free 60.21 32.77 31.88
Free + RPS 64.58 42.88 42.72

Table 4: Evaluating RPS under larger permutations on three
networks with trained by PGD-7 on CIFAR-10.

epsilon=12 epsilon=16
Network A.d'versarial Natural PGD-20 PGD-100 Natural PGD-20 PGD-100
Training Method (%) (%) (%) Acc (%) (%) (%)
PreAct PGD-7 7749 37.84 36.77 7539 27.28 2424
-ResNetl8  PGD-7 + RPS 7745 56.73 56.62 75.02 50.54 50.16
Wide PGD-7 81.8 39.73 38.49 78.91 28.92 25.82

-ResNet32  PGD-7 + RPS 78.26 53.74 52.42 75.34 46.82 44.85
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Figure 7: The natural and robust accuracy by PGD-7 training
equipped with RPS under different precision sets. Deep and
light colors denote robust and natural accuracy, respectively.

WideResNet32

FGSM-RS [68] and Free [57], respectively, under the PGD-
10 attack, indicating our RPS’s scalability and applicability
on large-scale and complex datasets.

4.2.2 Benchmark under larger permutations

We further evaluate RPS’s scalability under larger permu-
tations with PGD-7 training on CIFAR-10 as listed in Tab. 4.
Interestingly, RPS even achieves larger robustness improve-
ments. Tab. 4 shows that RPS leads to a 14.01%~18.89% and
17.90%~23.26% higher robust accuracy under PGD-20 at-
tacks with € = 12 and 16, respectively. Larger improvements
under stronger adversarial attacks validate RPS’s applicability
to more challenging environments.

4.2.3 Benchmark under more attacks

Considering many defense methods are found to be inef-
fective under stronger attack, we evaluate RPS against more
attack types with different permutation strength. As observed
from Tab. 5, RPS consistently improves the robust accuracy
across different attacks/models/distortions, e.g., a higher ro-
bust accuracy of 6.88%~9.12% under Auto-Attack, which is
one of the current strongest adaptive attack and more surpris-
ingly, 9.97%~18.87% under CW-Inf attack, where we find
the poor transferability between different attack/inference
precisions is more notable. In addition, RPS achieves a
5.01%~24.48% higher robustness accuracy under Bandits
attacks which is a gradient-free attack, indicating RPS does
not suffer from the obfuscated gradient problem [4]. In fact,
we find RPS does not show any characteristic behavior for
obfuscated gradient discussed in [4].

4.2.4 Influence of precision choices

Table 5: Evaluating RPS on two networks trained by PGD-7
under more strong attacks with e=8 and 12 on CIFAR-10.

PreActResNet-18

‘WideResNet-32

Attack Type PGD-7 PGD-7+RPS PGD-7 PGD-7 + RPS
AutoAttack (e=8)  47.18 54.56 51.66 58.54
AutoAttack (e=12)  27.59 35.83 30.71 39.83
CW-Inf (e=8) 57.88 71.44 62.13 72.10
CW-Inf (e=12) 46.70 65.57 50.14 66.99
Bandits (e=8) 59.75 71.75 63.49 68.50
Bandits (e=12) 46.04 70.52 49.77 67.01
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Figure 8: Normalized throughput comparison of Bit Fusion,
Stripes, and our 2-in-1 Accelerator on top of six networks
and four execution precisions.

Fig. 7 shows the natural and robust accuracy (under PGD-
20 attacks) of two networks with different precision sets,
on top of PGD-7 training on CIFAR-10. We can see that
(1) RPS consistently achieves a higher robust accuracy over
SOTA PGD-7 training under different settings; and (2) a
larger precision range for reducing the probability of hitting
the attackers’ precision is desired for improving robustness.

4.3 Evaluate 2-in-1 Accelerator’s architecture
4.3.1 Benchmark with Bit Fusion and Stripes

Throughput comparison. We compare the throughput of
Bit Fusion, Stripes, and our 2-in-1 Accelerator on top of six
networks and four execution precisions in Fig. 8. All the
throughput results are normalized to the ones of Bit Fusion.
We can observe that our design outperforms the baselines
across all the networks and precisions with 1.41x ~ 2.88x
and 1.15x ~ 4.59% higher throughput over Bit Fusion and
Stripes, respectively. Such improvement mainly comes from
(1) the high throughput/area of our proposed MAC unit archi-
tecture, and (2) the effectiveness of our automated optimizer
in reducing the memory stalls to fully utilize the capability of
our MAC unit. For example, when using ResNet-50 on Ima-
geNet with 4x4-bit, our MAC unit design boosts throughput
by 2.25% over Bit-Fusion, and the automated optimizer fur-
ther improves the throughput by 1.28 via reducing memory
stalls. In addition, we can observe that Bit Fusion shows bet-
ter throughput over Stripes under execution precisions lower
than 8-bit while showing inferior throughput at 16-bit, which
is consistent with the analysis in Sec. 3.1.1 that Bit Fusion
requires to execute each MAC unit four times for execution
precisions higher than 8-bit. Althought our accelerator adopts
a similar manner to deal with 16-bit, it can still achieve 1.15x
higher throughput over Stripes, validating the superiority of
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Figure 9: Normahzed energy efficiency comparlson of Bit
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networks and four execution precisions.
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Figure 10: Energy breakdown of our 2-in-1 Accelerator and
Bit Fusion on six networks executed with 4-bitx4-bit.

the proposed spatial-temporal design.

Energy efficiency comparison. We compare the energy
efficiency of Bit Fusion, Stripes, and our 2-in-1 Accelerator
on top of six networks and four execution precisions in Fig. 9.
All the energy efficiency results are normalized to the ones
of Bit Fusion. We can observe that our proposed architecture
consistently achieves the best energy efficiency across all the
networks and precisions with 1.91x ~ 7.58% and 1.25%x ~
2.85% energy efficiency over Bit Fusion and Stripes, respec-
tively. Here we fully optimize the dataflow of Stripes so that
it also outperforms Bit Fusion in terms of energy efficiency.

We also compare the energy breakdown between our de-
sign and Bit Fusion in Fig. 10. We can observe that although
DRAM access still dominates the total energy, the energy for
both computation in MAC and data movement (i.e., access
DRAM and SRAM) are all reduced over Bit Fusion. The
former is due to the higher energy efficiency/operation of our
MAC unit and the latter is due to (1) the new opportunities
in better mapping strategies brought by the proposed MAC
unit with better throughput/area and output reuse, and (2) the
effectiveness of our automated optimizer on a more flexible
dataflow search space.

Throughput evolution with the execution precision. To
further validate the scalability along different execution preci-
sions of our 2-in-1 Accelerator over spatial/temporal designs,
we show the throughput under different precisions (the same
weight/input precision) of Bit Fusion, Stripes, and our de-
sign when accelerating WideResNet-32 on CIFAR-10 and
ResNet-50 on ImageNet. As observed in Fig. 11, our 2-in-
1 Accelerator shows both superior efficiency and flexibility
as it (1) consistently outperforms both the baselines under
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Figure 11: Throughput under different precisions of Bit Fu-
sion, Stripes, and our 2-in-1 Accelerator for accelerating
WideResNet-32 on CIFAR-10 and ResNet-50 on ImageNet.
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Figure 12: 2-in-1 Accelerator’s instant robustness-efficiency
trade-off on top of WideResNet-32 and CIFAR-10.

all the precisions by up to 4.42x higher throughput, and (2)
achieves a consistent improvement in the throughput as preci-
sion decreases. In addition, under execution precisions lower
than 8-bit which are the common choices of recent quan-
tization works [5, 16,33, 51], our design shows more than
1.82x higher throughput compared with the best baseline;
under execution precisions higher than 8-bit which are infe-
rior choices for spatial designs as analyzed in Sec. 3.1.1, our
design still achieves higher throughput over Stripes, which
benefits from the spatial-temporal design of our MAC unit.

4.3.2 Benchmark with robustness-aware accelerators

Boosting both robustness and efficiency in one accelerator
is a significant feature and benefit of our 2-in-1 Accelerator.
We further benchmark with a SOTA robustness-aware accel-
erator DNNGuard [67] to show the superiority of our frame-
work. In particular, we compare the throughput/area of our
2-in-1 Accelerator and that of DNNGuard on AlexNet, VGG-
16, and ResNet-50 which are reported by [67]. We find that
our design achieves 36.5x/17.9x, 19.3x/9.5%, 12.8x/6.4x
higher throughput compared with DNNGuard when adopting
4~8-bit/4~16-bit for accelerating AlexNet, VGG-16, ResNet-
50, respectively. This indicates the superiority and practi-
cality of deploying our 2-in-1 Accelerator in real-world IoT
applications where both security and efficiency matters.



4.4 Instant robustness-efficiency trade-offs of
the 2-in-1 Accelerator

As analyzed in Sec. 2.5, our 2-in-1 Accelerator also fea-
tures the capability to enable instant robustness-efficiency
trade-offs at run-time to adapt to both the safety conditions of
the environments and the remaining power on the device. We
show an example of executing WideResNet-32 with CIFAR-
10 inputs on our 2-in-1 Accelerator with different execution
precisions (RPS with 4~16-bit, 4~12-bit ,4~8-bit, static 4-
bit) and record the robust accuracy and the (average) energy
efficiency. As shown in Fig. 12, our 2-in-1 Accelerator can in-
stantly switch between high precision sets, low precision sets,
and static low precision to balance robustness and efficiency
with a comparable natural accuracy (within 81.5%~84.7%).

5. RELATED WORKS

Adversarial attacks and defenses. [20] shows that small
permutations onto the inputs can mislead DNNs’ decisions,
which is known as adversarial attacks. Later, stronger at-
tacks, including both white-box [8, 13,40,46,50] and black-
box ones [3, 10, 23, 27, 28], are proposed to aggressively
degrade the accuracy of the target DNN models. To de-
fend DNNs against adversarial attacks, adversarial train-
ing [40, 57, 66, 68], which augments the training set with
adversarial samples generated during training, is currently
the most effective method. In parallel, other defense meth-
ods [6,17,24,36,37,42,63,69, 73] have also been proposed.
There has been a continuous competition between adversaries
and defenders, and the readers are referred to [2, 9] for more
attack/defense methods.

Robustness of quantized models. As both robustness and
efficiency are critical for most DNN applications, pioneer-
ing works have strived to design robust quantized DNNs. In
particular, [18, 48] propose robust binary neural networks
(BNNSs) and [53] adopts tanh-based quantization to increase
robustness, while these works have been observed to suffer
from the obfuscated gradient problem [4,49], which is a false
sense of security. Later, [38] finds that quantized DNNSs are
actually more vulnerable to adversarial attacks due to the error
amplification effect, i.e., the magnitude of adversarial pertur-
bation is amplified when passing through the DNN layers.
To tackle this effect, [38, 60] propose robustness-aware reg-
ularization methods for DNN training, and [61] retrains the
network via feedback learning [62]. In addition, [47] searches
for layerwise precision and [22] constructs a unified formu-
lation to balance and enforce the models’ robustness and
compactness, respectively. In contrast, our RPS algorithm
leverages quantization to aggressively enhance robustness,
which even largely surpasses the full-precision models.

Precision-scalable accelerators. To support variable pre-
cisions for different DNN models/layers, various precision-
scalable accelerators have been proposed to dynamically and
flexibly handle the varied workloads, which can be catego-
rized into two classes, i.e., temporal and spatial designs. For
temporal designs, pioneering works, such as Stripes [32],
LOOM [58], and Tartan [14], adopt bit-serial MAC units to
provide precision configurability, which can flexibly handle
any prevision yet suffer from inferior efficiency per area
over their spatial counterparts [7, 59], and more recently
UNPU [35] fabricates a bit-serial DNN accelerator to sup-
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port variable weight precisions while the activations use full
precision. For spatial designs, Bit Fusion [59] proposes to
use combinational logic to dynamically compose and decom-
pose 2-bit multipliers to construct variable-precision MAC
units; Later, BitBlade [55] improves Bit Fusion via pulling
out the shifting logic of each MAC unit and sharing it across
the multipliers to reduce the area overhead; DVAFS [44,45]
propose to turn off parts of the multipliers at low precision
to increase the energy efficiency at a constant throughput;
and DeepRecon [56] skips parts of the pipeline stages of a
floating-point-multiplier to support either one 16-bit, two 12-
bit, or four 8-bit multiplications. Detailed benchmarks for
different precision-scalable MAC unit architectures can be
found in [7]. Our proposed MAC unit architecture marries
the best of both temporal and spatial designs and is integrated
to construct a new precision-scalable accelerator, which con-
sistently outperforms SOTA designs under various settings.

Robustness-aware DNN accelerators. Despite their im-
portance for real-world applications, the art robustness-aware
DNN accelerators is still in its infancy. Pioneering works [19,
54,67] aim to defend against adversarial attacks within DNN
accelerators at a cost of additional detection networks/modules.
In particular, [54] proposes an end-to-end framework based
on the voting results of multiple detectors , in parallel with the
execution of the target DNN to detect malicious inputs dur-
ing inference; [67] proposes an elastic heterogeneous DNN
accelerator architecture to orchestrate the simultaneous ex-
ecution of the target DNN and the detection network for
detecting adversarial samples via an elastic management of
the on-chip buffer and PE computing resources; and [19]
builds an algorithm-architecture co-designed system to de-
tect adversarial attacks during inference via a random forest
module applied on top of the extracted features from the
run-time activations. In addition, [52] builds a robustness-
aware accelerator based on BNNs which, however, suffers
from the obfuscated gradient problem [4] and the work in [25]
strives to speed up the attack generation instead of the defense.
Nevertheless, all the existing defensive accelerators rely on
additional detection networks/modules to detect adversarial
samples at inference time, and thus inevitably introduce ad-
ditional energy/throughput/area overheads that compromise
efficiency. In contrast, our work exploits the potential robust-
ness within a DNN model via the proposed RPS algorithm
to win both robustness and efficiency within one accelerator
without introducing any extra modules.

6. CONCLUSION

Existing DNN accelerators mostly tackle only either ef-
ficiency or adversarial robustness while neglecting or even
sacrificing the other. In this work, we propose a 2-in-1 Accel-
erator, aiming at winning both the adversarial robustness and
efficiency of DNN accelerators. 2-in-1 Accelerator integrates
a Random Precision Switch (RPS) algorithm that can effec-
tively defend DNNs against adversarial attacks and a new
precision-scalable accelerator featuring a spatial-temporal
MAC unit architecture to boost both the achievable efficiency
and flexibility and (2) a systematically optimized dataflow
generated by our generic accelerator optimizer. Extensive
experiments and ablation studies validate our 2-in-1 Acceler-
ator’s effectiveness and advantages.
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