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2-in-1 Accelerator: Enabling Random Precision Switch for
Winning Both Adversarial Robustness and Efficiency

ABSTRACT

The recent breakthroughs of deep neural networks (DNNs)
and the advent of billions of Internet of Things (IoT) de-
vices have excited an explosive demand for intelligent IoT
devices equipped with domain-specific DNN accelerators.
However, the deployment of DNN accelerator enabled intel-
ligent functionality into real-world IoT devices still remains
particularly challenging. First, powerful DNNs often come
at a prohibitive complexity, whereas IoT devices often suffer
from stringent resource constraints. Second, while DNNs
are vulnerable to adversarial attacks especially on IoT de-
vices exposed to complex real-world environments, many
IoT applications require strict security. Existing DNN ac-
celerators mostly tackle only one of the two aforementioned
challenges (i.e., efficiency or adversarial robustness) while
neglecting or even sacrificing the other. To this end, we pro-
pose a 2-in-1 Accelerator, an integrated algorithm-accelerator
co-design framework aiming at winning both the adversarial
robustness and efficiency of DNN accelerators. Specifically,
we first propose a Random Precision Switch (RPS) algo-
rithm that can effectively defend DNNs against adversarial
attacks by enabling random DNN quantization as an in-situ
model switch during training and inference. Furthermore, we
propose a new precision-scalable accelerator featuring (1) a
new precision-scalable MAC unit architecture which spatially
tiles the temporal MAC units to boost both the achievable
efficiency and flexibility and (2) a systematically optimized
dataflow that is searched by our generic accelerator optimizer.
Extensive experiments and ablation studies validate that our
2-in-1 Accelerator can not only aggressively boost both the
adversarial robustness and efficiency of DNN accelerators un-
der various attacks, but also naturally support instantaneous
robustness-efficiency trade-offs adapting to varied resources
without the necessity of DNN retraining. We believe our
2-in-1 Accelerator has opened up an exciting perspective of
robust and efficient accelerator design.

1. INTRODUCTION

Deep neural networks’ (DNNs) performance breakthroughs
and the advent of billions of Internet of Things (IoT) devices
have triggered an increased demand for DNN-powered in-
telligent IoT devices. However, DNNs’ deployments into
real-world IoT devices still remain challenging. First, pow-
erful DNNs’ prohibitive complexity stands at odd with the
stringent resource constraints of IoT devices. Second, while
DNNs are vulnerable to adversarial attacks, many IoT appli-
cations require strict security under dynamic and complex

real-world environments. Therefore, techniques boosting
both DNNs’ efficiency and robustness are highly desired.

To tackle the first challenge above, various domain-specific
DNN accelerators [11, 31] have been developed to customize
their algorithm-to-mapping methods (i.e., dataflows) and
micro-architecture towards the workloads of DNNs to achieve
orders-of-magnitude acceleration efficiency improvement
over general computing platforms. In parallel, various tech-
niques have been proposed to defend DNNs against adver-
sarial attacks showing promising performance to address the
aforementioned robustness challenge. Among them, adver-
sarial training [40,57,66,68], which augments the training set
with adversarial samples generated on-the-fly during train-
ing, is currently the most effective method. Furthermore,
recognizing that both efficiency and robustness are critical to
many DNN-powered intelligent applications, pioneering ef-
forts [19, 54, 67] attempt to defend against adversarial attacks
within DNN accelerators. Nevertheless, the art of robustness-
aware DNN accelerators is still in its infancy, and existing
defensive accelerators against adversarial attacks rely on addi-
tional detection networks/modules to detect/defend adversar-
ial samples during inference, thus inevitably compromising
their accelerator efficiency.

Considering that quantized DNNs are very promising as
efficient DNN solutions and also highly desirable in many
IoT applications, we first ask an intriguing question: “Is
it possible to leverage quantization to boost DNNs’ robust-
ness?", despite the fact that quantized DNNs have been shown
to degrade the models’ adversarial robustness unless be-
ing equipped with sophisticated regularization schemes [61].
This is inspired by (1) [12, 36, 69] showed that random per-
mutations on the inputs can certifiably defend DNNs against
adversarial attacks, and (2) [69] found that weight perturba-
tions are a good complement for input perturbations, because
they can narrow the robust generalization gap as weights
globally influence the losses of all examples. We thus hy-
pothesize that quantization noise can be leveraged to provide
similar effects as permutations to the weights/activations and
thus enhance DNNs’ robustness, motivating our random pre-
cision switch (RPS) algorithm that wins both efficiency and
robustness of quantized DNNs. Furthermore, motivated by
the bottlenecks of existing precision-scalable accelerators, we
further develop a new accelerator to enhance the acceleration
efficiency of RPS equipped DNNs. Specifically, we make the
following contributions:

• We propose an integrated algorithm-accelerator co-design
framework dubbed 2-in-1 Accelerator, aiming at win-
ning both the adversarial robustness and acceleration
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efficiency of DNN accelerators.

• 2-in-1 Accelerator’s algorithm: We provide a new per-
spective regarding the role of quantization in DNNs’
robustness, and propose a Random Precision Switch
(RPS) algorithm that can effectively defend DNNs against
adversarial attacks by enabling random DNN quantiza-
tion as an in-situ model switch during training and infer-
ence. RPS equipped DNNs with fixed-point precisions
even outperform the full-precision models’ robustness.

• 2-in-1 Accelerator’s architecture: We develop a new
precision-scalable accelerator highlighting (1) a new
multiply-accumulate (MAC) unit architecture which
spatially tiles the temporal MAC units to boost both the
achievable efficiency and precision-scalable flexibility
and (2) a systematically optimized dataflow searched by
our generic accelerator optimizer, largely outperform-
ing existing precision-scalable accelerators.

• We perform a thorough evaluation of 2-in-1 Accel-
erator on six DNN models and three datasets under
various adversarial attacks, and find that our 2-in-1
Accelerator achieves up to 7.58× better energy effi-
ciency, 4.59×/36.5× higher throughput over precision-
scalable/robustness-aware accelerators, and 24.48% im-
provement in robust accuracy. We believe that our 2-in-
1 Accelerator framework has not only demonstrated an
appealing and effective real-world DNN solution, but
also opened up an exciting perspective for winning both
robustness and efficiency in DNN accelerators

2. 2-IN-1 ACCELERATOR: ALGORITHM

In this section, we present our RPS algorithm that can
simultaneously boost DNNs’ robustness and efficiency and
thus serve as the algorithmic enabler of our 2-in-1 accelerator.

2.1 Preliminaries of adversarial robustness

[20] finds that DNNs are vulnerable to adversarial attacks,
i.e., applying a small permutation X within a norm ball (‖X‖ ≤
n) to the inputs can mislead DNNs’ decisions. For example,
the adversarial permutation X under the ℓ∞ attack [20] is
generated by maximizing the objective:

max
‖X ‖∞≤n

ℓ( 5\ (G + X), H) (1)

where ℓ is the loss function, \ is the weights of a DNN 5 , G
and H are the input and the corresponding label, respectively.

To boost DNNs’ robustness against adversarial attacks, ad-
versarial training optimizing the following minimax problem
is currently the strongest defense method [4]:

min
\

∑

8

max
‖X ‖∞≤n

ℓ( 5\ (G8 + X), H8) (2)

2.2 Inspirations from previous works

Previous works show that random smoothing or transfor-
mations [12, 24, 36, 71] on the inputs help robustify DNNs
and [69] shows that weight perturbations are good comple-
ments for input perturbations as they globally influence the
learning loss of all inputs. Following this spirit, [15,26,69] ex-
plicitly introduce randomness and permutations in the models’

(a) Trained with FGSM-RS
Attack with PGD-20

(b) Trained with PGD-7
Attack with CW-Inf

(c) Trained with PGD-7
Attack with PGD-20

(d) Trained with PGD-7 + RPT
Attack with PGD-20

Figure 1: Visualizing the transferability of adversarial attacks
between different precisions, where the robust accuracy under
different training methods (PGD-7 [40] and FGSM-RS [68])
and attacks (PGD-20 [40] and CW-Inf [8]) is annotated.

weights or activations. On the other hand, [39, 64, 66] show
that model ensemble can help improve robustness at a cost
of efficiency due to the required multiple models. These two
aspects inspire us to rethink the connection between quanti-
zation’s role in the permutations of DNN weights/activations
and model robustness and to view a DNN model under differ-
ent precisions as an in-situ ensemble to boost both robustness
and efficiency. As introduced in Sec. 2.4, the proposed RPS
algorithm can be seen as an in-situ model switch among
different precision choices.

2.3 Poor transferability between precisions

To validate our above hypothesis that a DNN model un-
der different precisions can be seen as an in-situ ensemble,
we empirically check the robustness of such an ensemble by
evaluating the transferability of adversarial attacks between
different precisions. As elaborated below, we find that the ad-
versarial attacks transfer poorly between different precisions
of an adversarially trained model, regardless of its adversarial
training methods.

Experiment settings. We conduct experiments that adopt
adversarial attacks generated under one precision to attack
the same adversarially trained model quantized to another
precision. In particular, we apply PGD-20 [40] and CW-
Inf [8] attacks, to PreActResNet-18 (following [68]) which is
adversarially trained using different adversarial training meth-
ods [40,68] using an 8-bit linear quantizer [29] under training
settings introduced in Sec. 4.1. We annotate the robust accu-
racy evaluated on adversarial examples in Fig. 1 where the
attack precision denotes the precision for generating attacks
which are adopted to attack the same model quantized to
another inference precision. The diagonal elements denote
the robust accuracy with the same attack/inference precision
and the non-diagonal elements denote the robust accuracy
under transferred attacks from different precisions.
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Observations. As observed from Fig. 1 (a)∼(c), we can
find that (1) training and attacking at the same low precisions

indeed notably degrades the robust accuracy, as shown in
the diagonals of Fig. 1, aligning with observations in [38];
(2) it’s more difficult for adversarial attacks generated under

one precision to fool the same adversarially trained model
quantized to a different precision, regardless of the relative
difference between the two precisions; (3) the poor trans-

ferability is consistent across different adversarial training
methods of the model and attacks; and (4) the average ro-

bust accuracies of all precisions under white-box attacks are
consistently higher than the full-precision models trained
with the corresponding adversarial training methods, indi-
cating that randomly selecting an inference precision can
potentially provide effective defense.The full-precision accu-
racies of PreActResNet-18 trained with PGD-7/FGSM-RS
are 51.2%/47.1%, respectively.

Analysis. The key conclusion is that for white-box attacks,
adversarial attacks generated at one precision transfer poorly
to another precision. We hypothesize that this poor transfer-
ability is because adversarial perturbations are shielded by
the quantization noise between the two precisions, which can
not be effectively learned by gradient-based attacks. In par-
ticular, for a :-bit linear quantizer, the quantized activation

�@ (the same for weights) can be formulated as �@ = (: b
�
(:
e,

where b·e is the rounding operation and (: =
�<0G−�<8=

2:−1
is

the scale factor. For standard quantization, gradient-based
attacks can effectively learn the rounding effect via straight-

through estimation [74], i.e., m!
m�

≈ m!
m�@

, where ! is the loss

function. However, the quantization noise (<b
�
(<

e − (= b
�
(=
e

between two different precisions <-bit and =-bit cannot be ef-
fectively learned in a gradient-based manner, thus adversarial
perturbations can be shielded by the quantization noise.

2.4 RPS towards robust DNNs

Motivated by the poor transferability between different
precisions of an adversarially trained model, we propose an
RPS algorithm to boost both model robustness and efficiency
via enabling random DNN quantization as an in-situ model
switch during training and inference.

RPS training. We propose an RPS training pipeline to
(1) maintain a decent natural accuracy when the model is
directly quantized to different precisions during inference,
and (2) further increase the difficulty of transferring adver-
sarial examples between different precisions. To this end,
we adversarially train a model from scratch via (1) randomly
selecting a precision from a candidate set in each iteration
for generating adversarial examples and updating the model
with the selected precision, and (2) equipping the model with
switchable batch normalization (SBN) [21, 30] to indepen-
dently record the statistics of different precisions given their
corresponding adversarial examples. In particular, randomly
selecting a training precision improves the capability of in-
stant precision switch during inference and SBN enlarges
the gap between different inference/attack precisions inspired
by [21, 30, 70] which separately handles the statistics of dif-
ferent inputs. As shown in Fig. 1 (d), the same adversarially
trained model equipped with RPT shows larger robust gaps
between different inference/attack precisions, especially un-

der larger precision, as compared to the corresponding ones
in Fig. 1 (c). Note that during inference, the multiplication
and addition operations of SBN can be fused into the scale
factors of linear quantizers [29] and the model bias, respec-
tively, thus does not require additional modules over existing
low precision accelerators.

RPS inference. Given a model adversarially trained via
our RPS training method termed RPT, the proposed RPS
inference method dubbed RPI randomly selects one preci-
sion from an inference precision set to quantize the model’s
weights and activations during inference. Based on the anal-
ysis in Sec. 2.3, randomly selecting an inference precision
can greatly degrade the effectiveness of adversarial attacks as
long as the attacks are not generated under the same precision,
as consistently observed in Figs. 1.

The RPS training and inference algorithms (i.e., RPT and
RPI) on top of PGD-7 [40] adversarial training are summa-
rized in Alg. 1, which is similar when applying on top of
other adversarial training methods.

2.5 Instant trade-offs between robustness and
efficiency

In addition to win both robustness and efficiency, another
benefit of our RPS algorithm is the instant trade-off capability
between DNNs’ robustness and efficiency during run-time to
adapt to (1) the safety conditions of the external environments
and (2) the remaining resource (e.g., battery power) on the
device. Specifically, our RPS achieves this via (1) switching
to lower precisions when enabling random precision infer-
ence to trade robustness in less dangerous environments for
a higher average efficiency, or (2) directly adopting a static
low precision training under safe environments to pursue
merely high efficiency. This property can be highly desir-
able in real world applications especially intelligent IoT ones.
We will next discuss the proposed accelerator that can not
only improve the hardware execution efficiency of DNNs
resulting from our RPS algorithm but also set a new record
of precision-scalable acceleration.

3. 2-IN-1 ACCELERATOR: ARCHITECTURE

In this section, we introduce our proposed accelerator ar-
chitecture dedicated for variable-precision DNNs (e.g., RPS
equipped DNNs in Sec. 2) to achieve much improved accel-
eration efficiency. In particular, we first identify and analyze
the bottlenecks of existing precision-scalable accelerators in
Sec. 3.1, and present a new MAC unit architecture in Sec. 3.2
and an automated accelerator optimizer in Sec. 3.3 that to-
gether tackles the aforementioned bottlenecks.

3.1 Bottlenecks of SOTA precision-scalable ac-
celerators

Despite the impressive performance achieved by SOTA
precision-scalable accelerators [32, 35, 44, 45, 55, 56, 58, 59],
they are still limited in their achievable acceleration perfor-
mance especially when accelerating more complex variable-
precision DNNs, e.g., RPS equipped DNNs in which all the
layers may switch their precision to any possible precision in
a candidate set during inference. The bottlenecks of SOTA
precision-scalable accelerators are described below.

3.1.1 Dilemma between flexibility and performance
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Algorithm 2 Evolutionary Search for Dataflows

Require: Architecture 0A2ℎ, Workload (layer informa-
tion and execution precision), Total cycle number
)>C0;_�H2;4, Population size %B8I4

1: Initialize a ?>?D;0C8>= of 30C0 5 ;>F with different loop
orders and tiling factors according to the workload

2: for 2H2;4 ∈ [1,)>C0;_�H2;4] do
3: Select the top 30% 30C0 5 ;>F from the ?>?D;0C8>=

based on the predicted efficiency of the workload
4: while B8I4(?>?D;0C8>=) < %B8I4 do
5: Randomly select two 30C0 5 ;>F, do crossover,

append to ?>?D;0C8>= if valid
6: Randomly select one 30C0 5 ;>F, do mutation, ap-

pend to ?>?D;0C8>= if valid
7: end while
8: end for

return The best 30C0 5 ;>F in the ?>?D;0C8>=

them. We follow their original papers for the adversarial train-
ing hyper-parameter settings and follow the model training
settings in [40] and [57] for CIFAF-10/100 and ImageNet.

Attack settings. We consider the strong attacks includ-
ing three white-box attacks PGD [40], AutoAttack [13],
CW [8] and one gradient-free attack Bandits [28], with differ-
ent numbers of iterations/restarts and permutation strengths
n = 8,12,16. We assume the adversary adopts random preci-
sion from the same inference precision set as our RPS without
losing generality since (1) any attack precision out of RPS’s
inference precision set will merely increase RPS’s robust ac-
curacy according to Fig. 1, and (2) while the adversary may
select precisions with better attacking success rates, our RPS
can also increase the probability of sampling more robust
precisions for stronger defense, here we assume both the
adversary and RPS adopt random precision for simplicity.

4.1.2 Accelerator Setup

Accelerator development and synthesis. In order to eval-
uate our proposed accelerator, we implement a custom cycle-
accurate simulator, aiming to model the behavior of the syn-
thesized circuits. The design parameters in the simulator are
obtained from gate-level netlist and SRAM which are gen-
erated based on a commercial 28nm technology using the
Synopsys Design Compiler and Memory compiler provided
by the foundry. Specifically, proper activity factor are set
at the input ports of the memory/computation units, and the
energy is calculated using PrimeTime [65].

Baselines. We benchmark with two SOTA precision-scalable
accelerators Bit Fusion [59] and Stripes [32], and one robustness-
aware accelerator DNNGuard [67]. For a fair comparison,
we adopt the same memory area and MAC array area with
Bit Fusion, and we modify the unit energy of Bit Fusion’s
official simulator to scale it from 45nm to 28nm following
the rule in [1]. For Stripes, thanks to the clear description of
the design in the paper and the easy representation, we build
a cycle-accurate simulator for it with the same memory/MAC
array area with Bit Fusion and our design, and optimize the
dataflow for its workloads with our automated optimizer.

Workloads. We adopt six networks (WideResNet-32 and
ResNet-18 on CIFAR-10 with 32×32 inputs and AlexNet,
VGG-16, ResNet-18/50 on ImageNet with 224×224 inputs)

Table 1: Evaluating RPS on two networks and three adver-
sarial training methods FGSM [20], FGSM-RS [68], and
PGD-7 [40] on CIFAR-10 under different PGD attacks.

PreActResNet-18 WideResNet-32

Adversarial
Training Method

Natural
(%)

PGD-20
(%)

PGD-100
(%)

Natural
(%)

PGD-20
(%)

PGD-100
(%)

FGSM 67.04 41.48 41.37 66.76 40.78 40.55
FGSM + RPS 80.58 64.08 63.56 64.09 50.70 48.72

FGSM-RS 86.08 41.76 41.13 89.95 45.33 44.77
FGSM-RS + RPS 82.11 59.33 59.32 87.87 60.07 59.12

PGD-7 82.02 51.17 50.93 85.25 54.61 54.36
PGD-7 + RPS 82.16 65.15 64.88 81.52 66.75 66.28

Table 2: Evaluating RPS on two networks trained with FGSM-
RS [68] and PGD-7 [40] on CIFAR-100.

PreActResNet-18 WideResNet-32

Adversarial
Training Method

Natural
(%)

PGD-20
(%)

PGD-100
(%)

Natural
Acc (%)

PGD-20
(%)

PGD-100
(%)

FGSM-RS 57.6 26.14 25.88 67.29 25.35 24.78
FGSM-RS + RPS 51.09 36.75 37.18 64.95 39.18 38.36

PGD-7 56.31 27.97 27.77 60.36 31.06 30.86
PGD-7 + RPS 56.2 41.74 42.1 58.41 40.45 40.5

under 1∼16-bit as our workloads.

4.2 Evaluate 2-in-1 Accelerator’s algorithm

We evaluate the improvement in robustness via applying
the proposed RPS on top of SOTA adversarial training meth-
ods. Note that all the baselines are SOTA adversarial training
methods with full precision, i.e., no quantization is applied.
Our RPS adopts a precision set of 4∼16-bit if not specifically
stated and we provide an ablation study of different choices
of precision sets in Sec. 4.2.4.

4.2.1 Benchmark on CIFAR-10/100/ImageNet

Benchmark on CIFAR-10. As summarized in Tab. 1, we
can observe that (1) RPS consistently enhances the robust
accuracy under PGD attacks, largely outperforming SOTA
adversarial training methods with full precision. In particular,
RPS achieves a 13.98%/12.14% higher robust accuracy under
PGD-20 attacks on PreActResNet-18 and WideResNet-32,
respectively, while notably improving the efficiency due to
the low precision execution as evaluated in Sec. 4.3; (2) RPS
also enhances the robust accuracy by 13.57%∼22.60% under
PGD-20 attacks on top of FGSM/FGSM-RS. It is noteworthy
that although FGSM adversarial training can be easily inef-
fective against iteration-based attacks [34], our RPS can still
significantly improve its robust accuracy by 22.6%. In addi-
tion, we also benchmark with SOTA methods for improving
the robustness of quantized networks [38] and find that under
PGD-20 attack on CIFAR-10, our RPS achieves a 14.6% and
22.5% higher robust accuracy for n = 8 and 16, respectively,
on the same PGD-7 trained network as compared to the best
reported robust accuracy among all the settings in [38].

Benchmark on CIFAR-100. The observations on CIFAR-
100 are consistent with CIFAR-10. In particular, RPS achieves
10.61%/13.77% and 13.83%/9.39% higher robust accuracy
on top of FGSM-RS/PGD-7 training under PGD-20 attacks
on PreActResNet-18 and WideResNet-32, respectively.

Benchmark on ImageNet. We further evaluate RPS on
a larger scale dataset, i.e, ImageNet, as shown in Tab. 3.
We can observe that RPS achieves a triple-win in terms of
the natural accuracy, robust accuracy, and model efficiency
on top of both adversarial training methods. In particular,
RPS achieves a 7.65%/10.11% higher robust accuracy over
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Table 3: Evaluating RPS on top of two adversarial training
methods (FGSM-RS [68] and Free [57]) on ResNet-50 under
PGD-10 and PGD-50 attacks with n = 4 on ImageNet.

Adversarial
Training Method

Natural
(%)

PGD-10
(%)

PGD-50
(%)

FGSM-RS 55.45 30.28 30.18
FGSM-RS + RPS 63.21 37.93 37.12

Free 60.21 32.77 31.88
Free + RPS 64.58 42.88 42.72

Table 4: Evaluating RPS under larger permutations on three
networks with trained by PGD-7 on CIFAR-10.

epsilon=12 epsilon=16

Network
Adversarial

Training Method
Natural

(%)
PGD-20

(%)
PGD-100

(%)
Natural
Acc (%)

PGD-20
(%)

PGD-100
(%)

PreAct
-ResNet18

PGD-7 77.49 37.84 36.77 75.39 27.28 24.24
PGD-7 + RPS 77.45 56.73 56.62 75.02 50.54 50.16

Wide
-ResNet32

PGD-7 81.8 39.73 38.49 78.91 28.92 25.82
PGD-7 + RPS 78.26 53.74 52.42 75.34 46.82 44.85

4-8 4-12 4-16 8-12 8-16

Figure 7: The natural and robust accuracy by PGD-7 training
equipped with RPS under different precision sets. Deep and
light colors denote robust and natural accuracy, respectively.

FGSM-RS [68] and Free [57], respectively, under the PGD-
10 attack, indicating our RPS’s scalability and applicability
on large-scale and complex datasets.

4.2.2 Benchmark under larger permutations

We further evaluate RPS’s scalability under larger permu-
tations with PGD-7 training on CIFAR-10 as listed in Tab. 4.
Interestingly, RPS even achieves larger robustness improve-
ments. Tab. 4 shows that RPS leads to a 14.01%∼18.89% and
17.90%∼23.26% higher robust accuracy under PGD-20 at-
tacks with n = 12 and 16, respectively. Larger improvements
under stronger adversarial attacks validate RPS’s applicability
to more challenging environments.

4.2.3 Benchmark under more attacks

Considering many defense methods are found to be inef-
fective under stronger attack, we evaluate RPS against more
attack types with different permutation strength. As observed
from Tab. 5, RPS consistently improves the robust accuracy
across different attacks/models/distortions, e.g., a higher ro-
bust accuracy of 6.88%∼9.12% under Auto-Attack, which is
one of the current strongest adaptive attack and more surpris-
ingly, 9.97%∼18.87% under CW-Inf attack, where we find
the poor transferability between different attack/inference
precisions is more notable. In addition, RPS achieves a
5.01%∼24.48% higher robustness accuracy under Bandits
attacks which is a gradient-free attack, indicating RPS does
not suffer from the obfuscated gradient problem [4]. In fact,
we find RPS does not show any characteristic behavior for
obfuscated gradient discussed in [4].

4.2.4 Influence of precision choices

Table 5: Evaluating RPS on two networks trained by PGD-7
under more strong attacks with n=8 and 12 on CIFAR-10.

PreActResNet-18 WideResNet-32

Attack Type PGD-7 PGD-7 + RPS PGD-7 PGD-7 + RPS

AutoAttack (n=8) 47.18 54.56 51.66 58.54
AutoAttack (n=12) 27.59 35.83 30.71 39.83

CW-Inf (n=8) 57.88 71.44 62.13 72.10
CW-Inf (n=12) 46.70 65.57 50.14 66.99

Bandits (n=8) 59.75 71.75 63.49 68.50
Bandits (n=12) 46.04 70.52 49.77 67.01
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Figure 8: Normalized throughput comparison of Bit Fusion,
Stripes, and our 2-in-1 Accelerator on top of six networks
and four execution precisions.

Fig. 7 shows the natural and robust accuracy (under PGD-
20 attacks) of two networks with different precision sets,
on top of PGD-7 training on CIFAR-10. We can see that
(1) RPS consistently achieves a higher robust accuracy over
SOTA PGD-7 training under different settings; and (2) a
larger precision range for reducing the probability of hitting
the attackers’ precision is desired for improving robustness.

4.3 Evaluate 2-in-1 Accelerator’s architecture

4.3.1 Benchmark with Bit Fusion and Stripes

Throughput comparison. We compare the throughput of
Bit Fusion, Stripes, and our 2-in-1 Accelerator on top of six
networks and four execution precisions in Fig. 8. All the
throughput results are normalized to the ones of Bit Fusion.
We can observe that our design outperforms the baselines
across all the networks and precisions with 1.41× ∼ 2.88×
and 1.15× ∼ 4.59× higher throughput over Bit Fusion and
Stripes, respectively. Such improvement mainly comes from
(1) the high throughput/area of our proposed MAC unit archi-

tecture, and (2) the effectiveness of our automated optimizer

in reducing the memory stalls to fully utilize the capability of
our MAC unit. For example, when using ResNet-50 on Ima-
geNet with 4x4-bit, our MAC unit design boosts throughput
by 2.25× over Bit-Fusion, and the automated optimizer fur-
ther improves the throughput by 1.28× via reducing memory
stalls. In addition, we can observe that Bit Fusion shows bet-
ter throughput over Stripes under execution precisions lower
than 8-bit while showing inferior throughput at 16-bit, which
is consistent with the analysis in Sec. 3.1.1 that Bit Fusion
requires to execute each MAC unit four times for execution
precisions higher than 8-bit. Althought our accelerator adopts
a similar manner to deal with 16-bit, it can still achieve 1.15×
higher throughput over Stripes, validating the superiority of
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4.4 Instant robustness-efficiency trade-offs of
the 2-in-1 Accelerator

As analyzed in Sec. 2.5, our 2-in-1 Accelerator also fea-
tures the capability to enable instant robustness-efficiency
trade-offs at run-time to adapt to both the safety conditions of
the environments and the remaining power on the device. We
show an example of executing WideResNet-32 with CIFAR-
10 inputs on our 2-in-1 Accelerator with different execution
precisions (RPS with 4∼16-bit, 4∼12-bit ,4∼8-bit, static 4-
bit) and record the robust accuracy and the (average) energy
efficiency. As shown in Fig. 12, our 2-in-1 Accelerator can in-
stantly switch between high precision sets, low precision sets,
and static low precision to balance robustness and efficiency
with a comparable natural accuracy (within 81.5%∼84.7%).

5. RELATED WORKS

Adversarial attacks and defenses. [20] shows that small
permutations onto the inputs can mislead DNNs’ decisions,
which is known as adversarial attacks. Later, stronger at-
tacks, including both white-box [8, 13, 40, 46, 50] and black-
box ones [3, 10, 23, 27, 28], are proposed to aggressively
degrade the accuracy of the target DNN models. To de-
fend DNNs against adversarial attacks, adversarial train-
ing [40, 57, 66, 68], which augments the training set with
adversarial samples generated during training, is currently
the most effective method. In parallel, other defense meth-
ods [6, 17, 24, 36, 37, 42, 63, 69, 73] have also been proposed.
There has been a continuous competition between adversaries
and defenders, and the readers are referred to [2, 9] for more
attack/defense methods.

Robustness of quantized models. As both robustness and
efficiency are critical for most DNN applications, pioneer-
ing works have strived to design robust quantized DNNs. In
particular, [18, 48] propose robust binary neural networks
(BNNs) and [53] adopts tanh-based quantization to increase
robustness, while these works have been observed to suffer
from the obfuscated gradient problem [4,49], which is a false
sense of security. Later, [38] finds that quantized DNNs are
actually more vulnerable to adversarial attacks due to the error
amplification effect, i.e., the magnitude of adversarial pertur-
bation is amplified when passing through the DNN layers.
To tackle this effect, [38, 60] propose robustness-aware reg-
ularization methods for DNN training, and [61] retrains the
network via feedback learning [62]. In addition, [47] searches
for layerwise precision and [22] constructs a unified formu-
lation to balance and enforce the models’ robustness and
compactness, respectively. In contrast, our RPS algorithm
leverages quantization to aggressively enhance robustness,
which even largely surpasses the full-precision models.

Precision-scalable accelerators. To support variable pre-
cisions for different DNN models/layers, various precision-
scalable accelerators have been proposed to dynamically and
flexibly handle the varied workloads, which can be catego-
rized into two classes, i.e., temporal and spatial designs. For
temporal designs, pioneering works, such as Stripes [32],
LOOM [58], and Tartan [14], adopt bit-serial MAC units to
provide precision configurability, which can flexibly handle
any prevision yet suffer from inferior efficiency per area
over their spatial counterparts [7, 59], and more recently
UNPU [35] fabricates a bit-serial DNN accelerator to sup-

port variable weight precisions while the activations use full
precision. For spatial designs, Bit Fusion [59] proposes to
use combinational logic to dynamically compose and decom-
pose 2-bit multipliers to construct variable-precision MAC
units; Later, BitBlade [55] improves Bit Fusion via pulling
out the shifting logic of each MAC unit and sharing it across
the multipliers to reduce the area overhead; DVAFS [44, 45]
propose to turn off parts of the multipliers at low precision
to increase the energy efficiency at a constant throughput;
and DeepRecon [56] skips parts of the pipeline stages of a
floating-point-multiplier to support either one 16-bit, two 12-
bit, or four 8-bit multiplications. Detailed benchmarks for
different precision-scalable MAC unit architectures can be
found in [7]. Our proposed MAC unit architecture marries
the best of both temporal and spatial designs and is integrated
to construct a new precision-scalable accelerator, which con-
sistently outperforms SOTA designs under various settings.

Robustness-aware DNN accelerators. Despite their im-
portance for real-world applications, the art robustness-aware
DNN accelerators is still in its infancy. Pioneering works [19,
54, 67] aim to defend against adversarial attacks within DNN
accelerators at a cost of additional detection networks/modules.
In particular, [54] proposes an end-to-end framework based
on the voting results of multiple detectors , in parallel with the
execution of the target DNN to detect malicious inputs dur-
ing inference; [67] proposes an elastic heterogeneous DNN
accelerator architecture to orchestrate the simultaneous ex-
ecution of the target DNN and the detection network for
detecting adversarial samples via an elastic management of
the on-chip buffer and PE computing resources; and [19]
builds an algorithm-architecture co-designed system to de-
tect adversarial attacks during inference via a random forest
module applied on top of the extracted features from the
run-time activations. In addition, [52] builds a robustness-
aware accelerator based on BNNs which, however, suffers
from the obfuscated gradient problem [4] and the work in [25]
strives to speed up the attack generation instead of the defense.
Nevertheless, all the existing defensive accelerators rely on
additional detection networks/modules to detect adversarial
samples at inference time, and thus inevitably introduce ad-
ditional energy/throughput/area overheads that compromise
efficiency. In contrast, our work exploits the potential robust-
ness within a DNN model via the proposed RPS algorithm
to win both robustness and efficiency within one accelerator
without introducing any extra modules.

6. CONCLUSION

Existing DNN accelerators mostly tackle only either ef-
ficiency or adversarial robustness while neglecting or even
sacrificing the other. In this work, we propose a 2-in-1 Accel-
erator, aiming at winning both the adversarial robustness and
efficiency of DNN accelerators. 2-in-1 Accelerator integrates
a Random Precision Switch (RPS) algorithm that can effec-
tively defend DNNs against adversarial attacks and a new
precision-scalable accelerator featuring a spatial-temporal
MAC unit architecture to boost both the achievable efficiency
and flexibility and (2) a systematically optimized dataflow
generated by our generic accelerator optimizer. Extensive
experiments and ablation studies validate our 2-in-1 Acceler-
ator’s effectiveness and advantages.

11



REFERENCES
[1] “The scaling of mosfets, moore’s law, and itrs.” [Online]. Available:

http://userweb.eng.gla.ac.uk/fikru.adamu-lema/Chapter_02.pdf

[2] N. Akhtar and A. Mian, “Threat of adversarial attacks on deep
learning in computer vision: A survey,” Ieee Access, vol. 6, pp.
14 410–14 430, 2018.

[3] M. Andriushchenko, F. Croce, N. Flammarion, and M. Hein, “Square
attack: a query-efficient black-box adversarial attack via random
search,” in European Conference on Computer Vision. Springer,
2020, pp. 484–501.

[4] A. Athalye, N. Carlini, and D. Wagner, “Obfuscated gradients give a
false sense of security: Circumventing defenses to adversarial
examples,” in International Conference on Machine Learning.
PMLR, 2018, pp. 274–283.

[5] Y. Bhalgat, J. Lee, M. Nagel, T. Blankevoort, and N. Kwak, “Lsq+:
Improving low-bit quantization through learnable offsets and better
initialization,” in Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition Workshops, 2020, pp.
696–697.

[6] J. Buckman, A. Roy, C. Raffel, and I. Goodfellow, “Thermometer
encoding: One hot way to resist adversarial examples,” in
International Conference on Learning Representations, 2018.

[7] V. Camus, L. Mei, C. Enz, and M. Verhelst, “Review and
benchmarking of precision-scalable multiply-accumulate unit
architectures for embedded neural-network processing,” IEEE Journal
on Emerging and Selected Topics in Circuits and Systems, vol. 9, no. 4,
pp. 697–711, 2019.

[8] N. Carlini and D. Wagner, “Towards evaluating the robustness of
neural networks,” in 2017 ieee symposium on security and privacy
(sp). IEEE, 2017, pp. 39–57.

[9] A. Chakraborty, M. Alam, V. Dey, A. Chattopadhyay, and
D. Mukhopadhyay, “Adversarial attacks and defences: A survey,”
arXiv preprint arXiv:1810.00069, 2018.

[10] P.-Y. Chen, H. Zhang, Y. Sharma, J. Yi, and C.-J. Hsieh, “Zoo: Zeroth
order optimization based black-box attacks to deep neural networks
without training substitute models,” in Proceedings of the 10th ACM
workshop on artificial intelligence and security, 2017, pp. 15–26.

[11] Y.-H. Chen, J. Emer, and V. Sze, “Eyeriss: A spatial architecture for
energy-efficient dataflow for convolutional neural networks,” ACM
SIGARCH Computer Architecture News, vol. 44, no. 3, pp. 367–379,
2016.

[12] J. Cohen, E. Rosenfeld, and Z. Kolter, “Certified adversarial
robustness via randomized smoothing,” in International Conference on
Machine Learning. PMLR, 2019, pp. 1310–1320.

[13] F. Croce and M. Hein, “Reliable evaluation of adversarial robustness
with an ensemble of diverse parameter-free attacks,” in International
Conference on Machine Learning. PMLR, 2020, pp. 2206–2216.

[14] A. Delmas, S. Sharify, P. Judd, and A. Moshovos, “Tartan:
Accelerating fully-connected and convolutional layers in deep learning
networks by exploiting numerical precision variability,” arXiv preprint
arXiv:1707.09068, 2017.

[15] G. S. Dhillon, K. Azizzadenesheli, Z. C. Lipton, J. Bernstein,
J. Kossaifi, A. Khanna, and A. Anandkumar, “Stochastic activation
pruning for robust adversarial defense,” arXiv preprint
arXiv:1803.01442, 2018.

[16] S. K. Esser, J. L. McKinstry, D. Bablani, R. Appuswamy, and D. S.
Modha, “Learned step size quantization,” arXiv preprint
arXiv:1902.08153, 2019.

[17] R. Feinman, R. R. Curtin, S. Shintre, and A. B. Gardner, “Detecting
adversarial samples from artifacts,” arXiv preprint arXiv:1703.00410,
2017.

[18] A. Galloway, G. W. Taylor, and M. Moussa, “Attacking binarized
neural networks,” arXiv preprint arXiv:1711.00449, 2017.

[19] Y. Gan, Y. Qiu, J. Leng, M. Guo, and Y. Zhu, “Ptolemy: Architecture
support for robust deep learning,” in 2020 53rd Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO). IEEE,
2020, pp. 241–255.

[20] I. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and
harnessing adversarial examples,” arXiv preprint arXiv:1412.6572,
2014.

[21] L. Guerra, B. Zhuang, I. Reid, and T. Drummond, “Switchable
precision neural networks,” arXiv preprint arXiv:2002.02815, 2020.

[22] S. Gui, H. Wang, C. Yu, H. Yang, Z. Wang, and J. Liu, “Model
compression with adversarial robustness: A unified optimization
framework,” arXiv preprint arXiv:1902.03538, 2019.

[23] C. Guo, J. Gardner, Y. You, A. G. Wilson, and K. Weinberger, “Simple
black-box adversarial attacks,” in International Conference on
Machine Learning. PMLR, 2019, pp. 2484–2493.

[24] C. Guo, M. Rana, M. Cisse, and L. Van Der Maaten, “Countering
adversarial images using input transformations,” arXiv preprint
arXiv:1711.00117, 2017.

[25] H. Guo, L. Peng, J. Zhang, F. Qi, and L. Duan, “Hardware accelerator
for adversarial attacks on deep learning neural networks,” in 2019
Tenth International Green and Sustainable Computing Conference
(IGSC). IEEE, 2019, pp. 1–8.

[26] Z. He, A. S. Rakin, and D. Fan, “Parametric noise injection: Trainable
randomness to improve deep neural network robustness against
adversarial attack,” in Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 2019, pp. 588–597.

[27] A. Ilyas, L. Engstrom, A. Athalye, and J. Lin, “Black-box adversarial
attacks with limited queries and information,” in International
Conference on Machine Learning. PMLR, 2018, pp. 2137–2146.

[28] A. Ilyas, L. Engstrom, and A. Madry, “Prior convictions: Black-box
adversarial attacks with bandits and priors,” arXiv preprint
arXiv:1807.07978, 2018.

[29] B. Jacob, S. Kligys, B. Chen, M. Zhu, M. Tang, A. Howard, H. Adam,
and D. Kalenichenko, “Quantization and training of neural networks
for efficient integer-arithmetic-only inference,” in Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, 2018,
pp. 2704–2713.

[30] Q. Jin, L. Yang, and Z. Liao, “Adabits: Neural network quantization
with adaptive bit-widths,” in Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, 2020, pp. 2146–2156.

[31] N. P. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal, R. Bajwa,
S. Bates, S. Bhatia, N. Boden, A. Borchers et al., “In-datacenter
performance analysis of a tensor processing unit,” in Proceedings of
the 44th annual international symposium on computer architecture,
2017, pp. 1–12.

[32] P. Judd, J. Albericio, T. Hetherington, T. M. Aamodt, and
A. Moshovos, “Stripes: Bit-serial deep neural network computing,” in
2016 49th Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO). IEEE, 2016, pp. 1–12.

[33] S. Jung, C. Son, S. Lee, J. Son, J.-J. Han, Y. Kwak, S. J. Hwang, and
C. Choi, “Learning to quantize deep networks by optimizing
quantization intervals with task loss,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 2019, pp.
4350–4359.

[34] A. Kurakin, I. Goodfellow, S. Bengio et al., “Adversarial examples in
the physical world,” 2016.

[35] J. Lee, C. Kim, S. Kang, D. Shin, S. Kim, and H.-J. Yoo, “Unpu: A
50.6 tops/w unified deep neural network accelerator with 1b-to-16b
fully-variable weight bit-precision,” in 2018 IEEE International
Solid-State Circuits Conference-(ISSCC). IEEE, 2018, pp. 218–220.

[36] B. Li, C. Chen, W. Wang, and L. Carin, “Certified adversarial
robustness with additive noise,” arXiv preprint arXiv:1809.03113,
2018.

[37] F. Liao, M. Liang, Y. Dong, T. Pang, X. Hu, and J. Zhu, “Defense
against adversarial attacks using high-level representation guided
denoiser,” in Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 2018, pp. 1778–1787.

[38] J. Lin, C. Gan, and S. Han, “Defensive quantization: When efficiency
meets robustness,” arXiv preprint arXiv:1904.08444, 2019.

[39] X. Liu, M. Cheng, H. Zhang, and C.-J. Hsieh, “Towards robust neural
networks via random self-ensemble,” in Proceedings of the European
Conference on Computer Vision (ECCV), 2018, pp. 369–385.

[40] A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu,
“Towards deep learning models resistant to adversarial attacks,” arXiv
preprint arXiv:1706.06083, 2017.

[41] D. Meng and H. Chen, “Magnet: a two-pronged defense against
adversarial examples,” in Proceedings of the 2017 ACM SIGSAC

12



Conference on Computer and Communications Security, 2017, pp.
135–147.

[42] J. H. Metzen, T. Genewein, V. Fischer, and B. Bischoff, “On detecting
adversarial perturbations,” arXiv preprint arXiv:1702.04267, 2017.

[43] B. L. Miller, D. E. Goldberg et al., “Genetic algorithms, tournament
selection, and the effects of noise,” Complex systems, vol. 9, no. 3, pp.
193–212, 1995.

[44] B. Moons, R. Uytterhoeven, W. Dehaene, and M. Verhelst, “Dvafs:
Trading computational accuracy for energy through
dynamic-voltage-accuracy-frequency-scaling,” in Design, Automation
& Test in Europe Conference & Exhibition (DATE), 2017. IEEE,
2017, pp. 488–493.

[45] B. Moons and M. Verhelst, “A 0.3–2.6 tops/w precision-scalable
processor for real-time large-scale convnets,” in 2016 IEEE
Symposium on VLSI Circuits (VLSI-Circuits). IEEE, 2016, pp. 1–2.

[46] S.-M. Moosavi-Dezfooli, A. Fawzi, and P. Frossard, “Deepfool: a
simple and accurate method to fool deep neural networks,” in
Proceedings of the IEEE conference on computer vision and pattern
recognition, 2016, pp. 2574–2582.

[47] P. Panda, “Quanos: adversarial noise sensitivity driven hybrid
quantization of neural networks,” in Proceedings of the ACM/IEEE
International Symposium on Low Power Electronics and Design, 2020,
pp. 187–192.

[48] P. Panda, I. Chakraborty, and K. Roy, “Discretization based solutions
for secure machine learning against adversarial attacks,” IEEE Access,
vol. 7, pp. 70 157–70 168, 2019.

[49] N. Papernot, P. McDaniel, I. Goodfellow, S. Jha, Z. B. Celik, and
A. Swami, “Practical black-box attacks against machine learning,” in
Proceedings of the 2017 ACM on Asia conference on computer and
communications security, 2017, pp. 506–519.

[50] N. Papernot, P. McDaniel, S. Jha, M. Fredrikson, Z. B. Celik, and
A. Swami, “The limitations of deep learning in adversarial settings,” in
2016 IEEE European symposium on security and privacy (EuroS&P).
IEEE, 2016, pp. 372–387.

[51] E. Park and S. Yoo, “Profit: A novel training method for sub-4-bit
mobilenet models,” arXiv preprint arXiv:2008.04693, 2020.

[52] Y.-F. Qin, R. Kuang, X.-D. Huang, Y. Li, J. Chen, and X.-S. Miao,
“Design of high robustness bnn inference accelerator based on binary
memristors,” IEEE Transactions on Electron Devices, vol. 67, no. 8,
pp. 3435–3441, 2020.

[53] A. S. Rakin, J. Yi, B. Gong, and D. Fan, “Defend deep neural networks
against adversarial examples via fixed and dynamic quantized
activation functions,” arXiv preprint arXiv:1807.06714, 2018.

[54] B. D. Rouhani, M. Samragh, M. Javaheripi, T. Javidi, and
F. Koushanfar, “Deepfense: Online accelerated defense against
adversarial deep learning,” in 2018 IEEE/ACM International
Conference on Computer-Aided Design (ICCAD). IEEE, 2018, pp.
1–8.

[55] S. Ryu, H. Kim, W. Yi, and J.-J. Kim, “Bitblade: Area and
energy-efficient precision-scalable neural network accelerator with
bitwise summation,” in Proceedings of the 56th Annual Design
Automation Conference 2019, 2019, pp. 1–6.

[56] T. Rzayev, S. Moradi, D. H. Albonesi, and R. Manchar, “Deeprecon:
Dynamically reconfigurable architecture for accelerating deep neural
networks,” in 2017 International Joint Conference on Neural
Networks (IJCNN). IEEE, 2017, pp. 116–124.

[57] A. Shafahi, M. Najibi, A. Ghiasi, Z. Xu, J. Dickerson, C. Studer, L. S.
Davis, G. Taylor, and T. Goldstein, “Adversarial training for free!”
arXiv preprint arXiv:1904.12843, 2019.

[58] S. Sharify, A. D. Lascorz, K. Siu, P. Judd, and A. Moshovos, “Loom:
Exploiting weight and activation precisions to accelerate convolutional

neural networks,” in 2018 55th ACM/ESDA/IEEE Design Automation
Conference (DAC). IEEE, 2018, pp. 1–6.

[59] H. Sharma, J. Park, N. Suda, L. Lai, B. Chau, V. Chandra, and
H. Esmaeilzadeh, “Bit fusion: Bit-level dynamically composable
architecture for accelerating deep neural network,” in 2018 ACM/IEEE
45th Annual International Symposium on Computer Architecture
(ISCA). IEEE, 2018, pp. 764–775.

[60] M. Shkolnik, B. Chmiel, R. Banner, G. Shomron, Y. Nahshan,
A. Bronstein, and U. Weiser, “Robust quantization: One model to rule
them all,” arXiv preprint arXiv:2002.07686, 2020.

[61] C. Song, E. Fallon, and H. Li, “Improving adversarial robustness in
weight-quantized neural networks,” arXiv preprint arXiv:2012.14965,
2020.

[62] C. Song, Z. Wang, and H. Li, “Feedback learning for improving the
robustness of neural networks,” in 2019 18th IEEE International
Conference On Machine Learning And Applications (ICMLA). IEEE,
2019, pp. 686–693.

[63] Y. Song, T. Kim, S. Nowozin, S. Ermon, and N. Kushman,
“Pixeldefend: Leveraging generative models to understand and defend
against adversarial examples,” arXiv preprint arXiv:1710.10766, 2017.

[64] T. Strauss, M. Hanselmann, A. Junginger, and H. Ulmer, “Ensemble
methods as a defense to adversarial perturbations against deep neural
networks,” arXiv preprint arXiv:1709.03423, 2017.

[65] Synopsys, “PrimeTime PX: Signoff power analysis,” https:
//www.synopsys.com/support/training/signoff/primetimepx-fcd.html,
accessed 2019-08-06.

[66] F. Tramèr, A. Kurakin, N. Papernot, I. Goodfellow, D. Boneh, and
P. McDaniel, “Ensemble adversarial training: Attacks and defenses,”
arXiv preprint arXiv:1705.07204, 2017.

[67] X. Wang, R. Hou, B. Zhao, F. Yuan, J. Zhang, D. Meng, and X. Qian,
“Dnnguard: An elastic heterogeneous dnn accelerator architecture
against adversarial attacks,” in Proceedings of the Twenty-Fifth
International Conference on Architectural Support for Programming
Languages and Operating Systems, 2020, pp. 19–34.

[68] E. Wong, L. Rice, and J. Z. Kolter, “Fast is better than free: Revisiting
adversarial training,” in International Conference on Learning
Representations, 2019.

[69] D. Wu, S.-T. Xia, and Y. Wang, “Adversarial weight perturbation helps
robust generalization,” Advances in Neural Information Processing
Systems, vol. 33, 2020.

[70] C. Xie, M. Tan, B. Gong, J. Wang, A. L. Yuille, and Q. V. Le,
“Adversarial examples improve image recognition,” in Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 2020, pp. 819–828.

[71] C. Xie, J. Wang, Z. Zhang, Z. Ren, and A. Yuille, “Mitigating
adversarial effects through randomization,” arXiv preprint
arXiv:1711.01991, 2017.

[72] P. Xu, X. Zhang, C. Hao, Y. Zhao, Y. Zhang, Y. Wang, C. Li, Z. Guan,
D. Chen, and Y. Lin, “Autodnnchip: An automated dnn chip predictor
and builder for both fpgas and asics,” in Proceedings of the 2020
ACM/SIGDA International Symposium on Field-Programmable Gate
Arrays, ser. FPGA ’20, 2020, p. 40–50.

[73] W. Xu, D. Evans, and Y. Qi, “Feature squeezing: Detecting adversarial
examples in deep neural networks,” arXiv preprint arXiv:1704.01155,
2017.

[74] P. Yin, J. Lyu, S. Zhang, S. Osher, Y. Qi, and J. Xin, “Understanding
straight-through estimator in training activation quantized neural nets,”
arXiv preprint arXiv:1903.05662, 2019.

[75] Y. Zhao, C. Li, Y. Wang, P. Xu, Y. Zhang, and Y. Lin, “Dnn-chip
predictor: An analytical performance predictor for dnn accelerators
with various dataflows and hardware architectures,” 2020.

13


	Introduction
	2-in-1 Accelerator: Algorithm
	Preliminaries of adversarial robustness
	Inspirations from previous works
	Poor transferability between precisions
	RPS towards robust DNNs
	Instant trade-offs between robustness and efficiency

	2-in-1 Accelerator: Architecture
	Bottlenecks of SOTA precision-scalable accelerators
	Dilemma between flexibility and performance
	Heavy shift-add overhead for scalable-precision
	Fixed or Limited dataflow optimization

	The proposed MAC unit architecture
	A spatial-temporal design
	Opt-1: Reorganize bit-level split/allocation
	Opt-2: Fuse the shift-add logic of bit-serial units in one group
	Overall architecture

	The proposed automated optimizer

	Experiment Results
	Experiment Setup
	Algorithm Setup
	Accelerator Setup

	Evaluate 2-in-1 Accelerator’s algorithm
	Benchmark on CIFAR-10/100/ImageNet
	Benchmark under larger permutations
	Benchmark under more attacks
	Influence of precision choices

	Evaluate 2-in-1 Accelerator’s architecture
	Benchmark with Bit Fusion and Stripes
	Benchmark with robustness-aware accelerators

	Instant robustness-efficiency trade-offs of the 2-in-1 Accelerator

	Related Works
	Conclusion

