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Popular Summary



A van der Waals material is made of a stack of weakly bonded planes of atoms. These 2D materials are powerful platforms
for exploring several electronic and magnetic behaviors. Recently, the discovery of robust topological spin excitations in the
2D magnet Crl; has spurred huge interest in their potential applications such as in the field of dissipationless spintronics,
where electron spins are used to transmit and store information. Here, we use neutron-scattering experiments to explore the
microscopic origin of these spin excitations and an accompanying intriguing magnetic phenomenon in this material: a
stacking-dependent magnetic order. That is, while a single layer of Crl; is ferromagnetic, two stacked layers are
antiferromagnetic, which, counterintuitively, is different from that in the ferromagnetic bulk.

In our experiments, we find that spin-orbit coupling (a relativistic interaction of an electron’s spin with its motion) induces
asymmetric interactions between the spins. This induces the spins to feel the magnetic field differently, affecting their
topological excitations. In addition, our measurements show that the nearest magnetic exchange interaction along the
weakly bonded planes is indeed antiferromagnetic.

Our results unveil the origin of the observed antiferromagnetic order in thin layers of Crl; and provide a new understanding
of topology-driven spin excitations in 2D van der Waals magnets.
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The search for topological spin excitations in recently discovered two-dimensional (2D) van der Waals
{(vdW) magnetic materials is important becanse of their potential applications in dissipationless spintronics.
In the 2D vdW fermomagnetic (FM) honeycomb lattice Crl; (T = 61 K), acoustic and optical spin waves
are found to be separated by a gap at the Dirac points. The presence of such a gap is a signature of
topological spin excitations if it arises from the next-nearest-neighbor (NNN) Dzyaloshinskii-Moriya (DM)
or bond-angle-dependent Kitaev interactions within the Cr honeycomb lattice. Altematively, the gap is
suggested to arise from an electron comelation effect not associated with topological spin excitations. Here,
we use inelastic neutron scattering to conclusively demonstrate that the Kitaev imteractions and electron
correlation effects cannot describe spin waves, Dirac gaps, and their in-plane magnetic field dependence.
Our results support the idea that the DM interactions are the microscopic origin of the observed Dirac gap.
Moreover, we find that the nearest-neighbor (NN) magnetic exchange interactions along the ¢ axis are
antiferromagnetic (AF), and the NNN interactions are FM. Therefore, our results unveil the origin of the
observed c-axis AF order in thin layers of Crl, firmly determine the microscopic spin interactions in bulk

Cr;. and provide a new understanding of topology-driven spin excitations in 2D wdW magnets.

DOT:

L INTRODUCTION

The discovery of robust two-dimensional (2D) ferromag-
netic (FM) long-range order in monolayer van der Waals
{vdW) magnets [1-3] is important because these materials
can provide a new platform 0 study fundamental physics
without the influence of a substrate and can potentially be
used to develop new spintronic devices [4,5]. One prominent
group of these materials includes the chromium trihalides,
CrX; (X =Br, I) or CrXTe; (X = Ge, Si), where Cr*
(34, § = 3/2) ions form 2D honeycomb lattices [Fig. 1(a)]
[6.7]. Within a single honeycomb layer, Cr*™ ions interact
with each other ferromagnetically via the nearly 90-degree
Cr-X-Cr superexchange paths [Fig. 1(b)] [8]. Although the
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3d electrons of Cr** do not provide large spin-arbit coupling
{S0OC), the heavier ligand atoms such as iodine may serve as
a source of significant SOC. This not only provides the
thermal stability observed in vdW layered materials but also
enriches the physics of magnetism in the 2D limit [9-14].
Indeed, it is proposed that the Kitev interaction [15], known
to be important for effective § = 1/2 honeycomb latice
magnets near a Kitaev quantum spin liquid [16,17], may
occur in § = 3/2 Crly across the nearest bond with bond-
dependent anisotropic Ising-like exchange [Fig. 1(b)]. This
occurrence would be critical for the magnetic stability of
monolayer Crl; and spin dynamics in bulk Crl; [18-22].
Furthermore, spin waves (magnons) from honeycomb fer-
romagnets can be topological by opening a gap at the Dirac
point via ime-reversal symmetry breaking (TRSB) [23 24].
As a magnetic analog of elecronic dispersion in graphene
[25], spin-wave spectra of honeycomb ferromagnets have
Dirac points at the Brillouin zone boundaries where dis-
persions of acoustic and optical spin waves meet and
produce Dirac cones. If the system has TRSB arising from
a large SOC, one would expect to observe an energy gap at
the Dirac point of the bulk magnon bands [23], analogous to
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the SOC-induced gap at the Dirac point in the electronic
dispersion of graphene [26]. This energy gap, in tum, would
allow the realization of massless topological spin excitations
propagating without dissipation [27-29].

Experimentally, a spin gap was indeed observed at the
Dirac point in the spin-wave spectra of the honeycomb
lattice FM Crl; [30]. Three possible scenarios have been
proposed to understand the observed spin gap. The first
comesponds to the Dzyaloshinskii-Moriya (DM) interac-
tion that occurs on the bonds without inversion symmetry
[Figs. 1(a), 1{c), and 1id)] [31,32]. The second scenario is
the Kitaev interaction that also breaks time-reversal sym-
mefry and can inhabit nontrivial topological edge modes
[19,33]. Finally, the observed Dirac spin gap is suggested to
arise from electron correlations that must be treated
explicitly to understand the spin dynamics in Crl; and
the broad family of 2D vdW magnetic materials [34]. In
this case, spin excitations in Crl; would not be topological.

Another intriguing property of Crl; is its weak structural
and magnetic coupling along the ¢ axis. In the low-
temperature FM phase, bulk Crl; is assumed to have
rhombohedral lattice structure with space group R3 [6].
On warming across T, the FM order in Crl; disappears in
a weakly first-order phase transition coupled with a small
c-axis lattice parameter change. Upon further wamming to

k=[1/3 1/9]

FIG. 1. Crystal structure of Crly. (a) Crly thombohedral lattice
showing only Cr atoms, with Cr'" spins along the ¢ axis. Crl
(blue) and Cr2 (cyan) spheres indicate Cr atoms in different
triangular sublattices. The colored bonds indicate in-plane and
interlayer magnetic exchange interactions. The cyan and yellow
dashed lines show the three J,'s and six J3's amound one Cr
atom. (b) Kitaev interaction in the local coordinates of Crls. The
J o Jyy, J:; bond is between the NNs, and the {x, y, z} direction
is parallel to the Cr-I bond, as shown with amows. (c) DM
interactions in Crl; with a top view of the Cr*t hexagon at the
Dirac wave vector. The cyan and blue colors distinguish two
triangular sublattices. (d) Imteractions between DM and spins.
Only when spins have components along the ¢ axis can the DM
term give a nonzer contribution to the total Hamiltonian.

90-200 K, Crl; undergoes a first-order phase transition
from rhombohedral to monoclinic structure with a C/2m
space group, basically shifting the stacking of the Crl,
layers [6]. From comparisons to spin-wave dispersions, the
nearest-neighbor (NN) ¢ axis magnetic exchange coupling
is deduced to be FM with J,, =059 meV [Fig. 1{a)] [30].
However, transport, Raman scattering, scanning magnetic
circular dichroism microscopy, and tunneling measure-
ments as a function of film thickness [1,35,36], pressure
[37.38], and applied magnetic field [39] suggest A-type
antiferromagnetic (AF) structure associated with the mono-
clinic structure present in the bilayer and a few top layers of
bulk Crl. In particular, a magnetic field a few Tesla along
the ¢ axis was found to modify the crystal lattice symmetry
of Crl;, thus suggesting a strong spin-lattice coupling [39].
Therefore, it is imporant to determine if the NN interlayer
exchange coupling is indeed FM and what determines
the overall FM interlayer coupling in the Crl; bulk with
rhombohedral lattice structure.

In this work, we use high-resolution inelastic neutron
scatiering to study spin waves of Crl; and their magnetic
field dependence. By reducing the mosaic of coaligned
single crystals of Crl; from earlier work [30], we were able
to precisely measure the magnimude of the spin gap at the
Dirac points and the entire spin-wave spectra. In addition,
we determine the effect of an in-plane magnetic field on
spin waves and the Dirac spin gap in Cr;. By comparing
the experimental observations with expectations from the
Heisenberg-DM and Heisenberg-Kitaev Hamiltonian, and
the effect of electron correlations, we conclude that spin
waves and the Dirac spin gap in Crl; cannot be described
by the Heisenberg-Kitaev Hamiltonian and electron corre-
lation effects. Instead, the data are approximately consistent
with the Heisenberg-DM Hamiltonian, considering both
the c-axis and in-plane DM interactions. Our results
therefore clarify the microscopic spin interactions in Crl;
and provide a new understanding of topology-driven spin
excitations in 2D vdW magnets.

II. RESULTS

Single crystalline Crd; samples were grown using the
chemical-vapor-transport method as described in Ref. [6].
Our inelastic neutron scattering experiments were carried
out on either fully coaligned (~0.42 g) or c-axis aligned
(~1 g) crystals on the SEQUOIA [40], HYSPEC [41], and
ARCS [42] spectrometers at Spallation Neutron Source,
0ak Ridge National Laboratory. Consistent with Ref. [30],
we use a honeycomb lattice with an in-plane Cr-Cr distance
of about 3.96 A and c-axis layer spacing of 6.62 A in
the low-temperature thombohedral structure to describe
Crl;. The momentum transfer = Ha* + Kb* + Lc* is
denoted as (H, K, L) in reciprocal lattice units (r.l.u.) with
marked high-symmetry points [Figs. 2(a) and 2(b}]. All
measurements were carried out with the ¢ axis of the
sample in the horizontal scattering plane and with the
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FIG.2. Spin wave spectra of Crl;. (a) The hexagonal reciprocal
lattice of Crl;. Gray amows show reciprocal lattice vectors, and

high-symmetry (T, K, M) points are specified in blue (M), red
(K. and black (T") dots, respectively. The bold black lines specify
the scan direction in (c—e). (b) Projection of the hexagonal
reciprocal lattice in the [H, K] plane. The arrows indicate the scan
path of the spectra shown in (f, g), Figs. 3(a)-3(c), and Figs. 4(a)
and 4(b). (c-e) The spin wave dispersion along the L direction at
different [H, K] positions specified in (a), showing different
bandwidths at different [H, K] points. The left and right panels
are calculation and data, respectively. (f, g) Spin wave dispersion
at different L points. (f) shows L integration range [2.5, 3.5] near
the [0, 0,L] band bottom, while (g) shows L integration range
[4. 5] near the band top.

applied magnetic fields vertical, i.e., in the ab plane of Crl;
[Figs. 1(a), (c), and (d)].

We begin by describing the zero field high-resolution spin-
wave data of Crl; obtained on SEQUIOA (Figs. 2 and 3).
Figure 3(a) shows the energy-momenmm ( E-()}-dependent
spin-wave spectra along the high-symmetry directions in
reciprocal space as depicted in Fig. 2(a). These in-plane spin-
wave spectra were obtained by integrating dispersive spin
waves along the ¢ axis over —5 <L < 5. The owerll
momenmm dependence of the spin-wave energies is con-
sistent with previous work [30], revealing two spin-wave
modes characteristic of the honeycomb ferromagnets. The
lower and upper modes account for the acoustic and optical
vibrations, respectively, ofthe two sublattice spins. These two
spin-wave modes will meet each other at the Dirac wave
vectors of Qg = (+,1) and Qg, = (2,—1) [Figs. 3(a)
and 3id)]. Inspection of Fig. 3(a) reveals clear evidence of
a spin gap of about 2.8 meV, which is approximately 50%
the value estimated from previous low-resolution dam [30].
This result is mostly due to the reduced mosaicity of the
coaligned single crystals (an in-plane mosaic full width at

0O e i) 1)
K M K

' J = DM, + mosaic
DK =0.09mey

o
[z, 1)

0.0 (-4
K MK rr
(c) E¥p. L={-0.E0.5]
K KI-0.05,0.08]

{0, 1) (12, 412)
K M K rr
J = mosalkc
DM, =0

I
I EEL

008 042 018
DM, (meV)

Normalized Intensity (arb, unit)
=]
m

& [H H] - [0.6567,0.6767] o3l
10 15
E (meV)
FIG. 3. The Heisenberg-DM model fit of Crl; E-Q) spin wave
spectrum. High-symmetry points are labeled. (a) Experimental
data at 5 K. (b) Heisenberg-DM model simulation using param-
eters in Table I. (c) Experimental data at 5 K with smaller L
integration range. (d, e) Heisenberg-DM model simulations
including sample mosaic with (d) DM =0 and (e) DM, =
0.09 meV. (f) Constant-(} cuts of the data in (c-e) at the Dirac
point (2/3,2/3,0). {(g) The squared emror r* between experi-
mental and simulation values of the Dirac point cut as a function
of the DM interaction strength.

half maximum of 8.0° compared with that of about 17° in
Ref. [30]) and improved instrumental resoluton [43].

To completely determine the spin-wave spectra of Cr;,
we show in Figs. 2{c}2(e) the L dependence of spin waves
at different in-plane wave vectors. Inspection of the figures
reveals that the modes along the [1,1,L] and [0,0,L]
directions exhibit mutually opposite L dependence. Along
the [0,0, L] direction, the spin-wave dispersion exhibits a
minimum of 04 meV at L. =3n (n = integers) and a
maximumof 2.1 meVat L = 3n + %[Flg_ 2{e)]. In contrast,
the mode along the [L, 1, L] direction peaks at L = 3n and
has a minimum at L. = 3n +% [Fig. 2(c}], while spin waves
along the [%,ﬂ, L) direction are featureless [Fig. 2(d)]. The
overall spin-wave spectra at L = 3 and 4.5 are shown in
Figs. 2(f) and 2(g), respectively. The opposite L depend-
ence between the high- and low-energy spin waves requires
finite FM interplane exchanges along the bonds that are
tilted off the ¢ axis.

To understand spin-wave spectra in Figs. 2 and 3, we
consider a Heisenberg model with the DM interaction to
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account for the observed Dirac spin gap [23,24.30]. The
Hamiltonian of the DM interaction, Hpy,, can be written as
Hpyg = =31 [Ay - (8; x8;)], where 8; and 8; are spins
at sites i and j, respectively, and A,; is the antisymmetric
DM interaction between sites { and j [Figs. 1(a) and 1{c)].
The combined Heisenberg-DM (J-DM) Hamiltonian is
Hyip = Y e iSi -85 + Ay - 8; x 8] + 3, D,(59)%,
where J;; is the magnetic exchange coupling of the §; and
S;. and D, is the easy-axis anisotropy along the z(c) axis
[30]. As shown in Fig. 1{a), we define the in-plane NN, the
next-nearest-neighbor (NNN), and the third NN inter-
actions as Jy, J;, and J;, respectively. The ¢ axis NN,
the NNNs, and the third NN interactions are J.y, Jo/Ja,
and J/J.,, respectively. For ideal honeycomb lattice
materials where the NNN bond breaks the inversion
symmetry [Fig. 1(c)], the DM vectors can have both in-
plane (DM))) and out-of-plane (DM ) components, but the
former will not contribute to the topological gap opening
becanse of the threefold motational symmetry of the
honeycomb lattice [Fig. 1(d)]. As a result, only the DM
term parallel to the ¢ axis, ie., the NNN DM interaction,
will contribute to the opening of a spin gap in spin-wave
spectra. Since bulk Crl; orders ferromagnetically below a
Curie temperature of T- =~ 61 K with an ordered moment
along the ¢ axis [6], one can fit the spin-wave spectra and
Dirac gap using the finite NNN Hpyy (#0), which may
induce TRSB and topological spin excitations in the FM
ordered state [30].

The left panels of Figs. 2{c}2(e) and 3(b) are the
calcnlated spin-wave spectra with exchange parameters
listed in Table I [30]. Given the nearly flat dispersion along
the [% 0, L] direction shown in Fig. 2(d), we choose to set
Ja = Ja for the two interplane NNN exchanges of nearly
identical bond lengths [Fig. 1{a)]. The best-fit parameters
reveal that the NN intedayer magnetic interactions are
AF with strong FM couplings along the NNN directions
[Fig. 1{a)]. In addition, one must include a finite DM
interaction A to account for the observed spin gap at the
Dirac points [Figs. 3(a), 3(b), and 3(d)] [43]. To precisely
determine the magnitude of A, we consider spin wave data
at the Dirac point with a narrow c-axis integration range of
—05 < L < 0.5in Fig. 3(c). Figures 3(d) and 3ie) show
calenlated spin wave spectra taking into account the mosaic
of the aligned single crystals of Crl; without and with the
NNN DM interactions, respectively. An energy cut through
Dirac point reveals clearly that the calculated spectra with
the NNN DM interaction fits the data better [Fig. 3(f)]. The
best magnimde of A (DM, ) is determined by the least
squares method using the observed and calculated spin
wave spectra [Fig. 3(g)]. Since the Dirac wave vector is
along the zigzag bonds of the honeycomb lattice, the
observation of a spin gap at the Dirac point indicates a
symmetry-breaking field between the two Cr sublattices
within the honeycomb lattice [Figs. 1{a) and 1ic)]. While

TABLEI. Magnetic exchange interaction strength (the negative
value indicates the FM exchange) in the J-DM model, the electron
comelation model, and the J-K-I' model. Our estimated
DM, =0.09 meV is similar to that in Ref. [44].

Model J-DM |8 JKT
7, (meV) —2.11 —2.11 -0.83
7, (meV) —0.11 —0.11 ~0.16
75 (meV) 0.10 0.10 0.08
7., (meV) 0.048 0.048 0.048
J5(J ) (meV) —0,071 —0,071 —0,071
T.4(=77,) (meV) 0 -0.1 0
DM, (meV) 0.09 0 0
K (meV) 0 0 -38
D, (meV) -0.123 -0.123 0

T (meV) 0 0 —0,082

the DM vectors may be oriented either along the ¢ axis or
perpendicular to it, only the ¢ axis component can open the
Dirac gap due w the threefold symmemry of the ideal
honeycomb lattice. In addition, the magnitude of the gap is
directly proportional to the ¢ axis component of the ordered
spins [44,45].

An altemative scenario to understand the observed spin
gap at the Dirac point is through the Kitaev interaction that
occurs across the nearest bond with bond-dependent
anisotropic Ising-like exchange [Fig. 1(b)] [15], which
also breaks the time-reversal symmetry and can inhabit
nontrivial topological edge modes [19]. The Kitaev inter-
action Hamiltonian Hy is Hg =3 4000 [KSIS)+
I"(S‘,‘,S"j' +S‘;Sj )], where (4, u, v) are any permutation of
(x,y, z), K is the strength of the Kitaev interaction, and I is
the symmetric off-diagonal anisotropy that induces a spin
gap at the T point [19,33]. The combined Heisenberg-
Kitaev Hamiltonian, the so-called J-K-I' Hamiltonian, is
Hyxr =Y upeu) VijSi- ) + KSi 8] +T(SIS] + Si5))].
By fiting the J-K-I" Hamiltonian using the data shown in
Fig. 3i{a), we extract the exchange pamameters shown in
Table I, whose Kitaey term (—3.8 meV) is smaller than that
of Ref. [33] (—5.6 meV) due to the smaller energy gap
observed from better aligned samples. When FM ordered
spins are oriented along the ¢ axis [6], the spin Hamiltonian
based on the Heisenberg-Kitaev exchanges can also repro-
duce the observed spin waves and energy gap at the Dirac
point in Crl; [33]. Therefore, one cannot determine whether
the NNN DM or Kitaev model is responsible for the spin
gap at Dirac points in the spin waves of Cr; at zero
field [33].

Finally, by using calculations beyond density functional
theory (DFT), it was suggested that the observed Dirac spin
zap arises from the electron correlations not considered in the
usual DFT theory [34]. In this picture, the Dirac spin gap
arises from the differences in ¢ axis magnetic exchange
pathways along the third NN J_4 and J/, [Fig. 1(a), and see
Fig. 3 in Ref. [34] ]. If this picure is correct, one would expect
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FIG. 4. The Heisenberg-J 4 (spin comelation) model simulation of Crl; spin wave spectra, here J_y = —-J7, = —0.10 meV. (a, b) In-
plane spin excitation spectum with L = 0 and 1.5, respectively. (c, d) Spin excitation spectra along (c) [H - 1/2, H + 1/2,0] and (d)
[H —1/2, H+1/2,1.5] directions, respectively. The integration and mosaic effects are considered in the plot. (e, f) Experimental data
corresponding to (c) and (d), respectively. The integration range of (c—f) are specified in (e) and (f).

that Dirac nodal lines, where acoustic and optical spin-wave
bands cross, wind around the Dirac K point along the L
direction [34]. Since both J 4 and J', connect with Cr1 and do
not break the Crl; sublattice symmetry, the electron corre-
lation effects do not produce a true Dirac spin gap and only
cause the Dirac crossing to shift sideways and induce nodal
winding along the ¢ axis. The spin-wave intensity winding
around the Dirac point has been observed in the insulating
easy-plane honeycomb quantum magnet CoTiO; without a
Dirac spin gap and DM interaction, suggesting the nontrivial
topology of the Dirac magnon wave functions [46—49).
Figures 4({a) and 4(b) show expected spin-wave spectra
at L =0 and 1.5, mespectively, calculated using a
Heisenberg Hamiltonian with magnetic exchange param-
eters specified in Table I. Near the Dirac points, we see spin
gaplike features at K| and K, due to shifted acoustic-
optical spin-wave touching points, and there is no true spin
gap near the Dirac points. To compare with experimental
observations, we calculate spin waves with the sample
mosaic in Figures 4(c) and 4(d), which broaden spin waves
but do not change their basic characters. Since experimental
data at these L values show a clean spin gap at all wave

vectors near the Dirac points [Figs. 4{e) and 4(f)]. We
conclude that the observed Dirac spin gap cannot arise from
the electron correlation effects as discussed in Ref. [34].
Since both the NNN DM and Kitaev models can describe
spin waves of Crly [33], it will be important to determine
which microscopic model is correct. One way to separate
these two scenarios is to do an inelastic neutron scattering
experiment on Crl; with a magnetic field applied within the
ab plane. The easy axis of spins in Crl; is parallel o the ¢
axis, but a magnetic field of 3 T will turn the spin to the ab
plane with almost zero out-of-plane components [6].
This change of the FM ordered moment direction will
nullify the NNN DM term by making A, and S; x §;
perpendicular to each other with vanishing Hp,, and
therefore close the NNN DM interaction-induced spin gap
at the Dirac points [Fig. 1(d)]. This result is similar to the 2D
kagome latice ferromagnet Cu[l,3- benzenedicarboxylate
{bdc)] [Cu(l,3-bdc)], where an out-of-plane magnetic field
applied to align the in-plane FM ordered moments along the
¢ axis is found to also induce a DM interaction-induced
spin gap at the Dirac points [50,51). In contrast, if the spin
gap at the Dirac point is induced by the Kitaev exchange, its
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FIG. 5. The in-plane magnetic field effects on spin waves of ¢ axis aligned Crl; single crystals shown in the inset of (h), and
Heisenberg- Kitaev model fit of the spectra. (a) The experimental setup of inelastic neutron scattering experiments, where applied field is
vertical and ¢ axis of the crystals is in the light-shaded horizontal scattering plane. (b) The reciprocal lattice showing the scan direction in
{c~f). The high symmetry points are shown with blue (M), red (K), and black (') dots. (c—f) Spin wave dispersions of the Heisenberg-
Kitaev model with in-plane (red) and out-of-plane (black) spin orientations. (g, i) Spin wave E-A) spectra of Crl; at5 Kinzeroand 4.5 T
inplane fields, respectively. The high-symmetry points are marked on top. Here Q in the unit of A' indicates the wave vector s
projection on the [H, K| plane with L = [-5, 5] integration. (h, j) Calculated E-Q) spectra using the Heisenberg-Kitaev Hamiltonian at
zero and 4.5 T field, respectively. (k. 1) Comparison of the energy cuts between experiments (black dots) and calculations (red lines)
using the Heisenberg-Kitaev Hamiltonian at Dirac point in 0 T and 4.5 T, respectively. The () integration range of the energy cuts is
0.55-0.66 A' centered around the K point (= 0.608 jl]], as shown in the long white shaded line in (g) and (i).

field dependence will be anisotropic and dependent on the
relative angle of the polarized spin with respect to the in-
plane lattice orentation [Figs. 5(a)}-5(f)].

To test this idea, we perform inelastic neutron scattering
experiments under in-plane magnetic fields on HY SPEC
[41] with an incident neutron energy of E; =27 meV
(Fig. 5) and on ARCS [42] with E; = 23 meV (Fig. 6).
Figure 5(a) shows the geometry of the experimental semps,
where the applied magnetic fields are wvertical in the
honeycomb lattice plane. For HYSPEC experiments,
we use c-axis aligned single crystals (~1 g) [see inset of
Fig. 5(h)] and apply a field of 4.5 T, which is larger than
the in-plane saturation field of 3 T [6] and sufficient to
completely polarize the moment in the Crl; plane. As a
function of increasing field, the spin gap at the I" point
(=04 meV) [33] initially decreases to overcome the c-axis
aligned moment but then increases because of the increas-
ing Zeeman energy [43]). These results are consistent
with the field dependence of the gap from either single-
ion spin anisotropy or the off-diagonal I” term in the Kitaev
interaction [43].

Figures 5(g) and 5(i) show the spin-wave (}-E spectra at
zero and 4.5-T field, respectively. While the overall spin-
wave intensity decreases at 4.5 T becanse of the rotation of
the spin moment direction from the ¢ axis to the Crl; plane,
the spin gap near the Dirac point, marked by the white
vertical line in Figs. 5(g) and 5(i), shows no obvious
change. In the J-K-I" model, the spin gap opens at the Dirac

points becanse the NN Kitaev exchange interactions alter-
nate between two different anisotropic bond-dependent
terms along the zigzag bonds [19]. Since the Kitaev
interaction Hamiltonian H; is inherently sensitive to the
spin omfentations, spin-wave spectra of a J-K-I' model
will change drastically when the moment direction of
the spins is rotated from the ¢ axis to the in-plane direction
by an externally applied magnetic field [Figs. 5(b}-5(f)].
Whereas a DM interaction-induced spin gap would close
uniformly under an in-plane field to preserve the sixfold in-
plane symmetry of the spin-wave dispersion, the Kitaev
interaction-induced spin gaps will respond anisotropically
depending on the relative angles between the wave vector
and field direction. Furthermore, the field-induced changes
in spin-wave spectra will not be limited around the Dirac
points in the J-K-T" model.

Figures 5(h) and 5i(j) show calculated spin-wave Q-E
spectra using the J-K-I" Hamiltonian with the ¢ axis and in-
plane moment, respectively. We use the exchange param-
eters that reproduce the zero field spectra identically with
the Heisenberg-DM model shown in Fig. 3(b) [33]. While
the zero field calculation agrees well with the data, the
4 5-T spin-wave spectra are clearly different from that of
the calculation. The data points in Figs. 5(k) and 5(1) show
energy-dependent spin waves across the Dirac point at 0
and 4.5 T, respectively. The solid lines are spin-wave
calenlations using the J-K-T" Hamiltonian with the ¢ axis
and in-plane moments, confirming that the Heisenberg-
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FIG. 6. The magnetic field effect on the Heisenberg-DM model. (a, b) Calculated EA} spectra of ¢ axis aligned Crly using the
Heisenberg-DM Hamiltonian with 0 and 4.5 T in-plane fields, respectively. (c) Spin waves of a fully co-aligned Crl; single crystals near
the Dirac point along the [H, H] direction with a 5 T in-plane magnetic field. (d, ) Heisenberg-DM model simulation with 0 and 5 Tin-
plane field, respectively. (f) The effect of a magnetic field on spin wave dispersion near Dirac point and its comparison with the
Heisenberg-DM calculations. (g) Constant-(Q) cut at the Dirac point ([H, H] = (0.3,0.37)) on the experimental data and Monte Carlo
simulations. The experimental data has a constant background subtracted. The gray dots show imtensity increasing due to higher
instrumental background. (h) Schematics of the in-plane DM interaction of a tdangular sublattice in one Cr hexagon. The in-plane
component of the DM interaction (DM)) is perpendicular to the two-fold rotation axis between the two NN Cr ions according to the
Moriyas rule. (i) In-plane DM interactions respecting the three-fold symmetry of the lattice. (j) An example of in-plane DM interactions
breaking the three-fold symmetry of the lattice. (k) The calculation of spin wave dispersion with in-plane spins and in-plane DM

interactions shown in red dashed lines (i) and black solid lines (j). Here DM" =0.17 meV.

Kitaev Hamiltonian cleardy fails to describe the magnetic
field effect on spin waves.

Figures 6(a) and 6(b) show calculated spin-wave Q-E
spectra using the Heisenberg-DM Hamiltonian with the ¢
axis and in-plane moment, respectively. Compared with the
J-E-I" Hamilonian in Figs. 5(h) and 5(j), the Heisenberg-
DM Hamiltonian obviously agrees much better with the
experimental data in Figs. 5(g) and 5(i). Figure 6ic) shows
the (3-E dependence of spin waves near the Dirac point
with an in-plane applied field of 5.0 T at 5 K, obtained on
coaligned single crystals of Crl; on ARCS. Figures 6(d)
and 6(e) are the corresponding spin-wave spectra calculated
using the Heisenberg-DM Hamiltonian. The data points in
Fig. 6(f) show the magnetic field difference plot obtained
from Figs. 5(k) and 5(1). It is clear that the solid line
calenlated from the Heisenberg-DM Hamiltonian can
approximately describe the data but with a small deviation
near the Dirac point [Figs. 6(f) and 6{g)].

From the above discussions, we see that the J-E-T'
Hamiltonian clearly cannot describe the observed magnetic
field dependence of spin waves in Crl;. While the simple
NNN Heisenberg-DM Hamiltonian can describe the overall
spectra and its magnetic field dependence, it may have
difficulty in describing the magnetic field dependence
of the Dirac spin gap. Since the loss of translational
symmetry between the two Cr sublattice spins of an ideal
honeycomb lattice can open a spin gap at the Dirac points,
it is important to determine other possible origins for the
observed Dirac gap.

IIL DISCUSSION

In previous work [1,35-39], A-type AF order of Crl;
was found to be associated with the monoclinic structural
phase either near the surface of the bulk or in thin-layer
form (for example, the bilayer of Crl;). However, it is
unclear why the AF order in bilayer Crl; has monoclinic
crystal structure, which appears in the paramagnetic phase
above T of bulk Crl; [1,35,36]. Using the NN AF and
NNN FM interlayer coupling in the rhombohedral FM
phase (Figs. 1 and 2), we estimate that the interlayer
stacking is still FM in the bilayer limit [43], thus ruling out

TABLE II. Estimated magnetic bonding energies associated
with each Cr'™ atom in various crystal structure and exchange
couplings [43]. Rhom and mono indicate thombobedral and
monoclinic lattice structures, respectively. In the hypothetical
mono-bulk and mono-bilayer cases, the NN and NNN magnetic
exchange couplings are assumed to be the same as those of the
thom-bulk and rhom-bilayer, revealing that the FM rhombohedral
lattice structure has lower magnetic bonding energy.

Structures Jo (meV)  Jo (meV) Energy (meV)
Rhom-bulk, FM 0.048 =0.071 -1.33
Rhom-hbilayer, FM 0.048 =0.071 —0.66
Mono-bulk, FM 0.048 =0.071 -0.21
Mono-bilayer, FM 0.048 =0.071 =0.10
Mono-bulk, AF 0.037 0 -0.33
Mono-bilayer, AF 0.037 0 =0.17
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rhombohedral AF bilayer structure. If we change the crystal
structure to monoclinic but maintain the NN and NNN
c-axis coupling in bulk Crl;, the magnetic bonding energies
are higher than that of the thombohedral lattice structure.
From Raman scattering of bilayer Crls, the sum of the
interlayer AF coupling in monoclinic structure was found
to be about 0.11 meV [36]. Assuming that the NNN
magnetic exchange is negligible, we estimate that the
NN magnetic exchange in the monoclinic bilayer is
Jq = 0037 meV [43]. Table II summarizes the total
magnetic bonding energy for one Cr** atom in different
lattice and magnetic structures [43]. We find that the FM
bilayer rhombohedral structure should be more favorable
than the AF bilayer monoclinic stmucture, contrary to the
observation. Since Raman experiments can only deduce total
magnetic exchange along the ¢ axis, we are unable to
determine the actual NN and NNN magnetic exchange
couplings in the monoclinic structure. Nevertheless, the
observed AF order in the monoclinic bilayer suggests that
such a phase has lower ground-state energy compared with
that of the FM rhombohedral structure in bulk or bilayer
Crl;. As the hydrostatic pressure applied on the AF bilayer
Crl; can reduce the interlayer spacing and reintroduce the
rhombohedral FM state [38], we expect that the monoclinic
bilayer Crl; should have a larger c-axis AF exchange and
lattice parameter compared with that of the thombohedral
bilayer. This case is also consistent with a reduced c-axis
latice constant below T in bulk Crd; [6] and recent
simulations of transport measurements suggesting that the
layers may expand along the ¢ axis to minimize interaction
energy and stabilize a different magnetic coupling [52,53].
We note that the collinear AF order in iron pnictides alko
expands the lattice parameter along the AF ordering direc-
tion [54,55]). While the NNN interlayer exchange couplings
of bulk Crl; ultimately determines its FM ground state, the
AF intedayer coupling prevails in the monoclinic bilayer
Crl; [43]. These resuls suggest that the monoclinic-wo-
rhombohedral structural phase transition in Crl; is driven by
reducing the interdayer magnetic exchange energy.
Although our data rule out a pure Kitaev interaction and
electron correlations as the microscopic origins of the
observed Dirac spin gap, there may be other interactions
in addition to the NNN DM that contribute to the Dirac spin
zap. We consider several possibilities. First, reducing the
bulk structural symmetry from rhombohedral to mono-
clinic, by itself, will not open a spin gap at the Dirac point
becanse such a structural phase transition does not change
the inversion symmetry of the Cr honeycomb sublatiice. If
additional structural deformations are present due to, for
instance, thermal effects, the inversion center between the
first NNs would be removed, which, incidentally, would
allow DM interactions to exist at that level. Nevertheless,
we show in the Supplemental Material [43] that the
inchision of DM at the first NNs does not open a gap at
the Dirac point We also consider a Heisenberg model with

both the NNN DM and Kitaev interaction [43]. By using a
Heisenberg-DM Hamiltonian with different Kitaev inter-
action strengths that fits spin-wave spectra at 0 T, we can
compare the expected and observed spin waves under a
4 .5-T field and in-plane spin. The result indicates that the
Kitaev term should be near zero in order to get the best fit to
the 4.5-T spin-wave spectra [43].

Altematively, magnon-magnon interactions may poten-
tially affect Hpyy, which can result in a gap at the Dirac
point. When higher-order Holstein-Primakoff transforma-
tions are considered in the description of the spin inter-
actions in Crly, three-operator products arise which may
contribute to the gap [43]). However, since magnon-magnon
interactions in most magnetic materials are weakly energy
and wave vector dependent, and typically occur at energies
above the single magnon scattering, they are unlikely to
give rise to the observed spin gap at the Dirac points.

Finally, we envision two mechanisms that may allow the
spin gap at the Dirac point to remain open under an in-plane
spin-polarizing field: The first is the sublattice symmetry
breaking, and the second is the threefold rotational sym-
metry breaking of the ideal honeycomb lattice of Crl;.

We first discuss the possible sublattice symmetry break-
ing of an ideal honeycomb lattice. From spin-wave spectra
in Figs. 2 and 3, we know that the two Cr*~ ions of different
sublattices within the honeycomb unit cell interact not
only via the intralayer NN interaction J, but also the
inteflayer NN .J ., which is AF and directly along the ¢ axis
[Fig. 1(a)]. Whereas both bonds are bisected by the
stuctural inversion centers, respectively, the interlayer
AF exchange coupling J., will favor a breaking of the
inversion symmetry between the two Crsublattice spins. As
a result, if the two Cr** ions within a unit cell have spins of
unequal moments (due to environmental defects such as Cr
andfor I vacancy) [56], an energy gap will appear at the
Dirac points without significantly affecting spin waves at
other wave vectors.

It is well known that the interlayer magnetic order in Crl;
switches from AF to FM as the number of stacked vdW
layers increases from the bilayer to the bulk, accompanied
by a structural transition from monoclinic to thombohedral
stacking along the ¢ axis [57-62]. In addition, a small
{< 3 T) in-plane magnetic field can easily transform AF
ordered multilayer Crl; into a ferromagnet [63]. Even in the
bulk samples, the surface layers are reported to have AF
monoclinic structure that can be tuned by a c-axis aligned
magnetic field of a few Tesla [39]. While these resulis
indicate minor energy differences in rhombohedral and
monoclinic structures of Crl;, they suggest that the Cr
honeycomb lattice may have subile NN inversion sym-
metry-breaking structural distortions that are responsible
for the observed Dirac spin gap [56].

We next consider the field-induced breaking of the
threefold symmetry of the in-plane DM vectors. Since
the NNN DM interaction must involve the iodine atoms, the
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mirror symmetry of the simple honeycomb lattice is lost,
with only the twofold rotation axis remaining [43]. As a
result, the DM vector is not constrained to be out of plane
and can have in-plane projections. This argument holds as
long as the DM wvector is perpendicular to the twofold
rotation axis according to Moriya's rule [Fig. 6(h]]. In the
case where no magnetic field is applied, the spins are
aligned along the ¢ axis, and only the DM vector compo-
nent parallel to this direction can open the Dirac gap. In the
simation where an in-plane applied magnetic field is strong
enough to rotate the ¢ axis aligned spins into the Crl; plane,
the threefold symmemry of the in-plane DM vectors will
cancel out when determining the spin-wave energy at the
K point, thus yielding no contribution to the Dirac gap
[Figs. 6(i) and 6(j)]. However, if the in-plane DM wvector
breaking the threefold symmetry is induced by the
applied field, then it will contribute to opening a Dimac
zap [Fig. 6(k)]. This process will require a significant field-
induced symmemry breaking of the in-plane DM whose
energy scale should be similar to the out-of-plane DM
terms (~.17 meV). While a ¢ axis aligned magnetic field
of a few Tesla is known to break the lattice symmetry of
Crl; [39], there is cumrently no direct experimental proof
that an in-plane magnetic field of a few Tesla would break
the threefold symmetry of the crystalline latiice in Crl;.
Nevertheless, we could estimate a band gap of ~1.1 meV
using the parameters exmracted from our data, which
underestimates the gap value obtained from the experi-
ments due to the mosaicity effect [43]. This conjecture
suggests that the Cr lattice, as well as its halide sublattice,
contributes to the topological spin features observed
in Crl;.

IV. CONCLUSIONS

In summary, we used inelastic neutron scattering to study
the impact of an in-plane magnetic field on spin waves of
Crl;. At zero field, we completely determined the magnetic
exchange couplings along the ¢ axis by carefully measuring
c-axis spin-wave dispersions at different in-plane wave
vectors. We find that the NN ¢-axis magnetic exchange
coupling is AF and the NNN magnetic exchange couplings
are FM. These results thus indicate coexisting AF and FM
exchange interactions betrween the hexagonal layers of
Crl;. We also confirmed the presence of a spin gap at the
Dirac points at zero field and found that an in-plane
magnetic field that can rotate the moment from the ¢ axis
to the Crl; plane also modifies the spin-wave spectra and
spin gap at Dirac points. These results can conclusively rule
out the J-K-I' Hamiltonian and electron comelations as
origins of the Dirac spin gap. While the field dependence of
the Dirac spin gap may not be completely undersiood
within the NNN Heisenberg-DM Hamiltonian, the results
suggest the presence of a local sublattice or threefold
rotational symmetry breaking of the ideal honeycomb
lattice in Crl;. Our resulis therefore firmly establish the

microscopic spin Hamiltonian in Crl; and provide a new
understanding of topology-driven spin excitations in 2D
vdW magnets.
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