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Abstract

Shape analysis has been playing an important role in
early diagnosis and prognosis of neurodegenerative dis-
eases such as Alzheimer’s diseases (AD). However, ob-
taining effective shape representations remains challeng-
ing. This paper proposes to use the Alexandrov polyhedra
as surface-based shape signatures for cortical morphome-
try analysis. Given a closed genus-0 surface, its Alexan-
drov polyhedron is a convex representation that encodes
its intrinsic geometry information. We propose to com-
pute the polyhedra via a novel spherical optimal trans-
port (OT) computation. In our experiments, we observe
that the Alexandrov polyhedra of cortical surfaces between
pathology-confirmed AD and cognitively unimpaired indi-
viduals are significantly different. Moreover, we propose a
visualization method by comparing local geometry differ-
ences across cortical surfaces. We show that the proposed
method is effective in pinpointing regional cortical struc-
tural changes impacted by AD.

1. Introduction
Alzheimer’s disease (AD) is the most common type of

dementia. It is commonly agreed that an effective presymp-
tomatic diagnosis and treatment of AD could have enor-
mous public health benefits [15]. Brain structural mag-
netic resonance imaging (sMRI) research has the potential
to provide valid diagnostic biomarkers of AD risk factors.
Although brain structural volumes are the most commonly
used sMRI measures in AD research, surface-based brain
structural measures offer more detailed and patient-specific
shape information [21, 14, 2, 25]. Overall, a geometrically
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Figure 1: The Minkowski Problem

solid method, which is sensitive to intrinsic surface geomet-
ric features, is vital to identify reliable imaging biomarkers,
reduce the sheer number of statistical tests, and thereby im-
prove the statistical power of imaging analysis.

It is well known that a general surface in R3 is fully de-
termined by its first fundamental form (Riemannian met-
ric) and the second fundamental form, unique up to a rigid
motion. Closed convex surfaces are solely determined by
their Riemann metrics. According to Gauss’s Theorema
Egregium, the Gaussian curvature is intrinsically deter-
mined by the Riemannian metric. Therefore, given a sur-
face, it is natural to ask whether its Gaussian curvature
could be encoded into a convex shape, which enables us
to visualize the Riemannian metric of the input surface, and
helps us compare the Riemannian metric of the given sur-
face to other surfaces.

The existence and computation of such a convex shape
representation relates to the Minkowski problem and the
Minkowski theorem. Mathematically, the Minkowski prob-
lem (type II) asks how to reconstruct a convex shape that
fulfils a given Gaussian curvature measure. As shown in
Fig. 1, the setup for the Minkowski problem is as follows:
A domainK ∈ R3 is convex and contains the originO. The
boundary ∂K is a smooth convex surface, with polar coor-



dinate representation {ρ(x)x | x ∈ S2, ρ : S2 → R+} and
the corresponding polar map P : S2 → ∂K, x 7→ ρ(x)x.
The normal mapping NK := ∂K → S2 maps each point
on ∂K to its normal vector. Now, the composition map
GK := NK◦P is a mapping from S2 to S2. If we denote the
Hausdorff measure (i.e., area element) on the image domain
S2 as H2, then GK pulls back H2 to the domain S2 and
the pulled-back measure (GK)#H2 is called the Gaussian
curvature measure, denoted as ν. The Minkowski prob-
lem asks how to find the shape of ∂K from the Gaussian
curvature measure ν. In fact, GK is the unique optimal
transportation (OT) map between H2 and ν, and therefore,
the Minkowski problem is equivalent to solving a spheri-
cal OT problem, i.e., finding the most economical way on
the sphere surface to transport the source measure H2 to
the target measure ν under a prescribed cost function. For
the Minkowski problem, the transportation cost is related
to the spherical geodesic distance. According to Monge-
Kantorovich theory, this is reduced to finding a pair of con-
vex potential functions, which are Legendre dual to each
other. Furthermore, the Kantorovic potential satisfies the
spherical Monge-Ampère PDE. In discrete cases where the
input surface is represented as a triangle mesh, the classical
smooth solution can be approximated by weak solutions,
i.e., the Alexandrov solutions, which are convex polyhedra
and C1 converges to the smooth solution.

In this work, we prove the existence of the solution to the
Minkowski problem based on Monge-Kantorovich theory
(see e.g., [23]). The proof leads to a rigorous and practical
algorithm to compute the Alexandrov polyhedron using a
variational approach in the discrete case. Furthermore, the
obtained Alexandrov polyhedron can be applied as a shape
signature of the original surface. Our experiments show
that the Hausdorff distances between Alexandrov polyhedra
of the brain cortical surfaces from AD patients and cogni-
tively unimpaired (CU) individuals have significant group
differences. Also, by comparing the shapes of Alexandrov
polyhedra, we can pinpoint the AD-impacted brain regions
that have significant geometric changes. These results show
that the Alexandrov polyhedra are effective and accurate
as shape signatures in capturing and visualizing geomet-
ric structural changes of brain cortical surfaces affected by
early AD. Moreover, we base the computation of Alexan-
drov polyhedra on computing intrinsic spherical optimal
transport maps, where novel mathematical formula and al-
gorithms are used to improve efficiency.

Related Works Since the cortical surface is topologically
equivalent to a sphere, shape analysis and classification
methods based on spherical harmonic map and optimal
transport map have been extensively studied [8, 18, 20, 16,
22]. In works [3, 4, 9] various rigid and non-rigid sur-
face registration approaches have been studied. In [8], the
authors proposed using spherical harmonic maps to regis-

ter brain cortical surfaces on the unit sphere. A spheri-
cal harmonic map provides a diffeomorphism for convex
domains, has clear physical interpretation of minimizing
elastic energy of the deformation, and can be computed
by efficient algorithms [24, 26, 17]. However, conformal
maps are prone to cause large area distortions if the ge-
ometry of the input surface is complicated. This decreases
the robustness of registration and shape analysis in the pa-
rameterization domain. To mitigate this problem, area-
preserving maps have been proposed for brain cortical anal-
ysis [18, 12]. In [20], Su et al. proposed a shape classifi-
cation method on brain cortical surfaces of various intelli-
gence quotients using Wasserstein distance. Similar to our
proposed method, they also computed the spherical power
diagram and optimal transport map to compare brain struc-
tural differences. But the computation of optimal transport
map uses stereographic projection from the sphere to the 2D
plane, where Euclidean metrics are used, making the result
dependent on the choice of the north pole and not intrinsic
to spherical Riemannian metric. Later in [12], a divide-and-
conquer method was proposed. Specifically, the sphere is
first sliced into two hemispheres, which are treated sepa-
rately, and then wielded together using conformal wielding
techniques. However, the result of this method depends on
the choice of the cutting locus. In our method, we directly
compute the optimal transport map on the sphere using in-
trinsic spherical Riemannian metric and is thus independent
of initial conditions. Recently, in [6], the authors stud-
ied the spherical optimal transport using spherical Rieman-
nian metric, and they proposed to use Monge-Kantorovich
theory to compute the intrinsic spherical optimal transport
map. In particular, the OT map is computed via optimiz-
ing a convex functional energy. Compared to this work, we
use a novel formulation of the energy gradient and Hessian,
which avoids the computation of the power radii. Further-
more, we propose a novel Lawson’s edge flip to handle the
mesh connectivity changes during the mesh updating step.
This avoids reconstructing the entire mesh at each of the
optimization steps, and thus improves the efficiency. In ad-
dition, besides a uni-variate biomarker that related works
mainly focused on (e.g., the Wasserstein distance [20]), our
method provides a shape signature for each cortical surface,
which contains more information in capturing and pinpoint-
ing subregional shape structure differences.

Contributions In summary, the main contributions of this
paper are as follows. 1) By adopting the Kantorovich dual
framework, we propose a novel formulation that leads to a
rigorous and practical computational method for spherical
optimal transport problem, which is intrinsic to the spheri-
cal geometry. 2) We propose a novel generalized Lawson’s
edge flip method to improve computational efficiency. 3)
We propose to use the Alexandrov polyhedra as a novel
shape signature of the brain surface. Its effectiveness is



demonstrated in detecting brain structural changes affected
by AD. Furthermore, our proposed method is general and
applicable to any closed genus-0 surfaces.

2. Theory
2.1. Minkowski Problem for Curvature Measures

Let K ⊂ Rd be an open bounded convex do-
main containing the origin, and we parameterize ∂K
in polar coordinates as follows: ∂K = {ρ(x)x |
x ∈ Sd−1, ρ : Sd−1 → R+}. Then to any point
z ∈ ∂K, we associate the normal mapping NK(z) :={
y ∈ Sd−1|K ⊂ {w ∈ Rd | 〈y, w − z〉 ≤ 0}

}
. Geometri-

cally, the normal mapping finds the normals of all support-
ing hyperplanes at z (Fig. 2(a)).

Definition 1 (Gauss Map and Gaussian Measure). The
(multivalued) Gauss map GK : Sd−1 → Sd−1 is defined by
GK(x) := NK(ρ(x)x), and define the Gaussian curvature
measure µK(E) := Hd−1(GK(E)), for all measurable set
E ⊂ Sd−1, where Hd−1 denotes the (d − 1)-dimensional
Hausdorff measure on Sd−1.

Problem (Minkowski). Given a finite measure ν on Sd−1,
can one find an open bounded convex set K containing the
origin such that ν = µK?

Definition 2 (Spherical convex set and polar set). Let ω ⊂
Sd−1, we say that ω is convex if the cone R+ω := {tx :
t > 0, x ∈ ω} is convex. We define the polar set to ω as
ω∗ := {y ∈ Sd−1 | 〈x, y〉 ≤ 0 ∀x ∈ ω}.
Theorem 1 (Minkowski [5]). Let ν be a finite measure on
Sd−1. Then

ν = µK for some K

⇐⇒

 (a) ν(Sd−1) = Hd−1(Sd−1)
(b) ν(Sd−1 \ ω) > Hd−1(ω∗)

∀ω ( Sd−1 compact and convex

Also, if K exists, then it is unique up to a dilation.

Up to a change of coordinates, we can write ∂K as the
graph of a convex function u : Ω ⊂ Rd → R. Suppose
u is C2, then the Gaussian curvature of the graph of u is

detD2u
(1+|∇u|2)(d+2)/2 . This shows that solving the Minkowski
problem is equivalent to a Monge-Ampère type PDE. Sup-
pose µK = fdH2, where the density function f is bounded.
By the regularity theory, the boundary ∂K isC1. Therefore,
determining the boundary of K is equivalent to finding an
optimal transport map T : Sd−1 → Sd−1 that transports
Hd−1 to ν.

Definition 3 (Generalized Legendre Dual). Given a con-
vex hypersurface in Rd with polar representation Sρ :=
{ρ(x)x | x ∈ Sd−1, ρ : Sd−1 → R+}, its generalized

Legendre dual (Fig. 2(b)) is S∗ρ := {h(y)y | y ∈ Sd−1, h :

Sd−1 → R+}, where

h(y) := sup
x∈S

ρ(x)〈x, y〉. (1)

Suppose ϕ(x) := log ρ(x), ψ(y) := − log h(y), the
cost function c(x, y) := − log〈x, y〉, then the (spherical) c-
transform is defined as ϕc(y) := infx∈Sd−1 c(x, y)− ϕ(x).
A straightforward computation shows that performing c-
transform on ϕ is equivalent to performing generalized Leg-
endre dual on ρ.

In the following, we give a proof for the existence of K,
which leads to a computational algorithm for the discrete
case.

Proof. The Minkowski problem can be reformulated as an
optimal transport problem: given a finite measure ν on
Sd−1, find an optimal transport map T : Sd−1 → Sd−1
that minimizes

inf
T#Hd−1=ν

∫
Sd−1

− log〈x, T (x)〉dHd−1.

One can verify that the optimized T is the desired GK (see
definition 1) such that µK = ν. Moreover, the minimiza-
tion problem is equivalent to its Kantorovich dual problem:
supϕ,ψ {I(ϕ,ψ), (ϕ,ψ) ∈ A}, where the functional is de-
fined as

I(ϕ,ψ) =

∫
Sd−1

ϕ(x)dν(x) +

∫
Sd−1

ψ(y)dHd−1(y) (2)

and the admissible function space is

A := {(ϕ,ψ) ∈ (C(Sd−1), C(Sd−1))

| ϕ(x) + ψ(y) ≤ c(x, y)}. (3)

One can construct a sequence of function pairs
{(ϕk, ψk)} ⊂ A, where ψk = ϕck and ϕk = ψck−1.
A straightforward computation shows that I(ϕk, ψk)
increases monotonically, and ϕk, ψk are Lipschitz contin-
uous, with Lipschitz constant β = sup{|Dc(x, y)|, x, y ∈
Sd−1}. By Lipschitz continuity, we get {ψk} are uniformly
bounded, hence {ϕk} are also uniformly bounded. By
the Arzelà-Ascoli theorem, up to a subsequence, (ϕk, ψk)
uniformly converge to (ϕ∗, ψ∗), which is Lipschitz con-
tinuous and maximizes the functional. This proves the
existence.

2.2. Discrete Minkowski Problem

In practice, we focus on the two-dimensional unit sphere
S2 situation. We derive the discrete Minkowski problem
and generalize theorem 1 to the discrete case.

Suppose K ⊂ R3 is a compact convex set, its boundary
∂K is a convex triangular mesh. Assume the vertices of the
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Figure 2: (a) Normal Mapping. (b) Generalized Legendre dual: given a surface Sρ = ρ(x)x and a unit vector y, h(y) is the
height of the unique plane with normal vector y and tangent to Sρ (left), and such planes form an envelope of Sρ (right). (c)
Power diagram (red) and weighted Delaunay (blue).

polyhedron are v1, v2, · · · , vn, then ∂K is the convex hull
of its vertices ∂K = Conv({vi}ni=1). The normal mapping
maps each vertex vi to a geodesic convex polygon Nρ(vi)
on the sphere, and the spherical area of Nρ(vi) is the (dis-
crete) Gaussian curvature measure of vi.

Suppose the polar coordinate of each vi is vi = ρixi
where ρi > 0 is the radius of the polar coordinate of vi
and xi is the unit vector in the direction of vi. Then the
generalized Legendre dual η(y) of ρ(x) can be computed
as

η(y) :=
k

min
i=1

{
1

ρi

1

〈xi, y〉

}
. (4)

On the right hand side, each 1/(ρi〈xi, y〉) is a plane in
R3, denoted as πxi,ρi with normal xi and height 1/ρi.
The radial graph S∗ρ is the inner envelope of these planes,
S∗ρ = Env ({πxi,ρi}ni=1). The center projection of S∗ρ onto
S2 induces a spherical power diagram (Fig. 2(c)), with each
face of S∗ρ projected to a spherical convex polygons Wi(ρ),

S2 =
⋃
Wi(ρ), Wi(ρ) := {y ∈ S2 | πxi,ρi(y) ≤ πxj ,ρj (y)}.

(5)
Note that y ∈ Wi(ρ) is equivalent to ρi〈xi, y〉 ≥ ρj〈xj , y〉,
∀j, namely y ∈ Nρ(vi). Therefore the cell Wi equals to
the normal mapping image of vi, Wi(ρ) = Nρ(xi), and the
spherical area of Wi(ρ) equals to the Gaussian curvature
measure of vi. Therefore, the discrete Minkowski problem
can be formulated as follows:

Problem (Discrete Minkowski). Given distinct points
{x1, x2, · · · , xn} on S2 such that no hemisphere con-
tains all the points, and positive discrete measures
ν1, ν2, · · · , νn > 0 on each xi with

∑n
i=1 νi = 4π,

find positive numbers ρ = (ρ1, ρ2, · · · , ρn) such that
the each vertex vi := ρixi on the convex hull Sρ =
Conv({ρixi}ni=1) has the Gaussian curvature measure equal
to νi, i = 1, 2, · · · , n.

The Minkowski theorem 1 can be generalized to the dis-
crete situation directly, where the radius function ρ exists,

unique up to scaling, and Sρ is called the Alexandrov poly-
hedron. In fact, the functional Eqn. (2) becomes to a sim-
pler form in discrete case. In general, suppose µ is a finite
measure with on the sphere with µ(S2) = 4π and has con-
tinuous density (the Hausdorff measure H2), ϕ := log ρ,
ψ := log η, ν :=

∑n
i=1 νiδ(y−xi) andwi(ρ) := µ(Wi(ρ)),

then

I(ϕ,ψ) =

∫
S2
ϕ(x)dν(x) +

∫
S2
ψ(y)dµ(y), (ϕ,ψ) ∈ A

=

n∑
i=1

∫
Wi(ϕ)

ϕcdµ(x) +

n∑
i=1

ϕiνi, ϕi = ϕ(xi),

=

n∑
i=1

∫
Wi(ϕ)

(c(x, xi)− ϕi)dµ(x) +

n∑
i=1

ϕiνi

=
n∑
i=1

∫
Wi(ϕ)

c(x, xi)dµ(x) +

n∑
i=1

ϕi(νi − wi(ϕ)).

(6)

Since ν is a sum of Dirac measures, ϕ can be treated as a
vector (ϕ1, ϕ2, . . . , ϕn). In the following lemma, we show
the concavity of the energy (6), which can be optimized via
Newton’s method.

Lemma 2. Suppose ϕ = (ϕ1, ϕ2, . . . , ϕn). The gradient of
the energy

I(ϕ1, · · · , ϕn) =
n∑
i=1

∫
Wi(ϕ)

c(x, xi)dµ(x)+
n∑
i=1

ϕi(νi−wi(ϕ))

(7)
is given by

∇I(ϕ) = (ν1−w1(ρ(ϕ)), ν2−w2(ρ(ϕ)), · · · , νn−wn(ρ(ϕ))),
(8)

and off-diagonal and diagonal elements of its Hessian ma-



trix are
∂2I(ϕ)
∂ϕi∂ϕj

= −∂wi(ϕ)
∂ϕj

= −∂wj(ϕ)
∂ϕi

= sin dl+sin dk
tan di+tan dj

∂2I(ϕ)
∂ϕ2

i
=
∑
j 6=i

∂wi(ϕ)
∂ϕj

,

(9)
where edge lengths of di’s are depicted in Fig. 2(c). Further-
more, the null space of the Hessian is Span{(1, 1, · · · , 1)},
the energy is strictly concave on the complementary space
of the null space.

Proof. Suppose two cells Wi(ϕ) and Wj(ϕ) intersect with
each other. Let ϕ′ = ϕ + δei, where ei is the unit vec-
tor along the i-th coordinate axis. Then Wi enlarges, Wj

shrinks. Suppose x ∈Wi(ϕ
′) ∩Wj(ϕ),

x ∈Wj(ϕ) =⇒ c(x, xj)− ϕj ≤ c(x, xi)− ϕi
x ∈Wi(ϕ

′) =⇒ c(x, xj)− ϕj ≥ c(x, xi)− ϕi − δ

This shows 0 ≤ (c(x, xi)−ϕi)−(c(x, xj)−ϕj) ≤ δ. Then
we compute

I(ϕ′)− I(ϕ) = −δwi(ϕ) + δνi+∑
j 6=i

∫
Wj(ϕ)∩Wi(ϕ′)

[(c(x, xi)−ϕi−δ)−(c(x, xj)−ϕj))]dµ(x)

= δ(νi − wi(ϕ)) +
∑
j 6=i

O(δ)µ(Wj(ϕ) ∩Wi(ϕ
′)). (10)

By direct deduction of lemma 4 in [6], we can obtain

∂wj(ϕ)

∂ϕi
=
∂wi(ϕ)

∂ϕj
= − sin dl + sin dk

tan di + tan dj
. (11)

Therefore we get I(ϕ + δei) − I(ϕ) = δ(νi − wi(ϕ)) +
O(δ2), hence we obtain the gradient formula ∂I(ϕ)/∂ϕi =
νi − wi(ϕ). Furthermore, wi(ϕ) is differentiable, and thus
we obtain the formula for ∂2I(ϕ)/∂ϕi∂ϕj . Since

0 =
∂4π

∂ϕi
=

n∑
j=1

∂wj(ϕ)

∂ϕi
=

n∑
j=1

∂wi(ϕ)

∂ϕj
,

we obtain ∂wi(ϕ)/∂ϕi =
∑
j 6=i ∂wi(ϕ)/∂ϕj . By geomet-

ric meaning, ∂wj/∂ϕi < 0, hence the off diagonal elements
of the Hessian matrix are non-negative. The Hessian matrix
is diagonal dominant, hence its null space is one dimen-
sional spanned by (1, . . . , 1). Otherwise, assume v is in
the null space, the k-th element of v has the biggest abso-
lute value, then the k-th element of Hess · v is non-zero,
contradiction. The Hessian matrix is negative definite on
the complementary space of the null space, this implies the
strict concavity of the energy.

Algorithm 1: Computing Sρ
Input: Target measure ν =

∑n
i=1 νiδ(x− xi),

initial spherical triangulation T
Output: The Alexandrov polyhedron Sρ
Initialize ϕi’s to be zeros, ρi ← exp(ϕi);
Initialize d to be zero, λ← 1;
while true do

repeat
ϕ← ϕ+ λd, ρ← exp(ϕ);
Use the generalized Lawson’s edge flip [10]
to update the convex hull Sρ;
λ← 1

2λ;
until no missing vertex on the convex hull;
Compute the Legendre dual S∗ρ ;
Central project Sρ and S∗ρ to get T and D;
Compute the cell areas to get the gradient
∇I(ϕ) by Eqn. (8);

if ‖∇I(ϕ)‖ < ε then
break;

end
Compute the edge lengths to get the Hessian
matrix by Eqn. (9);

Solve linear system Hess(ϕ)d = ∇I(ϕ);
end
With the optimal ϕ, construct Sρ = {ρixi} with
ρi = exp(ϕi);

3. Computational Algorithm
The pipeline of our proposed method consists of three

major steps. First, given an input triangular mesh of a cor-
tical surface S (Fig. 3 (a)), we conformally map S to S2 via
a spherical harmonic map (Fig. 3 (d)). Second, on S2, we
set the target measure νi at each vertex as the correspond-
ing vertex area on S and compute the Alexandrov polyhe-
dron Sρ (Fig. 3 by solving the discrete Minkowski prob-
lem (Alg. 1). In particular, we optimize the energy Eqn. 7
with respect to φ, and at each step we measure the gradient
by computing spherical cell areas of the power diagram Dρ
(Fig. 3 (f)). Finally, an area-preserving map from S to S2 is
obtained by mapping each vertex in S to the center of cells
in the power diagram. This map is intrinsic to the spheri-
cal Riemannian metric and thus provides an intrinsic regis-
tration among cortical surfaces [19] as well as correspond-
ing Alexandrov polyhedra. The obtained area-preserving
map and Alexandrov polyhedron provide novel and reliable
biomarkers and visualization tools for brain cortical surface
shape analysis purposes.

3.1. Spherical Harmonic Map

The spherical harmonic map f1 : S → S2 is computed
using the method in [8] (Fig. 3 (a) to Fig. 3 (d)). This map



(a) Input Surface S (b) Discrete Alex. Poly. Sρ (c) Envelope S∗ρ

(d) Harmonic Map (e) Weighted Delaunay Tρ (f) Power Diagram Dρ

Figure 3: Cortical surface, harmonic map, Alexandrov polyhedron, the induced spherical weighted Delaunay triangulation,
the generalized Legendre dual (i.e. the envelope), and the induced spherical power diagram.

is conformal, 1-to-1 continuous, and determined by the in-
trinsic geometry of the input surface, but the area at each
vertex is potentially distorted.

3.2. Computing the Alexandrov Polyhedron Sρ

Next, suppose each vertex vi ∈ S is mapped to xi :=
f1(vi) ∈ S2 under the spherical harmonic map, we set
the target measure ν =

∑n
i=1 νiδ(x − xi) with νi =

VertexArea(vi). Here VertexArea(vi) is the mean area of
adjacent triangular faces of vi in S . Now we solve the dis-
crete Minkowski problem via optimizing the discrete en-
ergy I(ϕ) (Eqn. (7)) within the admissible solution space
A (see Eqn. (3)). Since by lemma 2, the optimization is
concave, it is optimized via Newton’s method, using gradi-
ent Eqn. (8) and Hessian Eqn. (9). Specifically, to evalu-
ate the gradient and Hessian, we need to compute the w(k)

i

term from ϕ
(k)
i at the k-th iteration. To do this, we first

construct S∗
ρ(k) := {η(k)(y)y | y ∈ S2} from ϕ(k) where

ρ(k) = expϕ(k) and η(k)(y) is computed via the Legen-
dre dual (Eqn. (4)). S∗

ρ(k) is then projected onto the unit
sphere and forms a power diagram Dρ(k) (from Fig. 3 (e) to
Fig. 3 (f)). Now wi(ρ

(k)) is computed as Area(Wi(ρ
(k))),

where Wi(ρ
(k)) is the i-th cell of Dρ(k) . With the gradient

and Hessian, ϕ(k)
i is updated to ϕ(k+1)

i using the Newton’s
method. To deal with the mesh connectivity changes during
this updating process, we propose for the first time to use
Lawson’s edge flip algorithm to maintain the convexity of
Sρ. This avoids reconstructing the whole mesh at each iter-

ations (see e.g., [6]). Details of the algorithm are in Alg. 1.

3.3. The Intrinsic Area-Preserving Map

In the previous step, the energy (Eqn. (6)) is optimized,
which means the gradient of the energy (Eqn. (8)) equals
to 0, i.e., for each cell Wi in Dρ, the area of Wi equals to
νi = VertexArea(vi). Therefore, the mapping between vi
to the geodesic center of the spherical polygon Wi forms an
area-preserving map. We use thus obtained area-preserving
maps to register all brain cortical surfaces, as well as their
Alexandrov polyhedra. This registration is more robust than
the one obtained using spherical harmonic maps [18].

3.4. Cortical Surface Shape Analysis

The obtained Alexandrov polyhedra and area-preserving
map enable us to perform brain cortical surface shape analy-
sis. In particular, given a dataset consisting of brain cortical
surfaces, using the area-preserving map, we could perform
an accurate registration among the brain surfaces. Then, us-
ing the corresponding Alexandrov polyhedra as shape rep-
resentations of their Riemannian metric, we can measure
the geometric differences and pinpoint regions that have
significant changes.

The geometric intuition is that the Alexandrov polyhe-
dron encodes the area density information of the input cor-
tical surface. As shown in Fig. 4, the key observation is
that if a vertex on the input surface has a higher vertex area,
then the corresponding region of the Alexandrov polyhe-
dron will has higher Gaussian curvature. Since the Alexan-



Figure 4: The blue polygon is a patch on the Alexandrov
polyhedron. Red arrows are the adjacent face normals of
the vertex. The yellow polygon is the image of the vertex
under the normal mapping (see definition 1). The area of the
yellow polygon equals to its vertex area on the input cortical
surface. One observes that larger vertex area implies more
“spikiness” on the Alexandrov polyhedron, and vice versa.

drov polyhedron is convex, this vertex will bump out. On
the contrary, if a cortical surface region has a lower sur-
face density relative to other parts (e.g., regional shrink-
age caused by AD), then the corresponding region on its
Alexandrov polyhedron tends to have lower Gaussian cur-
vature. And because of the convexity, this region would
be flatter than other parts. Furthermore, the difference of
Alexandrov polyhedra from two surfaces can be measured
using Hausdorff distance, since they are convex and regis-
tered. Here, the Hausdorff distance dh(X1, X2) of two sets
X1, X2 ⊆ R3 is defined as maxx∈X1(miny∈X2 d(x, y)),
where d(·, ·) is the Euclidean distance. Therefore, by com-
puting the the Hausdorff distance of the Alexandrov poly-
hedra of two brain cortical surfaces, we can compare and
visualize the difference between their Riemmanian metrics.

4. Experiments

In our experiments, we first compare our method with
a previous spherical OT method in terms of accuracy and
efficiency. We show that our method outperforms previ-
ous methods in terms of computation time and accuracy.
Second, we demonstrate the capability of Alexandrov poly-
hedra as shape signatures in detecting AD-impacted brain
morphometry changes.

4.1. Data Preparation

Brain sMRI data are obtained from the Alzheimer’s Dis-
ease Neuroimaging Initiative (ADNI) database [11], from
which we use 80 Aβ+ AD patients and 99 Aβ− CU sub-
jects. Beta-amyloid (Aβ) positivity is determined by ADNI
florbetapir positron emission tomography (PET) data. The
PET images are processed using AVID pipeline [13] and
later converted to centiloid scales. A centiloid cutoff of 37.1
is used to determine amyloid positivity [7]. The sMRIs are
firstly preprocessed using FreeSurfer [1] to reconstruct the
pial cortical surfaces, and we only use the left cerebral sur-

(a) Non-intrinsic (b) Intrinsic

Figure 5: Spherical area distortion histograms computed via
(a) non-intrinsic OT map [20] and (b) our method.

faces, which are topological spheres.

4.2. Computational Time

In this section, we compare the computational time be-
tween our method and the state-of-art intrinsic spherical OT
algorithm [6]. Both of these methods compute spherical OT
maps with spherical geodesic distances and spherical area
forms (i.e. Hausdorff measure). The difference is that dur-
ing the update process, we use the Lawson’s edge flip al-
gorithm that recover non-convex edges to convex ones lo-
cally, while the method in [6] reconstruct the whole mesh
at each iteration. We implemented both of the algorithms
in C++ and tested on our dataset (i.e., 179 cortical sur-
faces mapped to the unit sphere by conformal maps.). On
a Intel core i5-4690 desktop with 16 GB RAM, the run-
ning time (mean and standard deviation) of our method is
16.11 ± 2.98 seconds, while the running time of the other
method is 22.10 ± 0.65 seconds. This shows our proposed
method is more efficient.

4.3. Intrinsic vs. Non-intrinsic Mapping

To check the accuracy difference between intrinsic and
non-intrinsic spherical area-preserving maps, we compare
the area distortion ratio of our method with the non-intrinsic
one proposed in [20]. In particular, both methods compute
the spherical optimal transport map. Composed with spher-
ical conformal maps the goal of both methods is to form
area-preserving maps from the input surface S to the unit
sphere S2. The difference is that the method in [20] first
maps the sphere onto the plane using stereographic projec-
tion, then computes area-preserving maps on the plane, and
finally maps the result back using the inverse stereographic
map. This steographic projection process potentially brings
area distortion which makes the result less accurate. In our
method, we directly compute the power diagrams on the
sphere using spherical polygons and spherical area element
(i.e., Hausdorff measure), thus avoids artificial area distor-
tions. We compare the results from both methods in terms
of area distortion ratios measured with the spherical Rie-
mannian metric. Ideally, the ratios should concentrate near
1. In Fig. 5, the histograms of area distortion ratios show



(a) Sagittal View (L) (b) Sagittal View (R) (c) Superior View (d) Inferior View

Figure 6: Permutation test p-value heat map on the left cerebral cortical surface (deep red means significant shape difference).

Table 1: p-value comparison between different methods.

Volume Area WD APHD
p-value 0.703 0.486 0.580 0.034

that our method preserves spherical Riemannian metric and
does not suffer from artificial area distortions.

4.4. Alexandrov Polyhedra in AD Detection

Group Difference Test In this experiment, to validate
how well Alexandrov polyhedra is capable of differenti-
ating geometries of different surfaces, we perform a non-
parametric permutation test [21] on the Hausdorff distance
of Alexandrov polyhedra between AD and CU groups.
First, for each of the cortical surfaces from AD and CU
groups, we compute the Hausdorff distance between their
Alexandrov polyhedra and a fixed template Alexandrov
polyhedron, which is computed from a randomly chosen
cognitively unimpaired individual’s cortical surface. We as-
sociate each cortical surface a response value, which equals
to the Hausdorff distance between the sample and the tem-
plate signature surfaces. We then perform a permutation
test [25] on the group difference of the Hausdorff distance.
In detail, we ran a permutation test with 5000 random as-
signments of subjects to groups to estimate the statistical
significance of group mean differences. The randomization
process here is important to remove biases from the results
and the null hypothesis is that the two groups have the same
mean. So the test statistic here is |µAD − µCU|. The out-
put of the permutation test is the p-value, which measures
the probability of obtaining the observed values assuming
the null hypothesis is true. We then compare the p-value to
a prior significance threshold, which is set as p = 0.05 in
our experiment. We report that the p-value of the proposed
method is 0.034, which is smaller than the threshold. So
we reject the null hypothesis and accept the alternative, i.e.,
there is a significant group difference between the AD and
CU groups. We compare different uni-variate biomarkers
including shape volume, surface area, Wasserstein distance
(WD) and the proposed Alexandrov polyhedron Hausdorff
distance (APHD) with p-values under the same experiment
settings (see Tab. 1). The result shows that while traditional

biomarkers fail to detect the group difference, our proposed
Alexandrov polyhedra based method is accurate in captur-
ing the difference.

AD Impact Region Detection In this experiment we
show the capability of using Alexandrov polyhedra to pin-
point and visualize subregional cortical surface changes im-
pacted by AD. Specifically, given n cortical surfaces from
both AD and CU groups, we compute their Alexandrov
polyhedra and register the Alexandrov polyhedra Siρi , i =
1 . . . n by their induced area-preserving maps (as discussed
in section 3). From the registration, at each point xk ∈ S2
on the unit sphere, we have a point set {v1k, v2k, . . . , vnk } for
each of the n Alexandrov polyhedra, where vik = ρi(xk)xk.
On each vik, we assign its radius ρi(xk) as the response
value and perform permutation tests at each xk. The output
of the tests are p-values at each xk. Thus the p-values form
a function on S2. Since all brain cortical surfaces are reg-
istered are 1-to-1 mapped onto the unit sphere by the area-
preserving maps, for visualization purpose, we plot the heat
map of this p-value function on a randomly chosen template
cortical surface S0 from the CU group in Fig. 6. The deep
red regions correspond to significant group differences. As
shown in Fig. 6, our method reveals significant differences
in both temporal lobe and posterior cingulate, structures that
are affected early by AD. The results demonstrate the capa-
bility of the proposed Alexandrov polyhedra in pinpointing
geometric changes on the brain cortical surfaces impacted
by AD.

5. Conclusion and Future Work

In this paper, we prove the existence of the solution to the
discrete Minkowski problem based on Monge-Kantorovich
theory. A novel algorithm is proposed to solve the dis-
crete Minkowski problem with a novel explicit Hessian for-
mula. Based on the solution to the discrete Minkowski
problem, the Alexandrov polyhedron, we propose to use it
as the shape signature of brain cortical surfaces and prove
its accuracy in detecting structural changes of brain corti-
cal surfaces impacted by AD. In the future, we plan to fur-
ther study the effectiveness of the proposed shape signature
method on other brain geometry impacting diseases.
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